Files
SHARK-Studio/shark/examples/shark_inference/stable_diffusion/utils.py
Phaneesh Barwaria 73457336bc add flag for toggling vulkan validation layers (#624)
* add vulkan_validation_layers flag

* categorize SD flags

* stringify true and false for flag
2022-12-15 20:40:59 -06:00

89 lines
2.8 KiB
Python

import os
import torch
from shark.shark_inference import SharkInference
from stable_args import args
from shark.shark_importer import import_with_fx
from shark.iree_utils.vulkan_utils import set_iree_vulkan_runtime_flags
def _compile_module(shark_module, model_name, extra_args=[]):
if args.load_vmfb or args.save_vmfb:
device = (
args.device
if "://" not in args.device
else "-".join(args.device.split("://"))
)
extended_name = "{}_{}".format(model_name, device)
vmfb_path = os.path.join(os.getcwd(), extended_name + ".vmfb")
if args.load_vmfb and os.path.isfile(vmfb_path) and not args.save_vmfb:
print(f"loading existing vmfb from: {vmfb_path}")
shark_module.load_module(vmfb_path, extra_args=extra_args)
else:
if args.save_vmfb:
print("Saving to {}".format(vmfb_path))
else:
print(
"No vmfb found. Compiling and saving to {}".format(
vmfb_path
)
)
path = shark_module.save_module(
os.getcwd(), extended_name, extra_args
)
shark_module.load_module(path, extra_args=extra_args)
else:
shark_module.compile(extra_args)
return shark_module
# Downloads the model from shark_tank and returns the shark_module.
def get_shark_model(tank_url, model_name, extra_args=[]):
from shark.shark_downloader import download_model
from shark.parser import shark_args
# Set local shark_tank cache directory.
shark_args.local_tank_cache = args.local_tank_cache
mlir_model, func_name, inputs, golden_out = download_model(
model_name,
tank_url=tank_url,
frontend="torch",
)
shark_module = SharkInference(
mlir_model, func_name, device=args.device, mlir_dialect="linalg"
)
return _compile_module(shark_module, model_name, extra_args)
# Converts the torch-module into a shark_module.
def compile_through_fx(model, inputs, model_name, extra_args=[]):
mlir_module, func_name = import_with_fx(model, inputs)
shark_module = SharkInference(
mlir_module,
func_name,
device=args.device,
mlir_dialect="linalg",
)
return _compile_module(shark_module, model_name, extra_args)
def set_iree_runtime_flags():
vulkan_runtime_flags = [
f"--vulkan_large_heap_block_size={args.vulkan_large_heap_block_size}",
f"--vulkan_validation_layers={'true' if args.vulkan_validation_layers else 'false'}",
]
if args.enable_rgp:
vulkan_runtime_flags += [
f"--enable_rgp=true",
f"--vulkan_debug_utils=true",
]
if "vulkan" in args.device:
set_iree_vulkan_runtime_flags(flags=vulkan_runtime_flags)
return