mirror of
https://github.com/Sunscreen-tech/Sunscreen.git
synced 2026-01-14 08:07:56 -05:00
764 lines
20 KiB
Rust
764 lines
20 KiB
Rust
use sunscreen::{
|
|
fhe_program,
|
|
types::{bfv::Rational, Cipher},
|
|
Compiler, FheProgramInput, PlainModulusConstraint, Runtime,
|
|
};
|
|
|
|
use std::ops::*;
|
|
|
|
#[test]
|
|
fn can_encode_rational_numbers() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn no_op(a: Cipher<Rational>) -> Cipher<Rational> {
|
|
a
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(no_op)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = runtime
|
|
.encrypt(Rational::try_from(-3.14).unwrap(), &public_key)
|
|
.unwrap();
|
|
|
|
let result = runtime
|
|
.run(app.get_program(no_op).unwrap(), vec![a], &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, (-3.14).try_into().unwrap());
|
|
}
|
|
|
|
type CipherRational = Cipher<Rational>;
|
|
|
|
fn add_impl<T, U, R>(a: T, b: U) -> R
|
|
where
|
|
T: Add<U, Output = R>,
|
|
{
|
|
a + b
|
|
}
|
|
|
|
#[test]
|
|
fn can_add_cipher_cipher() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn add(a: CipherRational, b: CipherRational) -> CipherRational {
|
|
add_impl(a, b)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(add)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-3.14).unwrap();
|
|
let a_c = runtime.encrypt(a, &public_key).unwrap();
|
|
let b = Rational::try_from(6.28).unwrap();
|
|
let b_c = runtime.encrypt(b, &public_key).unwrap();
|
|
|
|
let result = runtime
|
|
.run(app.get_program(add).unwrap(), vec![a_c, b_c], &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, add_impl(a, b));
|
|
}
|
|
|
|
#[test]
|
|
fn can_add_cipher_plain() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn add(a: Cipher<Rational>, b: Rational) -> Cipher<Rational> {
|
|
add_impl(a, b)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(add)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-3.14).unwrap();
|
|
let a_c = runtime.encrypt(a, &public_key).unwrap();
|
|
let b = Rational::try_from(6.28).unwrap();
|
|
|
|
let args: Vec<FheProgramInput> = vec![a_c.into(), b.into()];
|
|
|
|
let result = runtime
|
|
.run(app.get_program(add).unwrap(), args, &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, add_impl(a, b));
|
|
}
|
|
|
|
#[test]
|
|
fn can_add_plain_cipher() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn add(a: Cipher<Rational>, b: Rational) -> Cipher<Rational> {
|
|
add_impl(b, a)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(add)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-3.14).unwrap();
|
|
let a_c = runtime.encrypt(a, &public_key).unwrap();
|
|
let b = Rational::try_from(6.28).unwrap();
|
|
|
|
let args: Vec<FheProgramInput> = vec![a_c.into(), b.into()];
|
|
|
|
let result = runtime
|
|
.run(app.get_program(add).unwrap(), args, &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, add_impl(b, a));
|
|
}
|
|
|
|
#[test]
|
|
fn can_add_cipher_literal() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn add(a: Cipher<Rational>) -> Cipher<Rational> {
|
|
add_impl(a, 3.14)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(add)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-6.28).unwrap();
|
|
let a_c = runtime.encrypt(a, &public_key).unwrap();
|
|
|
|
let args: Vec<FheProgramInput> = vec![a_c.into()];
|
|
|
|
let result = runtime
|
|
.run(app.get_program(add).unwrap(), args, &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, add_impl(a, 3.14));
|
|
}
|
|
|
|
#[test]
|
|
fn can_add_literal_cipher() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn add(a: Cipher<Rational>) -> Cipher<Rational> {
|
|
add_impl(3.14, a)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(add)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-6.28).unwrap();
|
|
let a_c = runtime.encrypt(a, &public_key).unwrap();
|
|
|
|
let args: Vec<FheProgramInput> = vec![a_c.into()];
|
|
|
|
let result = runtime
|
|
.run(app.get_program(add).unwrap(), args, &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, add_impl(3.14, a));
|
|
}
|
|
|
|
fn sub_impl<T, U, R>(a: T, b: U) -> R
|
|
where
|
|
T: Sub<U, Output = R>,
|
|
{
|
|
a - b
|
|
}
|
|
|
|
#[test]
|
|
fn can_sub_cipher_cipher() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn sub(a: CipherRational, b: CipherRational) -> CipherRational {
|
|
sub_impl(a, b)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(sub)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-3.14).unwrap();
|
|
let a_c = runtime.encrypt(a, &public_key).unwrap();
|
|
let b = Rational::try_from(6.28).unwrap();
|
|
let b_c = runtime.encrypt(b, &public_key).unwrap();
|
|
|
|
let result = runtime
|
|
.run(app.get_program(sub).unwrap(), vec![a_c, b_c], &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, sub_impl(a, b));
|
|
}
|
|
|
|
#[test]
|
|
