mirror of
https://github.com/nod-ai/SHARK-Studio.git
synced 2026-01-08 05:24:00 -05:00
99 lines
3.1 KiB
Python
99 lines
3.1 KiB
Python
from absl import app
|
|
import time
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from official.nlp.modeling import layers
|
|
from official.nlp.modeling import networks
|
|
from official.nlp.modeling.models import bert_classifier
|
|
|
|
from amdshark.amdshark_trainer import AMDSharkTrainer
|
|
|
|
|
|
tf.random.set_seed(0)
|
|
vocab_size = 100
|
|
NUM_CLASSES = 5
|
|
SEQUENCE_LENGTH = 512
|
|
BATCH_SIZE = 1
|
|
# Create a set of 2-dimensional inputs
|
|
bert_input = [
|
|
tf.TensorSpec(shape=[BATCH_SIZE, SEQUENCE_LENGTH], dtype=tf.int32),
|
|
tf.TensorSpec(shape=[BATCH_SIZE, SEQUENCE_LENGTH], dtype=tf.int32),
|
|
tf.TensorSpec(shape=[BATCH_SIZE, SEQUENCE_LENGTH], dtype=tf.int32),
|
|
]
|
|
|
|
|
|
class BertModule(tf.Module):
|
|
def __init__(self):
|
|
super(BertModule, self).__init__()
|
|
dict_outputs = False
|
|
test_network = networks.BertEncoder(
|
|
vocab_size=vocab_size, num_layers=2, dict_outputs=dict_outputs
|
|
)
|
|
|
|
# Create a BERT trainer with the created network.
|
|
bert_trainer_model = bert_classifier.BertClassifier(
|
|
test_network, num_classes=NUM_CLASSES
|
|
)
|
|
bert_trainer_model.summary()
|
|
|
|
# Invoke the trainer model on the inputs. This causes the layer to be built.
|
|
self.m = bert_trainer_model
|
|
self.m.predict = lambda x: self.m.call(x, training=False)
|
|
self.predict = tf.function(input_signature=[bert_input])(
|
|
self.m.predict
|
|
)
|
|
self.m.learn = lambda x, y: self.m.call(x, training=False)
|
|
self.loss = tf.keras.losses.SparseCategoricalCrossentropy()
|
|
self.optimizer = tf.keras.optimizers.SGD(learning_rate=1e-2)
|
|
|
|
@tf.function(
|
|
input_signature=[
|
|
bert_input, # inputs
|
|
tf.TensorSpec(shape=[BATCH_SIZE], dtype=tf.int32), # labels
|
|
],
|
|
jit_compile=True,
|
|
)
|
|
def forward(self, inputs, labels):
|
|
with tf.GradientTape() as tape:
|
|
# Capture the gradients from forward prop...
|
|
probs = self.m(inputs, training=True)
|
|
loss = self.loss(labels, probs)
|
|
|
|
# ...and use them to update the model's weights.
|
|
variables = self.m.trainable_variables
|
|
gradients = tape.gradient(loss, variables)
|
|
self.optimizer.apply_gradients(zip(gradients, variables))
|
|
return loss
|
|
|
|
|
|
if __name__ == "__main__":
|
|
predict_sample_input = [
|
|
np.random.randint(5, size=(BATCH_SIZE, SEQUENCE_LENGTH)),
|
|
np.random.randint(5, size=(BATCH_SIZE, SEQUENCE_LENGTH)),
|
|
np.random.randint(5, size=(BATCH_SIZE, SEQUENCE_LENGTH)),
|
|
]
|
|
sample_input_tensors = [
|
|
tf.convert_to_tensor(val, dtype=tf.int32)
|
|
for val in predict_sample_input
|
|
]
|
|
num_iter = 10
|
|
amdshark_module = AMDSharkTrainer(
|
|
BertModule(),
|
|
(
|
|
sample_input_tensors,
|
|
tf.convert_to_tensor(
|
|
np.random.randint(5, size=(BATCH_SIZE)), dtype=tf.int32
|
|
),
|
|
),
|
|
)
|
|
amdshark_module.set_frontend("tensorflow")
|
|
amdshark_module.compile()
|
|
start = time.time()
|
|
print(amdshark_module.train(num_iter))
|
|
end = time.time()
|
|
total_time = end - start
|
|
print("time: " + str(total_time))
|
|
print("time/iter: " + str(total_time / num_iter))
|