Files
arbo/tree_big.go
2025-03-28 13:10:28 +01:00

271 lines
9.4 KiB
Go

package arbo
import (
"bytes"
"fmt"
"log"
"math/big"
"slices"
)
// AddBatchBigInt adds a batch of key-value pairs to the tree, it converts the
// big.Int keys and the slices of big.Int values into bytes and adds them to
// the tree. It locks the tree to prevent concurrent writes to the valuesdb and
// creates a transaction to store the full values in the valuesdb. It returns
// a slice of Invalid items and an error if something fails.
func (t *Tree) AddBatchBigInt(k []*big.Int, v [][]*big.Int) ([]Invalid, error) {
if len(k) != len(v) {
return nil, fmt.Errorf("the number of keys and values missmatch")
}
// convert each key-value tuple into bytes
var err error
bks := make([][]byte, len(k))
bvs := make([][]byte, len(k))
fbvs := make([][]byte, len(k))
for i, ki := range k {
bks[i], bvs[i], fbvs[i], err = encodeBigIntData(t.HashFunction(), t.maxKeyLen(), ki, v[i])
if err != nil {
return nil, err
}
}
// add the keys and leaf values in batch
if invalids, err := t.AddBatch(bks, bvs); err != nil {
return invalids, err
}
// lock the tree to prevent concurrent writes to the valuesdb
t.Lock()
defer t.Unlock()
// create a transaction for each group of keys and full values and store
// the errors in a slice to return them
var fullInvalids []Invalid
wTx := t.valuesdb.WriteTx()
defer wTx.Discard()
for i := range bks {
if err := wTx.Set(bks[i], fbvs[i]); err != nil {
fullInvalids = append(fullInvalids, Invalid{i, err})
}
}
return fullInvalids, wTx.Commit()
}
// AddBigInt adds a key-value pair to the tree, it converts the big.Int key
// and the slice of big.Int values into bytes and adds them to the tree. It
// locks the tree to prevent concurrent writes to the valuesdb and creates a
// transaction to store the full value in the valuesdb. It returns an error if
// something fails.
func (t *Tree) AddBigInt(k *big.Int, v ...*big.Int) error {
if k == nil {
return fmt.Errorf("key cannot be nil")
}
// convert the big ints to bytes
bk, bv, fbv, err := encodeBigIntData(t.HashFunction(), t.maxKeyLen(), k, v)
if err != nil {
log.Println(err, k, v)
return err
}
// add it to the tree
if err := t.Add(bk, bv); err != nil {
return fmt.Errorf("raw key cannot be added: %w", err)
}
// lock the tree to prevent concurrent writes to the valuesdb
t.Lock()
defer t.Unlock()
// create a transaction to store the full value
wTx := t.valuesdb.WriteTx()
defer wTx.Discard()
// store the full value in the valuesdb
if err := wTx.Set(bk, fbv); err != nil {
return fmt.Errorf("full value cannot be stored: %w", err)
}
return wTx.Commit()
}
// UpdateBigInt updates the value of a key as a big.Int and the values of the
// leaf node as a slice of big.Ints. It encodes the key as bytes and updates
// the leaf node in the tree, then it stores the full value in the valuesdb. It
// returns an error if something fails.
func (t *Tree) UpdateBigInt(k *big.Int, value ...*big.Int) error {
if k == nil {
return fmt.Errorf("key cannot be nil")
}
// convert the big ints to bytes
bk, bv, fbv, err := encodeBigIntData(t.HashFunction(), t.maxKeyLen(), k, value)
if err != nil {
return err
}
// update the leaf in the tree
if err := t.Update(bk, bv); err != nil {
return err
}
// lock the tree to prevent concurrent writes to the valuesdb
t.Lock()
defer t.Unlock()
// create a transaction to store the full value
wTx := t.valuesdb.WriteTx()
defer wTx.Discard()
// store the full value in the valuesdb
if err := wTx.Set(bk, fbv); err != nil {
return err
}
return wTx.Commit()
}
// GetBigInt gets the value of a key as a big.Int and the values of the leaf
// node as a slice of big.Ints. It encodes the key as bytes and gets the leaf
// node from the tree, then it decodes the full value of the leaf node and
// returns the key and the values or an error if something fails.
