Files
SHARK-Studio/web/models/diffusion/v_diffusion.py
2023-02-01 09:12:45 +05:30

215 lines
6.1 KiB
Python
Executable File

"""classifier-free guidance sampling from a diffusion model."""
from functools import partial
from pathlib import Path
from PIL import Image
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm import trange
from shark.shark_inference import SharkInference
from torch.fx.experimental.proxy_tensor import make_fx
from torch._decomp import get_decompositions
import torch_mlir
import sys
sys.path.append("models/diffusion/v-diffusion-pytorch")
from CLIP import clip
from diffusion import get_model, get_models, sampling, utils
import gradio as gr
MODULE_DIR = Path(__file__).resolve().parent
set_global_parameters = False
device = None
model = None
checkpoint = None
clip_model = None
def parse_prompt(prompt, default_weight=3.0):
if prompt.startswith("http://") or prompt.startswith("https://"):
vals = prompt.rsplit(":", 2)
vals = [vals[0] + ":" + vals[1], *vals[2:]]
else:
vals = prompt.rsplit(":", 1)
vals = vals + ["", default_weight][len(vals) :]
print(vals[1])
print(vals[0])
return vals[0], float(vals[1])
def run(x, steps, shark_module, args):
def compiled_cfg_model_fn(x, t):
x_ny = x.detach().numpy()
t_ny = t.detach().numpy()
inputs = (x_ny, t_ny)
result = shark_module.forward(inputs)
return torch.from_numpy(result)
return sampling.plms_sample(compiled_cfg_model_fn, x, steps, {})
def run_all(
x,
t,
steps,
n,
batch_size,
side_x,
side_y,
shark_module,
args,
):
x = torch.randn([n, 3, side_y, side_x], device=device)
t = torch.linspace(1, 0, args["steps"] + 1, device=device)[:-1]
steps = utils.get_spliced_ddpm_cosine_schedule(t)
pil_images = []
for i in trange(0, n, batch_size):
cur_batch_size = min(n - i, batch_size)
outs = run(x[i : i + cur_batch_size], steps, shark_module, args)
for j, out in enumerate(outs):
pil_images.append(utils.to_pil_image(out))
return pil_images[0]
def cache_model():
global set_global_parameters
global device
global model
global checkpoint
global clip_model
if not set_global_parameters:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = get_model("cc12m_1_cfg")()
checkpoint = MODULE_DIR / f"checkpoints/cc12m_1_cfg.pth"
model.load_state_dict(torch.load(checkpoint, map_location="cpu"))
if device.type == "cuda":
model = model.half()
model = model.to(device).eval().requires_grad_(False)
clip_model_name = (
model.clip_model if hasattr(model, "clip_model") else "ViT-B/16"
)
clip_model = clip.load(clip_model_name, jit=False, device=device)[0]
clip_model.eval().requires_grad_(False)
set_global_parameters = True
def vdiff_inf(prompts: str, n, bs, steps, _device):
global device
global model
global checkpoint
global clip_model
args = {}
target_embeds = []
weights = []
args["prompts"] = prompts
args["batch_size"] = int(bs)
args["n"] = int(n)
args["seed"] = 0
args["steps"] = int(steps)
args["device"] = _device
cache_model()
_, side_y, side_x = model.shape
normalize = transforms.Normalize(
mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711],
)
zero_embed = torch.zeros([1, clip_model.visual.output_dim], device=device)
target_embeds.append(zero_embed)
prompt_list = args["prompts"].rsplit(";")
for prompt in prompt_list:
txt, weight = parse_prompt(prompt)
target_embeds.append(
clip_model.encode_text(clip.tokenize(txt).to(device)).float()
)
weights.append(weight)
weights = torch.tensor([1 - sum(weights), *weights], device=device)
torch.manual_seed(args["seed"])
x = torch.randn([args["n"], 3, side_y, side_x], device=device)
t = torch.linspace(1, 0, args["steps"] + 1, device=device)[:-1]
steps = utils.get_spliced_ddpm_cosine_schedule(t)
min_batch_size = min(args["n"], args["batch_size"])
x_in = x[0:min_batch_size, :, :, :]
ts = x_in.new_ones([x_in.shape[0]])
t_in = t[0] * ts
def cfg_model_fn(x, t):
n = x.shape[0]
n_conds = len(target_embeds)
x_in = x.repeat([n_conds, 1, 1, 1])
t_in = t.repeat([n_conds])
clip_embed_in = torch.cat([*target_embeds]).repeat([n, 1])
vs = model(x_in, t_in, clip_embed_in).view([n_conds, n, *x.shape[1:]])
v = vs.mul(weights[:, None, None, None, None]).sum(0)
return v
fx_g = make_fx(
cfg_model_fn,
decomposition_table=get_decompositions(
[
torch.ops.aten.embedding_dense_backward,
torch.ops.aten.native_layer_norm_backward,
torch.ops.aten.slice_backward,
torch.ops.aten.select_backward,
torch.ops.aten.norm.ScalarOpt_dim,
torch.ops.aten.native_group_norm,
torch.ops.aten.upsample_bilinear2d.vec,
torch.ops.aten.split.Tensor,
torch.ops.aten.split_with_sizes,
]
),
)(x_in, t_in)
fx_g.graph.set_codegen(torch.fx.graph.CodeGen())
fx_g.recompile()
for node in fx_g.graph.nodes:
if isinstance(node.target, torch._ops.OpOverload):
node.target = node.target.overloadpacket
fx_g.recompile()
ts_g = torch.jit.script(fx_g)
module = torch_mlir.compile(
ts_g,
[x_in, t_in],
torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=False,
)
mlir_model = module
func_name = "forward"
shark_module = SharkInference(
mlir_model, func_name, device=args["device"], mlir_dialect="linalg"
)
shark_module.compile()
return (
run_all(
x,
t,
args["steps"],
args["n"],
args["batch_size"],
side_x,
side_y,
shark_module,
args,
),
"Testing..",
)