Files
ValueScript/valuescript_compiler/src/optimization/simplify.rs
2023-06-30 14:12:27 +10:00

447 lines
14 KiB
Rust

use std::collections::{HashMap, HashSet};
use num_bigint::BigInt;
use valuescript_vm::{operations, vs_value::Val};
use crate::{
asm::{DefinitionContent, FnLine, Function, Instruction, Module, Number, Register, Value},
instruction::InstructionFieldMut,
TryToVal,
};
use super::try_to_value::TryToValue;
pub fn simplify(module: &mut Module) {
for defn in &mut module.definitions {
match &mut defn.content {
DefinitionContent::Function(fn_) => simplify_fn(FnState::default(), fn_),
DefinitionContent::Class(_) => {}
DefinitionContent::Value(_) => {}
DefinitionContent::Lazy(_) => {}
}
}
}
#[derive(Default)]
struct FnState {
mutable_this_established: bool,
registers: HashMap<String, Value>,
}
impl FnState {
fn clear(&mut self) {
*self = Self::default();
}
fn simplify_line(&self, line: &mut FnLine) {
match line {
FnLine::Instruction(instr) => {
if let Instruction::RequireMutableThis = instr {
if self.mutable_this_established {
*line = FnLine::Comment(line.to_string());
}
} else {
instr.visit_fields_mut(&mut |field| match field {
InstructionFieldMut::Value(arg) => {
self.simplify_arg(arg);
}
_ => {}
});
}
}
FnLine::Label(..) | FnLine::Empty | FnLine::Comment(..) | FnLine::Release(..) => {}
}
}
fn simplify_arg(&self, arg: &mut Value) {
arg.visit_values_mut(&mut |value| {
if let Value::Register(reg) = value {
if let Some(new_value) = self.registers.get(&reg.name) {
*value = new_value.clone();
}
}
});
}
fn apply_line(&mut self, line: &FnLine) {
match line {
FnLine::Instruction(instr) => match instr {
Instruction::End => {}
Instruction::Mov(a1, dst) => {
self.set_register(dst, Some(a1.clone()));
}
Instruction::OpInc(reg) => {
// TODO: Use apply_binary_op?
let new_value = match self.registers.get(&reg.name) {
Some(Value::Number(Number(x))) => Some(Value::Number(Number(x + 1.0))),
Some(Value::BigInt(x)) => Some(Value::BigInt(x + BigInt::from(1))),
Some(_) | None => None,
};
self.set_register(reg, new_value);
}
Instruction::OpDec(reg) => {
let new_value = match self.registers.get(&reg.name) {
Some(Value::Number(Number(x))) => Some(Value::Number(Number(x - 1.0))),
Some(Value::BigInt(x)) => Some(Value::BigInt(x - BigInt::from(1))),
Some(_) | None => None,
};
self.set_register(reg, new_value);
}
Instruction::OpNot(a1, dst) => self.apply_unary_op(a1, dst, operations::op_not),
Instruction::OpBitNot(a1, dst) => self.apply_unary_op(a1, dst, operations::op_bit_not),
Instruction::TypeOf(a1, dst) => self.apply_unary_op(a1, dst, operations::op_typeof),
Instruction::UnaryPlus(a1, dst) => self.apply_unary_op(a1, dst, operations::op_unary_plus),
Instruction::UnaryMinus(a1, dst) => {
self.apply_unary_op(a1, dst, operations::op_unary_minus)
}
Instruction::Import(_a1, dst)
| Instruction::ImportStar(_a1, dst)
| Instruction::Cat(_a1, dst) => {
// TODO: cat
self.set_register(dst, None);
}
Instruction::Yield(_a1, dst) | Instruction::YieldStar(_a1, dst) => {
self.set_register(dst, None)
}
Instruction::Throw(_a1) => {}
Instruction::OpPlus(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_plus),
Instruction::OpMinus(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_minus)
}
Instruction::OpMul(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_mul),
Instruction::OpDiv(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_div),
Instruction::OpMod(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_mod),
Instruction::OpExp(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_exp),
Instruction::OpEq(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_eq),
Instruction::OpNe(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_ne),
Instruction::OpTripleEq(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_triple_eq)
}
Instruction::OpTripleNe(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_triple_ne)
}
Instruction::OpAnd(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_and),
Instruction::OpOr(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_or),
Instruction::OpLess(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_less),
Instruction::OpLessEq(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_less_eq)
}
Instruction::OpGreater(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_greater)
