Kal (refactor)

This commit is contained in:
Andrew Morris
2023-07-01 16:01:28 +10:00
parent 8324e3c883
commit c91c86ecd6
7 changed files with 668 additions and 404 deletions

View File

@@ -214,7 +214,10 @@ impl FunctionCompiler {
}
pub fn release_reg(&mut self, reg: &Register) {
self.reg_allocator.release(reg);
// Note: We no longer release registers back into the name allocator. See
// `NameAllocator::release` for more information.
// self.reg_allocator.release(reg);
self.current.body.push(FnLine::Release(reg.clone()));
}

View File

@@ -143,6 +143,11 @@ impl RegAllocator {
Register::named(name)
}
// TODO: We used to release names back into the allocator a lot. However, the optimizer now
// extends lifetimes, which means re-purposing a register is no longer safe. The optimizer needs
// to do its own analysis to restore register re-use, because we're now using way too many.
// Anyway, marking this as dead code for now but maybe it should just be removed.
#[allow(dead_code)]
pub fn release(&mut self, reg: &Register) {
match reg.is_named() {
true => self.alloc.release(&reg.name),

View File

@@ -0,0 +1,500 @@
use num_bigint::BigInt;
use valuescript_vm::{
operations,
vs_object::VsObject,
vs_value::{ToVal, Val},
};
use std::collections::BTreeMap;
use crate::{
asm::{self, Builtin, Number, Pointer, Register, Value},
instruction::Instruction,
};
use super::try_to_kal::TryToKal;
/**
* Kal: Knowledge about a Val.
*
* This is used by the optimizer to make simplifications. It's a broader and more complex version
* of Val, since every (non-external) Val can be represented as a Kal, and Kal can also represent
* partial information about a Val, such as being a number or being equal to another register.
*
* This is similar to a type system. However, a type system has the constraint of needing to be
* consistent and sensible so the programmer can use it. Kal has the advantage of only being used
* for optimization, so we can do a lot more heuristic things like knowing when an index is within
* the bounds of an array (without needing to nail down exactly when and why we know that in a
* consistent way). It is also 100% mandatory that Kal is always accurate/sound (otherwise we'll
* change program behavior due to believing false things), whereas sometimes type systems (notably
* TypeScript) are not.
*/
#[derive(Clone)]
pub enum Kal {
Unknown,
Void,
Undefined,
Null,
Bool(bool),
Number(Number),
BigInt(BigInt),
String(String),
Array(Box<Array>),
Object(Box<Object>),
Register(Register),
Pointer(Pointer),
Builtin(Builtin),
}
impl Default for Kal {
fn default() -> Self {
Kal::Unknown
}
}
#[derive(Clone)]
pub struct Array {
pub values: Vec<Kal>,
}
#[derive(Clone)]
pub struct Object {
pub properties: Vec<(Kal, Kal)>,
}
impl Kal {
fn visit_kals_mut<F>(&mut self, visit: &mut F)
where
F: FnMut(&mut Kal) -> (),
{
visit(self);
match self {
Kal::Array(array) => {
for item in &mut array.values {
item.visit_kals_mut(visit);
}
}
Kal::Object(object) => {
for (k, v) in &mut object.properties {
k.visit_kals_mut(visit);
v.visit_kals_mut(visit);
}
}
Kal::Unknown => {}
Kal::Void => {}
Kal::Undefined => {}
Kal::Null => {}
Kal::Bool(..) => {}
Kal::Number(..) => {}
Kal::BigInt(..) => {}
Kal::String(..) => {}
Kal::Register(..) => {}
Kal::Pointer(..) => {}
Kal::Builtin(..) => {}
}
}
fn from_value(value: &Value) -> Self {
match value {
