mirror of
https://github.com/nod-ai/SHARK-Studio.git
synced 2026-01-09 13:57:54 -05:00
* Remove quantized matmul reassociation flag This flag should be a model/use-case specific addition, not a default CPU compile flag.
180 lines
6.7 KiB
Python
180 lines
6.7 KiB
Python
from turbine_models.custom_models import stateless_llama
|
|
import time
|
|
from shark.iree_utils.compile_utils import (
|
|
get_iree_compiled_module,
|
|
load_vmfb_using_mmap,
|
|
)
|
|
from apps.shark_studio.api.utils import get_resource_path
|
|
import iree.runtime as ireert
|
|
from itertools import chain
|
|
import gc
|
|
import os
|
|
import torch
|
|
from transformers import AutoTokenizer
|
|
|
|
llm_model_map = {
|
|
"llama2_7b": {
|
|
"initializer": stateless_llama.export_transformer_model,
|
|
"hf_model_name": "meta-llama/Llama-2-7b-chat-hf",
|
|
"stop_token": 2,
|
|
"max_tokens": 4096,
|
|
"system_prompt": """<s>[INST] <<SYS>>Be concise. You are a helpful, respectful and honest assistant. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. <</SYS>>""",
|
|
},
|
|
"Trelis/Llama-2-7b-chat-hf-function-calling-v2": {
|
|
"initializer": stateless_llama.export_transformer_model,
|
|
"hf_model_name": "Trelis/Llama-2-7b-chat-hf-function-calling-v2",
|
|
"stop_token": 2,
|
|
"max_tokens": 4096,
|
|
"system_prompt": """<s>[INST] <<SYS>>Be concise. You are a helpful, respectful and honest assistant. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. <</SYS>>""",
|
|
},
|
|
}
|
|
|
|
|
|
class LanguageModel:
|
|
def __init__(
|
|
self,
|
|
model_name,
|
|
hf_auth_token=None,
|
|
device=None,
|
|
precision="fp32",
|
|
external_weights=None,
|
|
use_system_prompt=True,
|
|
):
|
|
print(llm_model_map[model_name])
|
|
self.hf_model_name = llm_model_map[model_name]["hf_model_name"]
|
|
self.tempfile_name = get_resource_path("llm.torch.tempfile")
|
|
self.vmfb_name = get_resource_path("llm.vmfb.tempfile")
|
|
self.device = device
|
|
self.precision = precision
|
|
self.safe_name = self.hf_model_name.strip("/").replace("/", "_")
|
|
self.max_tokens = llm_model_map[model_name]["max_tokens"]
|
|
self.iree_module_dict = None
|
|
self.external_weight_file = None
|
|
if external_weights is not None:
|
|
self.external_weight_file = get_resource_path(
|
|
self.safe_name + "." + external_weights
|
|
)
|
|
self.use_system_prompt = use_system_prompt
|
|
self.global_iter = 0
|
|
if os.path.exists(self.vmfb_name) and (
|
|
external_weights is None or os.path.exists(str(self.external_weight_file))
|
|
):
|
|
self.iree_module_dict = dict()
|
|
(
|
|
self.iree_module_dict["vmfb"],
|
|
self.iree_module_dict["config"],
|
|
self.iree_module_dict["temp_file_to_unlink"],
|
|
) = load_vmfb_using_mmap(
|
|
self.vmfb_name,
|
|
device,
|
|
device_idx=0,
|
|
rt_flags=[],
|
|
external_weight_file=self.external_weight_file,
|
|
)
|
|
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
self.hf_model_name,
|
|
use_fast=False,
|
|
use_auth_token=hf_auth_token,
|
|
)
|
|
elif not os.path.exists(self.tempfile_name):
|
|
self.torch_ir, self.tokenizer = llm_model_map[model_name]["initializer"](
|
|
self.hf_model_name,
|
|
hf_auth_token,
|
|
compile_to="torch",
|
|
external_weights=external_weights,
|
|
external_weight_file=self.external_weight_file,
|
|
)
|
|
with open(self.tempfile_name, "w+") as f:
|
|
f.write(self.torch_ir)
|
|
del self.torch_ir
|
|
gc.collect()
|
|
self.compile()
|
|
else:
|
|
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
self.hf_model_name,
|
|
use_fast=False,
|
|
use_auth_token=hf_auth_token,
|
|
)
|
|
self.compile()
|
|
|
|
def compile(self) -> None:
|
|
# this comes with keys: "vmfb", "config", and "temp_file_to_unlink".
|
|
self.iree_module_dict = get_iree_compiled_module(
|
|
self.tempfile_name,
|
|
device=self.device,
|
|
mmap=True,
|
|
frontend="torch",
|
|
external_weight_file=self.external_weight_file,
|
|
write_to=self.vmfb_name,
|
|
extra_args=["--iree-global-opt-enable-quantized-matmul-reassociation"],
|
|
)
|
|
# TODO: delete the temp file
|
|
|
|
def sanitize_prompt(self, prompt):
|
|
print(prompt)
|
|
if isinstance(prompt, list):
|
|
prompt = list(chain.from_iterable(prompt))
|
|
prompt = " ".join([x for x in prompt if isinstance(x, str)])
|
|
prompt = prompt.replace("\n", " ")
|
|
prompt = prompt.replace("\t", " ")
|
|
prompt = prompt.replace("\r", " ")
|
|
if self.use_system_prompt and self.global_iter == 0:
|
|
prompt = llm_model_map["llama2_7b"]["system_prompt"] + prompt
|
|
prompt += " [/INST]"
|
|
print(prompt)
|
|
return prompt
|
|
|
|
def chat(self, prompt):
|
|
prompt = self.sanitize_prompt(prompt)
|
|
|
|
input_tensor = self.tokenizer(prompt, return_tensors="pt").input_ids
|
|
|
|
def format_out(results):
|
|
return torch.tensor(results.to_host()[0][0])
|
|
|
|
history = []
|
|
for iter in range(self.max_tokens):
|
|
st_time = time.time()
|
|
if iter == 0:
|
|
device_inputs = [
|
|
ireert.asdevicearray(
|
|
self.iree_module_dict["config"].device, input_tensor
|
|
)
|
|
]
|
|
token = self.iree_module_dict["vmfb"]["run_initialize"](*device_inputs)
|
|
else:
|
|
device_inputs = [
|
|
ireert.asdevicearray(
|
|
self.iree_module_dict["config"].device,
|
|
token,
|
|
)
|
|
]
|
|
token = self.iree_module_dict["vmfb"]["run_forward"](*device_inputs)
|
|
|
|
total_time = time.time() - st_time
|
|
history.append(format_out(token))
|
|
yield self.tokenizer.decode(history), total_time
|
|
|
|
if format_out(token) == llm_model_map["llama2_7b"]["stop_token"]:
|
|
break
|
|
|
|
for i in range(len(history)):
|
|
if type(history[i]) != int:
|
|
history[i] = int(history[i])
|
|
result_output = self.tokenizer.decode(history)
|
|
self.global_iter += 1
|
|
return result_output, total_time
|
|
|
|
|
|
if __name__ == "__main__":
|
|
lm = LanguageModel(
|
|
"Trelis/Llama-2-7b-chat-hf-function-calling-v2",
|
|
hf_auth_token=None,
|
|
device="cpu-task",
|
|
external_weights="safetensors",
|
|
)
|
|
|
|
print("model loaded")
|
|
for i in lm.chat("hi, what are you?"):
|
|
print(i)
|