}
Instruction::OpGreaterEq(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_greater_eq)
}
Instruction::OpNullishCoalesce(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_nullish_coalesce)
}
Instruction::OpOptionalChain(_a1, _a2, dst) => {
// self.apply_binary_op(a1, a2, dst, operations::op_optional_chain)
// TODO: op_optional_chain takes mut lhs to optimize, but breaks this pattern
self.set_register(dst, None);
}
Instruction::OpBitAnd(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_bit_and)
}
Instruction::OpBitOr(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_bit_or)
}
Instruction::OpBitXor(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_bit_xor)
}
Instruction::OpLeftShift(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_left_shift)
}
Instruction::OpRightShift(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_right_shift)
}
Instruction::OpRightShiftUnsigned(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_right_shift_unsigned)
}
Instruction::InstanceOf(a1, a2, dst) => {
self.apply_binary_op(a1, a2, dst, operations::op_instance_of)
}
Instruction::In(a1, a2, dst) => self.apply_binary_op(a1, a2, dst, operations::op_in),
Instruction::Call(_a1, _a2, dst)
| Instruction::Bind(_a1, _a2, dst)
| Instruction::Sub(_a1, _a2, dst)
| Instruction::SubMov(_a1, _a2, dst)
| Instruction::New(_a1, _a2, dst) => {
self.set_register(dst, None);
}
Instruction::Apply(_a, this, _a3, dst)
| Instruction::SubCall(this, _a, _a3, dst)
| Instruction::ThisSubCall(this, _a, _a3, dst) => {
self.set_register(this, None);
self.set_register(dst, None);
}
Instruction::ConstSubCall(_a1, _a2, _a3, dst) => self.set_register(dst, None),
Instruction::JmpIf(_a1, _) => {}
Instruction::Jmp(_) => {}
Instruction::SetCatch(_, _) => {}
Instruction::UnsetCatch => {}
Instruction::RequireMutableThis => {
self.mutable_this_established = true;
}
Instruction::Next(iter, dst) => {
self.set_register(iter, None);
self.set_register(dst, None);
}
Instruction::UnpackIterRes(iter_res, value_reg, done) => {
self.set_register(iter_res, None);
self.set_register(value_reg, None);
self.set_register(done, None);
}
},
FnLine::Label(..) => self.clear(),
FnLine::Empty | FnLine::Comment(..) => {}
FnLine::Release(reg) => {
self.set_register(reg, None);
}
}
}
fn set_register(&mut self, reg: &Register, value: Option<Value>) {
let mut registers_to_clear = HashSet::<String>::new();
for (k, v) in &mut self.registers {
v.visit_values_mut(&mut |value| {
if let Value::Register(reg_value) = value {
if reg_value.name == reg.name {
registers_to_clear.insert(k.clone());
}
}
});
}
for reg_to_clear in registers_to_clear {
self.registers.remove(&reg_to_clear);
}
match value {
Some(value) => self.registers.insert(reg.name.clone(), value),
None => self.registers.remove(&reg.name),
};
}
fn apply_unary_op(&mut self, arg: &Value, dst: &Register, op: fn(input: &Val) -> Val) {
match self.apply_unary_op_impl(arg, dst, op) {
Ok(_) => {}
Err(_) => {
self.set_register(dst, None);
}
}
}
fn apply_unary_op_impl(
&mut self,
arg: &Value,
dst: &Register,
op: fn(input: &Val) -> Val,
) -> Result<(), Val> {
let arg = arg.clone().try_to_val()?;
let value = op(&arg).try_to_value()?;
self.set_register(dst, Some(value));
Ok(())
}
fn apply_binary_op(
&mut self,
left: &Value,
right: &Value,
dst: &Register,
op: fn(left: &Val, right: &Val) -> Result<Val, Val>,
) {
match self.apply_binary_op_impl(left, right, dst, op) {
Ok(_) => {}
Err(_) => {
self.set_register(dst, None);
}
}
}
fn apply_binary_op_impl(
&mut self,
left: &Value,
right: &Value,
dst: &Register,
op: fn(left: &Val, right: &Val) -> Result<Val, Val>,
) -> Result<(), Val> {
let left = left.clone().try_to_val()?;
let right = right.clone().try_to_val()?;
let value = op(&left, &right)?.try_to_value()?;
self.set_register(dst, Some(value));
Ok(())
}
fn handle_releases(&self, body: &mut Vec<FnLine>, i: usize) {
let released_reg = match &body[i] {
FnLine::Instruction(_instr) => {
// TODO
return;
}
FnLine::Release(released_reg) => released_reg.clone(),
FnLine::Label(_) | FnLine::Empty | FnLine::Comment(_) => return,
};
// Search backwards to find where this register was last written. If a jump instruction occurs,
// then we don't know for sure whether the release point will be hit, and we can't apply our
// analysis.