Value::Void => Kal::Void,
Value::Undefined => Kal::Undefined,
Value::Null => Kal::Null,
Value::Bool(bool) => Kal::Bool(*bool),
Value::Number(Number(x)) => Kal::Number(Number(*x)),
Value::BigInt(bi) => Kal::BigInt(bi.clone()),
Value::String(string) => Kal::String(string.clone()),
Value::Array(array) => Kal::Array(Box::new(Array {
values: array.values.iter().map(Kal::from_value).collect(),
})),
Value::Object(object) => Kal::Object(Box::new(Object {
properties: object
.properties
.iter()
.map(|(k, v)| (Kal::from_value(k), Kal::from_value(v)))
.collect(),
})),
Value::Register(reg) => Kal::Register(reg.clone()),
Value::Pointer(p) => Kal::Pointer(p.clone()),
Value::Builtin(b) => Kal::Builtin(b.clone()),
}
}
fn to_value(&self) -> Option<Value> {
match self {
Kal::Unknown => None,
Kal::Void => Some(Value::Void),
Kal::Undefined => Some(Value::Undefined),
Kal::Null => Some(Value::Null),
Kal::Bool(x) => Some(Value::Bool(*x)),
Kal::Number(Number(x)) => Some(Value::Number(Number(*x))),
Kal::BigInt(x) => Some(Value::BigInt(x.clone())),
Kal::String(x) => Some(Value::String(x.clone())),
Kal::Array(x) => Some(Value::Array(Box::new(asm::Array {
values: {
let mut values = Vec::<asm::Value>::new();
for k in &x.values {
match k.to_value() {
Some(v) => values.push(v),
None => return None,
}
}
values
},
}))),
Kal::Object(x) => Some(Value::Object(Box::new(asm::Object {
properties: {
let mut properties = Vec::<(asm::Value, asm::Value)>::new();
for (k, v) in &x.properties {
let k = match k.to_value() {
Some(k) => k,
None => return None,
};
let v = match v.to_value() {
Some(v) => v,
None => return None,
};
properties.push((k, v));
}
properties
},
}))),
Kal::Register(x) => Some(Value::Register(x.clone())),
Kal::Pointer(x) => Some(Value::Pointer(x.clone())),
Kal::Builtin(x) => Some(Value::Builtin(x.clone())),
}
}
fn try_to_val(self) -> Option<Val> {
Some(match self {
Kal::Unknown => return None,
Kal::Undefined => Val::Undefined,
Kal::Null => Val::Null,
Kal::Bool(b) => b.to_val(),
Kal::Number(Number(n)) => n.to_val(),
Kal::BigInt(n) => n.to_val(),
Kal::String(s) => s.to_val(),
Kal::Array(arr) => {
let mut result = Vec::<Val>::new();
for value in arr.values {
result.push(value.try_to_val()?);
}
result.to_val()
}
Kal::Object(obj) => {
let mut string_map = BTreeMap::<String, Val>::new();
for (key, value) in obj.properties {
string_map.insert(key.try_to_val()?.to_string(), value.try_to_val()?);
}
VsObject {
string_map,
symbol_map: Default::default(),
prototype: None,
}
.to_val()
}
Kal::Void | Kal::Register(..) | Kal::Pointer(..) | Kal::Builtin(..) => {
return None;
}
})
}
}
#[derive(Default)]
pub struct FnState {
pub mutable_this_established: bool,
pub registers: BTreeMap<String, Kal>,
}
impl FnState {
fn get_mut(&mut self, reg_name: String) -> &mut Kal {
self.registers.entry(reg_name).or_default()
}
fn get(&mut self, reg_name: String) -> &Kal {
self.get_mut(reg_name)
}
pub fn set(&mut self, reg_name: String, kal: Kal) {
*self.get_mut(reg_name.clone()) = kal;
self.handle_reg_changed(&reg_name);
}
fn handle_reg_changed(&mut self, changed_reg: &String) {
for kal in self.registers.values_mut() {
kal.visit_kals_mut(&mut |sub_kal| {
if let Kal::Register(reg) = sub_kal {
if reg.name == *changed_reg {
*sub_kal = Kal::Unknown;
}
}
});
}
}
pub fn eval_instruction(&mut self, instr: &mut Instruction) {
use Instruction::*;
match instr {
End => {}
Mov(arg, dst) => {