fn can_sub_cipher_plain() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn sub(a: Cipher<Rational>, b: Rational) -> Cipher<Rational> {
|
|
sub_impl(a, b)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(sub)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-3.14).unwrap();
|
|
let a_c = runtime.encrypt(a, &public_key).unwrap();
|
|
let b = Rational::try_from(6.28).unwrap();
|
|
|
|
let args: Vec<FheProgramInput> = vec![a_c.into(), b.into()];
|
|
|
|
let result = runtime
|
|
.run(app.get_program(sub).unwrap(), args, &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, sub_impl(a, b));
|
|
}
|
|
|
|
#[test]
|
|
fn can_sub_plain_cipher() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn sub(a: Rational, b: Cipher<Rational>) -> Cipher<Rational> {
|
|
sub_impl(a, b)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(sub)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-3.14).unwrap();
|
|
|
|
let b = Rational::try_from(6.28).unwrap();
|
|
let b_c = runtime.encrypt(b, &public_key).unwrap();
|
|
|
|
let args: Vec<FheProgramInput> = vec![a.into(), b_c.into()];
|
|
|
|
let result = runtime
|
|
.run(app.get_program(sub).unwrap(), args, &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, sub_impl(b, a));
|
|
}
|
|
|
|
#[test]
|
|
fn can_sub_cipher_literal() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn sub(a: Cipher<Rational>) -> Cipher<Rational> {
|
|
sub_impl(a, 3.14)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(sub)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-6.28).unwrap();
|
|
let a_c = runtime.encrypt(a, &public_key).unwrap();
|
|
|
|
let args: Vec<FheProgramInput> = vec![a_c.into()];
|
|
|
|
let result = runtime
|
|
.run(app.get_program(sub).unwrap(), args, &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, sub_impl(a, 3.14));
|
|
}
|
|
|
|
#[test]
|
|
fn can_sub_literal_cipher() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn sub(a: Cipher<Rational>) -> Cipher<Rational> {
|
|
sub_impl(3.14, a)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(sub)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-6.28).unwrap();
|
|
let a_c = runtime.encrypt(a, &public_key).unwrap();
|
|
|
|
let args: Vec<FheProgramInput> = vec![a_c.into()];
|
|
|
|
let result = runtime
|
|
.run(app.get_program(sub).unwrap(), args, &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, sub_impl(3.14, a));
|
|
}
|
|
|
|
fn mul_impl<T, U, R>(a: T, b: U) -> R
|
|
where
|
|
T: Mul<U, Output = R>,
|
|
{
|
|
a * b
|
|
}
|
|
|
|
#[test]
|
|
fn can_mul_cipher_cipher() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn mul(a: CipherRational, b: CipherRational) -> CipherRational {
|
|
mul_impl(a, b)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(mul)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-3.14).unwrap();
|
|
let a_c = runtime.encrypt(a, &public_key).unwrap();
|
|
let b = Rational::try_from(6.28).unwrap();
|
|
let b_c = runtime.encrypt(b, &public_key).unwrap();
|
|
|
|
let result = runtime
|
|
.run(app.get_program(mul).unwrap(), vec![a_c, b_c], &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, mul_impl(a, b));
|
|
}
|
|
|
|
#[test]
|
|
fn can_mul_cipher_plain() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn mul(a: Cipher<Rational>, b: Rational) -> Cipher<Rational> {
|
|
mul_impl(a, b)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(mul)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-3.14).unwrap();
|
|
let a_c = runtime.encrypt(a, &public_key).unwrap();
|
|
let b = Rational::try_from(6.28).unwrap();
|
|
|
|
let args: Vec<FheProgramInput> = vec![a_c.into(), b.into()];
|
|
|
|
let result = runtime
|
|
.run(app.get_program(mul).unwrap(), args, &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, mul_impl(a, b));
|
|
}
|
|
|
|
#[test]
|
|
fn can_mul_plain_cipher() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn mul(a: Rational, b: Cipher<Rational>) -> Cipher<Rational> {
|
|
mul_impl(a, b)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(mul)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-3.14).unwrap();
|
|
|
|
let b = Rational::try_from(6.28).unwrap();
|
|
let b_c = runtime.encrypt(b, &public_key).unwrap();
|
|
|
|
let args: Vec<FheProgramInput> = vec![a.into(), b_c.into()];
|
|
|
|
let result = runtime
|
|
.run(app.get_program(mul).unwrap(), args, &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, mul_impl(b, a));
|
|
}
|
|
|
|
#[test]
|
|
fn can_mul_cipher_literal() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn mul(a: Cipher<Rational>) -> Cipher<Rational> {
|
|
mul_impl(a, 3.14)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(mul)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-6.28).unwrap();
|
|
let a_c = runtime.encrypt(a, &public_key).unwrap();
|
|
|
|
let args: Vec<FheProgramInput> = vec![a_c.into()];
|
|
|
|
let result = runtime
|
|
.run(app.get_program(mul).unwrap(), args, &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, mul_impl(a, 3.14));