let mut j = i;
while j > 0 {
j -= 1;
let instr = match &mut body[j] {
FnLine::Instruction(instr) => instr,
_ => continue,
};
if is_jmp_instr(instr) {
return;
}
let mut write_found = false;
instr.visit_registers_mut_rev(&mut |rvm| {
if rvm.write && rvm.register.name == released_reg.name {
write_found = true;
}
});
if write_found {
break;
}
}
// Now that we've established that the last write always hits the release point, find the last
// read and use .take() instead of copying. Also, if this .take() never occurs, it means the
// value was never used, and comment out the instruction that writes the value, if possible.
let mut j = i;
let mut taken = false;
while j > 0 {
j -= 1;
let instr = match &mut body[j] {
FnLine::Instruction(instr) => instr,
_ => continue,
};
let mut write_found = false;
if !taken {
instr.visit_registers_mut_rev(&mut |rvm| {
if !taken && !rvm.write && rvm.register.name == released_reg.name {
*rvm.register = rvm.register.take();
taken = true;
}
if rvm.write && rvm.register.name == released_reg.name {
write_found = true;
}
});
}
if write_found {
if !taken {
// TODO: Support removal of more instructions.
if let Instruction::Mov(..) = instr {
let line = &mut body[j];
*line = FnLine::Comment(line.to_string());
}
}
break;
}
}
}
}
fn simplify_fn(mut state: FnState, fn_: &mut Function) {
for i in 0..fn_.body.len() {
let line = &mut fn_.body[i];
state.simplify_line(line);
state.apply_line(line);
state.handle_releases(&mut fn_.body, i);
}
}
fn is_jmp_instr(instr: &Instruction) -> bool {
match instr {
Instruction::Jmp(..) | Instruction::JmpIf(..) => true,
Instruction::End
| Instruction::Mov(..)
| Instruction::OpInc(..)
| Instruction::OpDec(..)
| Instruction::OpPlus(..)
| Instruction::OpMinus(..)
| Instruction::OpMul(..)
| Instruction::OpDiv(..)
| Instruction::OpMod(..)
| Instruction::OpExp(..)
| Instruction::OpEq(..)
| Instruction::OpNe(..)
| Instruction::OpTripleEq(..)
| Instruction::OpTripleNe(..)
| Instruction::OpAnd(..)
| Instruction::OpOr(..)
| Instruction::OpNot(..)
| Instruction::OpLess(..)
| Instruction::OpLessEq(..)
| Instruction::OpGreater(..)
| Instruction::OpGreaterEq(..)
| Instruction::OpNullishCoalesce(..)
| Instruction::OpOptionalChain(..)
| Instruction::OpBitAnd(..)
| Instruction::OpBitOr(..)
| Instruction::OpBitNot(..)
| Instruction::OpBitXor(..)
| Instruction::OpLeftShift(..)
| Instruction::OpRightShift(..)
| Instruction::OpRightShiftUnsigned(..)
| Instruction::TypeOf(..)
| Instruction::InstanceOf(..)
| Instruction::In(..)
| Instruction::Call(..)
| Instruction::Apply(..)
| Instruction::Bind(..)
| Instruction::Sub(..)
| Instruction::SubMov(..)
| Instruction::SubCall(..)
| Instruction::UnaryPlus(..)
| Instruction::UnaryMinus(..)
| Instruction::New(..)
| Instruction::Throw(..)
| Instruction::Import(..)
| Instruction::ImportStar(..)
| Instruction::SetCatch(..)
| Instruction::UnsetCatch
| Instruction::ConstSubCall(..)
| Instruction::RequireMutableThis
| Instruction::ThisSubCall(..)
| Instruction::Next(..)
| Instruction::UnpackIterRes(..)
| Instruction::Cat(..)
| Instruction::Yield(..)
| Instruction::YieldStar(..) => false,
}
}