let arg = self.eval_arg(arg);
self.set(dst.name.clone(), arg);
}
OpInc(reg) => {
// TODO: Use apply_binary_op?
let new_value = match self.get(reg.name.clone()) {
Kal::Number(Number(x)) => Kal::Number(Number(x + 1.0)),
Kal::BigInt(x) => Kal::BigInt(x + BigInt::from(1)),
_ => Kal::Unknown,
};
self.set(reg.name.clone(), new_value);
}
OpDec(reg) => {
// TODO: Use apply_binary_op?
let new_value = match self.get(reg.name.clone()) {
Kal::Number(Number(x)) => Kal::Number(Number(x - 1.0)),
Kal::BigInt(x) => Kal::BigInt(x - BigInt::from(1)),
_ => Kal::Unknown,
};
self.set(reg.name.clone(), new_value);
}
OpNot(a1, dst) => self.apply_unary_op(a1, dst, operations::op_not),
OpBitNot(a1, dst) => self.apply_unary_op(a1, dst, operations::op_bit_not),
TypeOf(a1, dst) => self.apply_unary_op(a1, dst, operations::op_typeof),
UnaryPlus(a1, dst) => self.apply_unary_op(a1, dst, operations::op_unary_plus),
UnaryMinus(a1, dst) => self.apply_unary_op(a1, dst, operations::op_unary_minus),
Import(a1, dst) | ImportStar(a1, dst) | Cat(a1, dst) => {
self.eval_arg(a1);
// TODO: cat
self.set(dst.name.clone(), Kal::Unknown);
}
Yield(a1, dst) | YieldStar(a1, dst) => {
self.eval_arg(a1);
self.set(dst.name.clone(), Kal::Unknown);
}
Throw(a1) => {
self.eval_arg(a1);
}
OpPlus(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_plus),
OpMinus(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_minus),
OpMul(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_mul),
OpDiv(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_div),
OpMod(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_mod),
OpExp(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_exp),
OpEq(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_eq),
OpNe(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_ne),
OpTripleEq(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_triple_eq),
OpTripleNe(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_triple_ne),
OpAnd(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_and),
OpOr(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_or),
OpLess(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_less),
OpLessEq(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_less_eq),
OpGreater(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_greater),
OpGreaterEq(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_greater_eq),
OpNullishCoalesce(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_nullish_coalesce)
}
OpOptionalChain(a1, a2, dst) => {
self.eval_arg(a1);
self.eval_arg(a2);
// self.apply_binary_op(a1, a2, dst, operations::op_optional_chain)
// TODO: op_optional_chain takes mut lhs to optimize, but breaks this pattern
self.set(dst.name.clone(), Kal::Unknown);
}
OpBitAnd(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_bit_and),
OpBitOr(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_bit_or),
OpBitXor(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_bit_xor),
OpLeftShift(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_left_shift),
OpRightShift(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_right_shift),
OpRightShiftUnsigned(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_right_shift_unsigned)
}
InstanceOf(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_instance_of),
In(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_in),
Call(a1, a2, dst)