|
|
}
|
|
|
|
#[test]
|
|
fn can_mul_literal_cipher() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn mul(a: Cipher<Rational>) -> Cipher<Rational> {
|
|
mul_impl(3.14, a)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(mul)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-6.28).unwrap();
|
|
let a_c = runtime.encrypt(a, &public_key).unwrap();
|
|
|
|
let args: Vec<FheProgramInput> = vec![a_c.into()];
|
|
|
|
let result = runtime
|
|
.run(app.get_program(mul).unwrap(), args, &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, mul_impl(3.14, a));
|
|
}
|
|
|
|
fn div_impl<T, U, R>(a: T, b: U) -> R
|
|
where
|
|
T: Div<U, Output = R>,
|
|
{
|
|
a / b
|
|
}
|
|
|
|
#[test]
|
|
fn can_div_cipher_cipher() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn div(a: CipherRational, b: CipherRational) -> CipherRational {
|
|
div_impl(a, b)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(div)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-3.14).unwrap();
|
|
let a_c = runtime.encrypt(a, &public_key).unwrap();
|
|
let b = Rational::try_from(6.28).unwrap();
|
|
let b_c = runtime.encrypt(b, &public_key).unwrap();
|
|
|
|
let result = runtime
|
|
.run(app.get_program(div).unwrap(), vec![a_c, b_c], &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, div_impl(a, b));
|
|
}
|
|
|
|
#[test]
|
|
fn can_div_cipher_plain() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn div(a: Cipher<Rational>, b: Rational) -> Cipher<Rational> {
|
|
div_impl(a, b)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(div)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-3.14).unwrap();
|
|
let a_c = runtime.encrypt(a, &public_key).unwrap();
|
|
let b = Rational::try_from(6.28).unwrap();
|
|
|
|
let args: Vec<FheProgramInput> = vec![a_c.into(), b.into()];
|
|
|
|
let result = runtime
|
|
.run(app.get_program(div).unwrap(), args, &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, div_impl(a, b));
|
|
}
|
|
|
|
#[test]
|
|
fn can_div_plain_cipher() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn div(a: Rational, b: Cipher<Rational>) -> Cipher<Rational> {
|
|
div_impl(a, b)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(div)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-3.14).unwrap();
|
|
|
|
let b = Rational::try_from(6.28).unwrap();
|
|
let b_c = runtime.encrypt(b, &public_key).unwrap();
|
|
|
|
let args: Vec<FheProgramInput> = vec![a.into(), b_c.into()];
|
|
|
|
let result = runtime
|
|
.run(app.get_program(div).unwrap(), args, &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, div_impl(a, b));
|
|
}
|
|
|
|
#[test]
|
|
fn can_div_cipher_literal() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn div(a: Cipher<Rational>) -> Cipher<Rational> {
|
|
div_impl(a, 3.14)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(div)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-6.28).unwrap();
|
|
let a_c = runtime.encrypt(a, &public_key).unwrap();
|
|
|
|
let args: Vec<FheProgramInput> = vec![a_c.into()];
|
|
|
|
let result = runtime
|
|
.run(app.get_program(div).unwrap(), args, &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, div_impl(a, 3.14));
|
|
}
|
|
|
|
#[test]
|
|
fn can_div_literal_cipher() {
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn div(a: Cipher<Rational>) -> Cipher<Rational> {
|
|
div_impl(3.14, a)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(div)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-6.28).unwrap();
|
|
let a_c = runtime.encrypt(a, &public_key).unwrap();
|
|
|
|
let args: Vec<FheProgramInput> = vec![a_c.into()];
|
|
|
|
let result = runtime
|
|
.run(app.get_program(div).unwrap(), args, &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, div_impl(3.14, a));
|
|
}
|
|
|
|
#[test]
|
|
fn can_neg_cipher() {
|
|
fn neg_impl<T>(x: T) -> T
|
|
where
|
|
T: Neg<Output = T>,
|
|
{
|
|
-x
|
|
}
|
|
|
|
#[fhe_program(scheme = "bfv")]
|
|
fn neg(x: Cipher<Rational>) -> Cipher<Rational> {
|
|
neg_impl(x)
|
|
}
|
|
|
|
let app = Compiler::new()
|
|
.fhe_program(neg)
|
|
.additional_noise_budget(5)
|
|
.plain_modulus_constraint(PlainModulusConstraint::Raw(500))
|
|
.compile()
|
|
.unwrap();
|
|
|
|
let runtime = Runtime::new(app.params()).unwrap();
|
|
|
|
let (public_key, private_key) = runtime.generate_keys().unwrap();
|
|
|
|
let a = Rational::try_from(-6.28).unwrap();
|
|
let a_c = runtime.encrypt(a, &public_key).unwrap();
|
|
|
|
let args: Vec<FheProgramInput> = vec![a_c.into()];
|
|
|
|
let result = runtime
|
|
.run(app.get_program(neg).unwrap(), args, &public_key)
|
|
.unwrap();
|
|
|
|
let c: Rational = runtime.decrypt(&result[0], &private_key).unwrap();
|
|
|
|
assert_eq!(c, neg_impl(a));
|
|
}
|
|
|
|
#[test]
|
|
fn can_create_default() {
|
|
assert_eq!(Into::<f64>::into(Rational::default()), 0.0f64);
|
|
}
|