mirror of
https://github.com/nod-ai/SHARK-Studio.git
synced 2026-01-10 06:17:55 -05:00
11 KiB
11 KiB
SHARK
High Performance Machine Learning and Data Analytics for CPUs, GPUs, Accelerators and Heterogeneous Clusters
Communication Channels
- SHARK Discord server: Real time discussions with the SHARK team and other users
- GitHub issues: Feature requests, bugs etc
Installation
Installation (Linux and macOS)
Setup a new pip Virtual Environment
This step sets up a new VirtualEnv for Python
python --version #Check you have 3.7->3.10 on Linux or 3.10 on macOS
python -m venv shark_venv
source shark_venv/bin/activate
# If you are using conda create and activate a new conda env
# Some older pip installs may not be able to handle the recent PyTorch deps
python -m pip install --upgrade pip
macOS Metal users please install https://sdk.lunarg.com/sdk/download/latest/mac/vulkan-sdk.dmg
Install SHARK
This step pip installs SHARK and related packages on Linux Python 3.7, 3.8, 3.9, 3.10 and macOS Python 3.10
pip install nodai-shark -f https://github.com/nod-ai/SHARK/releases -f https://github.com/llvm/torch-mlir/releases -f https://github.com/nod-ai/shark-runtime/releases --extra-index-url https://download.pytorch.org/whl/nightly/cpu
If you are on an Intel macOS machine you need this workaround for an upstream issue.
Download and run Resnet50 sample
curl -O https://raw.githubusercontent.com/nod-ai/SHARK/main/shark/examples/shark_inference/resnet50_script.py
#Install deps for test script
pip install --pre torch torchvision torchaudio tqdm pillow --extra-index-url https://download.pytorch.org/whl/nightly/cpu
python ./resnet50_script.py --device="cpu" #use cuda or vulkan or metal
Download and run BERT (MiniLM) sample
curl -O https://raw.githubusercontent.com/nod-ai/SHARK/main/shark/examples/shark_inference/minilm_jit.py
#Install deps for test script
pip install transformers torch --extra-index-url https://download.pytorch.org/whl/nightly/cpu
python ./minilm_jit.py --device="cpu" #use cuda or vulkan or metal
Source Installation
Check out the code
git clone https://github.com/nod-ai/SHARK.git
Setup your Python VirtualEnvironment and Dependencies
# Setup venv and install necessary packages (torch-mlir, nodLabs/Shark, ...).
./setup_venv.sh
# Please activate the venv after installation.
Run a demo script
python -m shark.examples.shark_inference.resnet50_script --device="cpu" # Use gpu | vulkan
Run all tests on CPU/GPU/VULKAN/Metal
pytest
# If on Linux for quicker results:
pytest --workers auto
API Reference
Shark Inference API
from shark_runner import SharkInference
shark_module = SharkInference(
module = model class.
(input,) = inputs to model (must be a torch-tensor)
dynamic (boolean) = Pass the input shapes as static or dynamic.
device = `cpu`, `gpu` or `vulkan` is supported.
tracing_required = (boolean) = Jit trace the module with the given input, useful in the case where jit.script doesn't work. )
shark_module.set_frontend("pytorch") # Use tensorflow, mhlo, linalg, tosa
shark_module.compile()
result = shark_module.forward(inputs)
Example demonstrating running MHLO IR.
from shark.shark_inference import SharkInference
import numpy as np
mhlo_ir = r"""builtin.module {
func.func @forward(%arg0: tensor<1x4xf32>, %arg1: tensor<4x1xf32>) -> tensor<4x4xf32> {
%0 = chlo.broadcast_add %arg0, %arg1 : (tensor<1x4xf32>, tensor<4x1xf32>) -> tensor<4x4xf32>
%1 = "mhlo.abs"(%0) : (tensor<4x4xf32>) -> tensor<4x4xf32>
return %1 : tensor<4x4xf32>
}
}"""
arg0 = np.ones((1, 4)).astype(np.float32)
arg1 = np.ones((4, 1)).astype(np.float32)
shark_module = SharkInference(mhlo_ir, (arg0, arg1))
shark_module.set_frontend("mhlo")
shark_module.compile()
print(shark_module.forward((arg0, arg1)))
Supported and Validated Models
PyTorch Models
Huggingface PyTorch Models
| Hugging Face Models | Torch-MLIR lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---|---|---|---|---|
| BERT | ✔️ (JIT) | ✔️ | ||
| Albert | ✔️ (JIT) | ✔️ | ||
| BigBird | ✔️ (AOT) | |||
| DistilBERT | ✔️ (JIT) | ✔️ | ||
| GPT2 | ❌ (AOT) |
Torchvision Models
| TORCHVISION Models | Torch-MLIR lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---|---|---|---|---|
| AlexNet | ✔️ (Script) | ✔️ | ✔️ | |
| DenseNet121 | ✔️ (Script) | |||
| MNasNet1_0 | ✔️ (Script) | |||
| MobileNetV2 | ✔️ (Script) | |||
| MobileNetV3 | ✔️ (Script) | |||
| Unet | ❌ (Script) | |||
| Resnet18 | ✔️ (Script) | ✔️ | ✔️ | |
| Resnet50 | ✔️ (Script) | ✔️ | ✔️ | |
| Resnet101 | ✔️ (Script) | ✔️ | ✔️ | |
| Resnext50_32x4d | ✔️ (Script) | |||
| ShuffleNet_v2 | ❌ (Script) | |||
| SqueezeNet | ✔️ (Script) | ✔️ | ✔️ | |
| EfficientNet | ✔️ (Script) | |||
| Regnet | ✔️ (Script) | |||
| Resnest | ❌ (Script) | |||
| Vision Transformer | ✔️ (Script) | |||
| VGG 16 | ✔️ (Script) | ✔️ | ✔️ | |
| Wide Resnet | ✔️ (Script) | ✔️ | ✔️ | |
| RAFT | ❌ (JIT) |
For more information refer to MODEL TRACKING SHEET
PyTorch Training Models
| Models | Torch-MLIR lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---|---|---|---|---|
| BERT | ❌ | ❌ | ||
| FullyConnected | ✔️ | ✔️ |
JAX Models
JAX Models
| Models | JAX-MHLO lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---|---|---|---|---|
| DALL-E | ❌ | ❌ | ||
| FullyConnected | ✔️ | ✔️ |
TFLite Models
TFLite Models
| Models | TOSA/LinAlg | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---|---|---|---|---|
| BERT | ❌ | ❌ | ||
| FullyConnected | ✔️ | ✔️ |
TF Models
Tensorflow Models
| Models | Torch-MLIR lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|---|---|---|---|---|
| BERT | ❌ | ❌ | ||
| FullyConnected | ✔️ | ✔️ |
Related Projects
IREE Project Channels
- Upstream IREE issues: Feature requests, bugs, and other work tracking
- Upstream IREE Discord server: Daily development discussions with the core team and collaborators
- iree-discuss email list: Announcements, general and low-priority discussion
MLIR and Torch-MLIR Project Channels
#torch-mlirchannel on the LLVM Discord - this is the most active communication channel- Torch-MLIR Github issues here
torch-mlirsection of LLVM Discourse- Weekly meetings on Mondays 9AM PST. See here for more information.
- MLIR topic within LLVM Discourse SHARK and IREE is enabled by and heavily relies on MLIR.
License
nod.ai SHARK is licensed under the terms of the Apache 2.0 License with LLVM Exceptions. See LICENSE for more information.