| Bind(a1, a2, dst)
| Sub(a1, a2, dst)
| SubMov(a1, a2, dst)
| New(a1, a2, dst) => {
self.eval_arg(a1);
self.eval_arg(a2);
self.set(dst.name.clone(), Kal::Unknown);
}
Apply(a, this, a3, dst) | SubCall(this, a, a3, dst) | ThisSubCall(this, a, a3, dst) => {
// TODO: Consider ordering here (only .take consideration (?))
self.eval_arg(a);
self.eval_arg(a3);
self.set(this.name.clone(), Kal::Unknown);
self.set(dst.name.clone(), Kal::Unknown);
}
ConstSubCall(a1, a2, a3, dst) => {
self.eval_arg(a1);
self.eval_arg(a2);
self.eval_arg(a3);
self.set(dst.name.clone(), Kal::Unknown);
}
JmpIf(a1, _) => {
self.eval_arg(a1);
}
Jmp(_) => {}
SetCatch(_, _) => {}
UnsetCatch => {}
RequireMutableThis => {
self.mutable_this_established = true;
}
Next(iter, dst) => {
self.set(iter.name.clone(), Kal::Unknown);
self.set(dst.name.clone(), Kal::Unknown);
}
UnpackIterRes(iter_res, value_reg, done) => {
self.set(iter_res.name.clone(), Kal::Void);
self.set(value_reg.name.clone(), Kal::Unknown);
self.set(done.name.clone(), Kal::Unknown);
}
}
}
fn eval_arg(&mut self, arg: &mut Value) -> Kal {
match arg {
Value::Void
| Value::Undefined
| Value::Null
| Value::Bool(_)
| Value::Number(_)
| Value::BigInt(_)
| Value::String(_)
| Value::Pointer(_)
| Value::Builtin(_) => Kal::from_value(arg),
Value::Array(array) => {
let mut values = Vec::<Kal>::new();
for item in &mut array.values {
values.push(self.eval_arg(item));
}
Kal::Array(Box::new(Array { values }))
}
Value::Object(object) => {
let mut properties = Vec::<(Kal, Kal)>::new();
for (k, v) in &mut object.properties {
let k = self.eval_arg(k);
let v = self.eval_arg(v);
properties.push((k, v));
}
Kal::Object(Box::new(Object { properties }))
}
Value::Register(reg) => {
let kal = self.get(reg.name.clone()).clone();
let is_take = reg.take;
if is_take {
self.set(reg.name.clone(), Kal::Void);
}
match kal.to_value() {
Some(v) => {
// Note: if `reg.take` was true, then we're removing that take operation from the
// register here. This should be ok because well-formed programs should never read from
// a taken register, but we might need to revise this in the future. It definitely means
// it's possible for the optimizer to break hand-written assembly.
*arg = v;
kal
}
None => match is_take {
true => Kal::Unknown,
false => Kal::Register(reg.clone()),
},
}
}
}
}
fn apply_unary_op(&mut self, arg: &mut Value, dst: &Register, op: fn(input: &Val) -> Val) {
match self.apply_unary_op_impl(arg, dst, op) {
Some(_) => {}
None => {
self.set(dst.name.clone(), Kal::Unknown);
}
}
}
fn apply_unary_op_impl(
&mut self,
arg: &mut Value,
dst: &Register,
op: fn(input: &Val) -> Val,
) -> Option<()> {
let arg = self.eval_arg(arg).try_to_val()?;
let kal = op(&arg).try_to_kal()?;
self.set(dst.name.clone(), kal);
Some(())
}
fn apply_binary_op(
&mut self,
left: &mut Value,
right: &mut Value,
dst: &Register,
op: fn(left: &Val, right: &Val) -> Result<Val, Val>,
) {
match self.apply_binary_op_impl(left, right, dst, op) {
Some(_) => {}
None => {
self.set(dst.name.clone(), Kal::Unknown);
}
}
}
fn apply_binary_op_impl(
&mut self,
left: &mut Value,
right: &mut Value,
dst: &Register,
op: fn(left: &Val, right: &Val) -> Result<Val, Val>,
) -> Option<()> {
let left = self.eval_arg(left).try_to_val()?;
let right = self.eval_arg(right).try_to_val()?;
let kal = op(&left, &right).ok()?.try_to_kal()?;
self.set(dst.name.clone(), kal);
Some(())
}
}

