Files
SHARK-Studio/amdshark/tests/test_amdshark_importer.py
pdhirajkumarprasad fe03539901 Migration to AMDShark (#2182)
Signed-off-by: pdhirajkumarprasad <dhirajp@amd.com>
2025-11-20 12:52:07 +05:30

145 lines
4.7 KiB
Python

# RUN: %PYTHON %s
import numpy as np
from amdshark.amdshark_importer import AMDSharkImporter
import pytest
from amdshark.parser import amdshark_args
from amdshark.amdshark_inference import AMDSharkInference
from amdshark.tflite_utils import TFLitePreprocessor
import sys
# model_path = "https://tfhub.dev/tensorflow/lite-model/albert_lite_base/squadv1/1?lite-format=tflite"
# Inputs modified to be useful albert inputs.
def generate_inputs(input_details):
for input in input_details:
print(str(input["shape"]), input["dtype"].__name__)
args = []
args.append(
np.random.randint(
low=0,
high=256,
size=input_details[0]["shape"],
dtype=input_details[0]["dtype"],
)
)
args.append(
np.ones(
shape=input_details[1]["shape"], dtype=input_details[1]["dtype"]
)
)
args.append(
np.zeros(
shape=input_details[2]["shape"], dtype=input_details[2]["dtype"]
)
)
return args
def compare_results(mlir_results, tflite_results, details):
print("Compare mlir_results VS tflite_results: ")
assert len(mlir_results) == len(
tflite_results
), "Number of results do not match"
for i in range(len(details)):
mlir_result = mlir_results[i]
tflite_result = tflite_results[i]
mlir_result = mlir_result.astype(np.single)
tflite_result = tflite_result.astype(np.single)
assert mlir_result.shape == tflite_result.shape, "shape doesnot match"
max_error = np.max(np.abs(mlir_result - tflite_result))
print("Max error (%d): %f", i, max_error)
class AlbertTfliteModuleTester:
def __init__(
self,
dynamic=False,
device="cpu",
save_mlir=False,
save_vmfb=False,
):
self.dynamic = dynamic
self.device = device
self.save_mlir = save_mlir
self.save_vmfb = save_vmfb
def create_and_check_module(self):
amdshark_args.save_mlir = self.save_mlir
amdshark_args.save_vmfb = self.save_vmfb
tflite_preprocessor = TFLitePreprocessor(model_name="albert_lite_base")
raw_model_file_path = tflite_preprocessor.get_raw_model_file()
inputs = tflite_preprocessor.get_inputs()
tflite_interpreter = tflite_preprocessor.get_interpreter()
my_amdshark_importer = AMDSharkImporter(
module=tflite_interpreter,
inputs=inputs,
frontend="tflite",
raw_model_file=raw_model_file_path,
)
mlir_model, func_name = my_amdshark_importer.import_mlir()
amdshark_module = AMDSharkInference(
mlir_module=mlir_model,
function_name=func_name,
device=self.device,
mlir_dialect="tflite",
)
# Case1: Use amdshark_importer default generate inputs
amdshark_module.compile()
mlir_results = amdshark_module.forward(inputs)
## post process results for compare
input_details, output_details = tflite_preprocessor.get_model_details()
mlir_results = list(mlir_results)
for i in range(len(output_details)):
dtype = output_details[i]["dtype"]
mlir_results[i] = mlir_results[i].astype(dtype)
tflite_results = tflite_preprocessor.get_golden_output()
compare_results(mlir_results, tflite_results, output_details)
# Case2: Use manually set inputs
input_details, output_details = tflite_preprocessor.get_model_details()
inputs = generate_inputs(input_details) # new inputs
amdshark_module = AMDSharkInference(
mlir_module=mlir_model,
function_name=func_name,
device=self.device,
mlir_dialect="tflite",
)
amdshark_module.compile()
mlir_results = amdshark_module.forward(inputs)
## post process results for compare
tflite_results = tflite_preprocessor.get_golden_output()
compare_results(mlir_results, tflite_results, output_details)
# print(mlir_results)
# A specific case can be run by commenting different cases. Runs all the test
# across cpu, gpu and vulkan according to available drivers.
pytest_param = pytest.mark.parametrize(
("dynamic", "device"),
[
pytest.param(False, "cpu"),
# TODO: Language models are failing for dynamic case..
pytest.param(True, "cpu", marks=pytest.mark.skip),
],
)
@pytest_param
@pytest.mark.xfail(
sys.platform == "darwin", reason="known macos tflite install issue"
)
def test_albert(dynamic, device):
module_tester = AlbertTfliteModuleTester(dynamic=dynamic, device=device)
module_tester.create_and_check_module()
if __name__ == "__main__":
test_albert(False, "cpu")