View File

@@ -1,11 +1,12 @@
mod collapse_pointers_of_pointers;
mod extract_constants;
mod kal;
mod optimize;
mod remove_meta_lines;
mod remove_noops;
mod shake_tree;
mod simplify;
pub mod try_to_kal;
pub mod try_to_val;
pub mod try_to_value;
pub use optimize::optimize;

View File

@@ -1,15 +1,8 @@
use std::collections::{HashMap, HashSet};
use std::mem::take;
use num_bigint::BigInt;
use valuescript_vm::{operations, vs_value::Val};
use crate::asm::{DefinitionContent, FnLine, Function, Instruction, Module, Register};
use crate::{
asm::{DefinitionContent, FnLine, Function, Instruction, Module, Number, Register, Value},
instruction::InstructionFieldMut,
TryToVal,
};
use super::try_to_value::TryToValue;
use super::kal::FnState;
pub fn simplify(module: &mut Module) {
for defn in &mut module.definitions {
@@ -22,367 +15,128 @@ pub fn simplify(module: &mut Module) {
}
}
#[derive(Default)]
struct FnState {
mutable_this_established: bool,
registers: HashMap<String, Value>,
fn handle_mutation_releases(body: &mut Vec<FnLine>, i: usize) {
let mut calls = Vec::<(Register, usize)>::new();
match &mut body[i] {
FnLine::Instruction(instr) => {
let mut skips_needed = 0;
instr.visit_registers_mut_rev(&mut |rvm| {
skips_needed += 1;
if rvm.write && !rvm.read {
calls.push((rvm.register.clone(), skips_needed));
}
});
}
FnLine::Release(_) | FnLine::Label(_) | FnLine::Empty | FnLine::Comment(_) => {}
};
for (released_reg, skips) in calls {
handle_release(body, i, released_reg.clone(), skips);
}
}
impl FnState {
fn clear(&mut self) {
*self = Self::default();
}
fn handle_release(
body: &mut Vec<FnLine>,
i: usize,
released_reg: Register,
skips_needed: usize,
) -> bool {
let mut j = i + 1;
let mut skips = 0;
let mut taken = false;
while j > 0 {
j -= 1;
fn simplify_line(&self, line: &mut FnLine) {
match line {
FnLine::Instruction(instr) => {
if let Instruction::RequireMutableThis = instr {
if self.mutable_this_established {
*line = FnLine::Comment(line.to_string());
}
} else {
instr.visit_fields_mut(&mut |field| match field {
InstructionFieldMut::Value(arg) => {
self.simplify_arg(arg);
}
_ => {}
});
}
}
FnLine::Label(..) | FnLine::Empty | FnLine::Comment(..) | FnLine::Release(..) => {}
let instr = match &mut body[j] {
FnLine::Instruction(instr) => instr,
FnLine::Label(_) => return false,
_ => continue,
};
if is_jmp_instr(instr) {
return false;
}
}
fn simplify_arg(&self, arg: &mut Value) {
arg.visit_values_mut(&mut |value| {
if let Value::Register(reg) = value {
if let Some(new_value) = self.registers.get(&reg.name) {
*value = new_value.clone();
}
}
});
}
let mut write_found = false;
fn apply_line(&mut self, line: &FnLine) {
match line {
FnLine::Instruction(instr) => match instr {
Instruction::End => {}
Instruction::Mov(a1, dst) => {
self.set_register(dst, Some(a1.clone()));
if !taken {
instr.visit_registers_mut_rev(&mut |rvm| {
if skips < skips_needed {
skips += 1;
return;
}
Instruction::OpInc(reg) => {
// TODO: Use apply_binary_op?
let new_value = match self.registers.get(&reg.name) {
Some(Value::Number(Number(x))) => Some(Value::Number(Number(x + 1.0))),
Some(Value::BigInt(x)) => Some(Value::BigInt(x + BigInt::from(1))),
Some(_) | None => None,
};
self.set_register(reg, new_value);
}
Instruction::OpDec(reg) => {
let new_value = match self.registers.get(&reg.name) {
Some(Value::Number(Number(x))) => Some(Value::Number(Number(x - 1.0))),
Some(Value::BigInt(x)) => Some(Value::BigInt(x - BigInt::from(1))),
Some(_) | None => None,
};
self.set_register(reg, new_value);
if rvm.register.name != released_reg.name {
return;
}
Instruction::OpNot(a1, dst) => self.apply_unary_op(a1, dst, operations::op_not),
Instruction::OpBitNot(a1, dst) => self.apply_unary_op(a1, dst, operations::op_bit_not),
Instruction::TypeOf(a1, dst) => self.apply_unary_op(a1, dst, operations::op_typeof),
Instruction::UnaryPlus(a1, dst) => self.apply_unary_op(a1, dst, operations::op_unary_plus),
Instruction::UnaryMinus(a1, dst) => {
self.apply_unary_op(a1, dst, operations::op_unary_minus)
}
Instruction::Import(_a1, dst)
| Instruction::ImportStar(_a1, dst)
| Instruction::Cat(_a1, dst) => {
// TODO: cat
self.set_register(dst, None);
if !taken && !rvm.write {
*rvm.register = rvm.register.take();
taken = true;
}
Instruction::Yield(_a1, dst) | Instruction::YieldStar(_a1, dst) => {
self.set_register(dst, None)
}
if !write_found && rvm.write {
write_found = true;
Instruction::Throw(_a1) => {}
Instruction::OpPlus(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_plus),
Instruction::OpMinus(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_minus)
}
Instruction::OpMul(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_mul),
Instruction::OpDiv(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_div),
Instruction::OpMod(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_mod),
Instruction::OpExp(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_exp),
Instruction::OpEq(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_eq),
Instruction::OpNe(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_ne),
Instruction::OpTripleEq(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_triple_eq)
}
Instruction::OpTripleNe(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_triple_ne)
}
Instruction::OpAnd(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_and),
Instruction::OpOr(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_or),
Instruction::OpLess(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_less),
Instruction::OpLessEq(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_less_eq)
}
Instruction::OpGreater(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_greater)
}
Instruction::OpGreaterEq(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_greater_eq)
}
Instruction::OpNullishCoalesce(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_nullish_coalesce)
}
Instruction::OpOptionalChain(_a1, _a2, dst) => {
// self.apply_binary_op(a1, a2, dst, operations::op_optional_chain)
// TODO: op_optional_chain takes mut lhs to optimize, but breaks this pattern
self.set_register(dst, None);
}
Instruction::OpBitAnd(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_bit_and)
}
Instruction::OpBitOr(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_bit_or)
}
Instruction::OpBitXor(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_bit_xor)
}
Instruction::OpLeftShift(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_left_shift)
}
Instruction::OpRightShift(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_right_shift)
}
Instruction::OpRightShiftUnsigned(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_right_shift_unsigned)
}
Instruction::InstanceOf(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_instance_of)
}
Instruction::In(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_in),
Instruction::Call(_a1, _a2, dst)
| Instruction::Bind(_a1, _a2, dst)
| Instruction::Sub(_a1, _a2, dst)
| Instruction::SubMov(_a1, _a2, dst)
| Instruction::New(_a1, _a2, dst) => {
self.set_register(dst, None);
}
Instruction::Apply(_a, this, _a3, dst)
| Instruction::SubCall(this, _a, _a3, dst)
| Instruction::ThisSubCall(this, _a, _a3, dst) => {
self.set_register(this, None);
self.set_register(dst, None);
}
Instruction::ConstSubCall(_a1, _a2, _a3, dst) => self.set_register(dst, None),
Instruction::JmpIf(_a1, _) => {}
Instruction::Jmp(_) => {}
Instruction::SetCatch(_, _) => {}
Instruction::UnsetCatch => {}
Instruction::RequireMutableThis => {
self.mutable_this_established = true;
}
Instruction::Next(iter, dst) => {
self.set_register(iter, None);
self.set_register(dst, None);
}
Instruction::UnpackIterRes(iter_res, value_reg, done) => {
self.set_register(iter_res, None);
self.set_register(value_reg, None);
self.set_register(done, None);
}
},
FnLine::Label(..) => self.clear(),
FnLine::Empty | FnLine::Comment(..) => {}
FnLine::Release(reg) => {
self.set_register(reg, None);
}
}
}
fn set_register(&mut self, reg: &Register, value: Option<Value>) {
let mut registers_to_clear = HashSet::<String>::new();
for (k, v) in &mut self.registers {
v.visit_values_mut(&mut |value| {
if let Value::Register(reg_value) = value {
if reg_value.name == reg.name {
registers_to_clear.insert(k.clone());
if !rvm.read && !taken {
*rvm.register = Register::ignore();
}
}
});
}
for reg_to_clear in registers_to_clear {
self.registers.remove(&reg_to_clear);
}
match value {
Some(value) => self.registers.insert(reg.name.clone(), value),
None => self.registers.remove(&reg.name),
};
}
fn apply_unary_op(&mut self, arg: &Value, dst: &Register, op: fn(input: &Val) -> Val) {
match self.apply_unary_op_impl(arg, dst, op) {
Ok(_) => {}
Err(_) => {
self.set_register(dst, None);
}
if write_found {
break;
}
}
fn apply_unary_op_impl(
&mut self,
arg: &Value,
dst: &Register,
op: fn(input: &Val) -> Val,
) -> Result<(), Val> {
let arg = arg.clone().try_to_val()?;
let value = op(&arg).try_to_value()?;
taken
}
self.set_register(dst, Some(value));
fn simplify_fn(mut state: FnState, fn_: &mut Function) {
let mut pending_releases = Vec::<Register>::new();
Ok(())
}
fn apply_binary_op(
&mut self,
left: &Value,
right: &Value,
dst: &Register,
op: fn(left: &Val, right: &Val) -> Result<Val, Val>,
) {
match self.apply_binary_op_impl(left, right, dst, op) {
Ok(_) => {}
Err(_) => {
self.set_register(dst, None);
for i in 0..fn_.body.len() {
if let FnLine::Instruction(Instruction::RequireMutableThis) = &fn_.body[i] {
if state.mutable_this_established {
fn_.body[i] = FnLine::Comment(fn_.body[i].to_string());
continue;
}
}
}
fn apply_binary_op_impl(
&mut self,
left: &Value,
right: &Value,
dst: &Register,
op: fn(left: &Val, right: &Val) -> Result<Val, Val>,
) -> Result<(), Val> {
let left = left.clone().try_to_val()?;
let right = right.clone().try_to_val()?;
let value = op(&left, &right)?.try_to_value()?;
self.set_register(dst, Some(value));
Ok(())
}
fn handle_releases(&self, body: &mut Vec<FnLine>, i: usize) {
let mut calls = Vec::<(Register, usize)>::new();
match &mut body[i] {
FnLine::Instruction(instr) => {
let mut skips_needed = 0;
instr.visit_registers_mut_rev(&mut |rvm| {
skips_needed += 1;
if rvm.write && !rvm.read {
calls.push((rvm.register.clone(), skips_needed));
}
});
if is_jmp_or_label(&fn_.body[i]) && i > 0 {
for released_reg in take(&mut pending_releases) {
handle_release(&mut fn_.body, i - 1, released_reg, 0);
}
FnLine::Release(released_reg) => {
calls.push((released_reg.clone(), 0));
}
FnLine::Label(_) | FnLine::Empty | FnLine::Comment(_) => {}
};
for (released_reg, skips) in calls {
self.handle_releases_impl(body, i, released_reg, skips);
}
match &mut fn_.body[i] {
FnLine::Instruction(instr) => state.eval_instruction(instr),
FnLine::Label(_) => state = FnState::default(),
FnLine::Empty | FnLine::Comment(_) => {}
FnLine::Release(reg) => pending_releases.push(reg.clone()),
}
handle_mutation_releases(&mut fn_.body, i);
}
fn handle_releases_impl(
&self,
body: &mut Vec<FnLine>,
i: usize,
released_reg: Register,
skips_needed: usize,
) {
let mut j = i + 1;
let mut skips = 0;
let mut taken = false;
while j > 0 {
j -= 1;
if !fn_.body.is_empty() {
let last_i = fn_.body.len() - 1;
let instr = match &mut body[j] {
FnLine::Instruction(instr) => instr,
FnLine::Label(_) => return,
_ => continue,
};
if is_jmp_instr(instr) {
return;
}
let mut write_found = false;
if !taken {
instr.visit_registers_mut_rev(&mut |rvm| {
if skips < skips_needed {
skips += 1;
return;
}
if rvm.register.name != released_reg.name {
return;
}
if !taken && !rvm.write {
*rvm.register = rvm.register.take();
taken = true;
}
if !write_found && rvm.write {
write_found = true;
if !rvm.read && !taken {
*rvm.register = Register::ignore();
}
}
});
}
if write_found {
break;
}
for released_reg in pending_releases {
handle_release(&mut fn_.body, last_i, released_reg, 0);
}
}
}
fn simplify_fn(mut state: FnState, fn_: &mut Function) {
for i in 0..fn_.body.len() {
let line = &mut fn_.body[i];
state.simplify_line(line);
state.apply_line(line);
state.handle_releases(&mut fn_.body, i);
fn is_jmp_or_label(line: &FnLine) -> bool {
match line {
FnLine::Instruction(instr) => is_jmp_instr(instr),
FnLine::Label(_) => true,
FnLine::Empty | FnLine::Comment(_) | FnLine::Release(_) => false,
}
}

View File

@@ -0,0 +1,67 @@
use valuescript_vm::{vs_value::Val, VsSymbol};
use crate::asm::{Builtin, Number};
use super::kal::{Array, Kal, Object};
pub trait TryToKal {
fn try_to_kal(&self) -> Option<Kal>;
}
impl TryToKal for Val {
fn try_to_kal(&self) -> Option<Kal> {
Some(match self {
Val::Void => Kal::Undefined,
Val::Undefined => Kal::Undefined,
Val::Null => Kal::Null,
Val::Bool(b) => Kal::Bool(*b),
Val::Number(n) => Kal::Number(Number(*n)),
Val::BigInt(n) => Kal::BigInt(n.clone()),
Val::Symbol(sym) => match sym {
VsSymbol::ITERATOR => Kal::Builtin(Builtin {
name: "SymbolIterator".to_string(),
}),
},
Val::String(s) => Kal::String(s.to_string()),
Val::Array(arr) => {
let mut values = Vec::<Kal>::new();
for value in &arr.elements {
values.push(value.try_to_kal()?);
}
Kal::Array(Box::new(Array { values }))
}
Val::Object(obj) => {
if obj.prototype.is_some() {
// TODO: convert object with prototype to Kal
return None;
}
let mut properties = Vec::<(Kal, Kal)>::new();
for (k, v) in &obj.symbol_map {
let k = match k {
VsSymbol::ITERATOR => Kal::Builtin(Builtin {
name: "SymbolIterator".to_string(),
}),
};
properties.push((k, v.try_to_kal()?));
}
for (k, v) in &obj.string_map {
properties.push((Kal::String(k.clone()), v.try_to_kal()?));
}
Kal::Object(Box::new(Object { properties }))
}
// TODO: support more of these
Val::Function(..)
| Val::Class(..)
| Val::Static(..)
| Val::Dynamic(..)
| Val::CopyCounter(..) => return None,
})
}
}

View File

@@ -1,66 +0,0 @@
use valuescript_vm::{
vs_value::{ToVal, Val},
VsSymbol,
};
use crate::asm::{Array, Builtin, Number, Object, Value};
pub trait TryToValue {
fn try_to_value(&self) -> Result<Value, Val>;
}
impl TryToValue for Val {
fn try_to_value(&self) -> Result<Value, Val> {
Ok(match self {
Val::Void => Value::Undefined,
Val::Undefined => Value::Undefined,
Val::Null => Value::Null,
Val::Bool(b) => Value::Bool(*b),
Val::Number(n) => Value::Number(Number(*n)),
Val::BigInt(n) => Value::BigInt(n.clone()),
Val::Symbol(sym) => match sym {
VsSymbol::ITERATOR => Value::Builtin(Builtin {
name: "SymbolIterator".to_string(),
}),
},
Val::String(s) => Value::String(s.to_string()),
Val::Array(arr) => {
let mut values = Vec::<Value>::new();
for value in &arr.elements {
values.push(value.try_to_value()?);
}
Value::Array(Box::new(Array { values }))
}
Val::Object(obj) => {
if obj.prototype.is_some() {
return Err("can't (yet?) convert object with prototype to Value".to_val());
}
let mut properties = Vec::<(Value, Value)>::new();
for (k, v) in &obj.symbol_map {
let k = match k {
VsSymbol::ITERATOR => Value::Builtin(Builtin {
name: "SymbolIterator".to_string(),
}),
};
properties.push((k, v.try_to_value()?));
}
for (k, v) in &obj.string_map {
properties.push((Value::String(k.clone()), v.try_to_value()?));
}
Value::Object(Box::new(Object { properties }))
}
Val::Function(..)
| Val::Class(..)
| Val::Static(..)
| Val::Dynamic(..)
| Val::CopyCounter(..) => return Err("TODO: support more of these".to_val()),
})
}
}