func (t *Tree) GetBigInt(k *big.Int) (*big.Int, []*big.Int, error) {
if k == nil {
return nil, nil, fmt.Errorf("key cannot be nil")
}
bk, bv, err := t.Get(bigIntToLeafKey(t.maxKeyLen(), k))
if err != nil {
return nil, nil, err
}
return t.leafToBigInts(bk, bv)
}
// GenProofBigInts generates a proof for a key as a big.Int. It converts the
// big.Int key into bytes and generates a proof for the key, then it returns
// the key, the value of the leaf node, the siblings and a boolean indicating
// if the key exists or an error if something fails.
func (t *Tree) GenProofBigInts(k *big.Int) ([]byte, []byte, []byte, bool, error) {
if k == nil {
return nil, nil, nil, false, fmt.Errorf("key cannot be nil")
}
return t.GenProof(bigIntToLeafKey(t.maxKeyLen(), k))
}
// GenerateCircomVerifierProofBigInt generates a CircomVerifierProof for a key
// as a big.Int. It converts the big.Int key into bytes and generates a proof
// for the key, then it returns the CircomVerifierProof or an error if
// something fails.
func (t *Tree) GenerateCircomVerifierProofBigInt(k *big.Int) (*CircomVerifierProof, error) {
if k == nil {
return nil, fmt.Errorf("key cannot be nil")
}
return t.GenerateCircomVerifierProof(bigIntToLeafKey(t.maxKeyLen(), k))
}
// GenerateGnarkVerifierProofBigInt generates a GnarkVerifierProof for a key
// as a big.Int. It converts the big.Int key into bytes and generates a proof
// for the key, then it returns the GnarkVerifierProof or an error if
// something fails.
func (t *Tree) GenerateGnarkVerifierProofBigInt(k *big.Int) (*GnarkVerifierProof, error) {
if k == nil {
return nil, fmt.Errorf("key cannot be nil")
}
return t.GenerateGnarkVerifierProof(bigIntToLeafKey(t.maxKeyLen(), k))
}
// maxKeyLen returns the maximum length of the key in bytes for a tree
func (t *Tree) maxKeyLen() int {
return keyLenByLevels(t.maxLevels)
}
// leafToBigInts converts the bytes of the key and the value of a leaf node
// into a big.Int key and a slice of big.Int values, it gets the full value
// from the valuesdb and checks if it matches the value of the leaf node. It
// returns the original key and values or an error if the values don't match.
func (t *Tree) leafToBigInts(key, value []byte) (*big.Int, []*big.Int, error) {
bFullValue, err := t.valuesdb.Get(key)
if err != nil {
return nil, nil, err
}
// reverse the process of values encoding
values := fullValueToValues(bFullValue)
// recalculate the value to check if it matches the stored value
expectedFullValue, err := valuesToFullValue(values)
if err != nil {
return nil, nil, err
}
// check if the value of the leaf node matches the stored value
if !bytes.Equal(expectedFullValue, bFullValue) {
return nil, nil, fmt.Errorf("LeafToBigInt: expectedFullValue != value")
}
return BytesToBigInt(key), values, nil
}
// BigIntToBytes converts a big.Int into a byte slice of length keyLen
func bigIntToLeafKey(keyLen int, biKey *big.Int) []byte {
return BigIntToBytes(keyLen, biKey)
}
// leafKeyToBigInt converts the bytes of a key into a big.Int
func leafKeyToBigInt(key []byte) *big.Int {
return BytesToBigInt(key)
}
// valuesToFullValue converts a slice of big.Int values into the bytes of the
// full value encoded in a reversible way. It concatenates the bytes of the
// values with the length of each value at the beginning of each value.
func valuesToFullValue(values []*big.Int) ([]byte, error) {
// calculate the bytes of the full values (should be reversible)
bFullValue := []byte{}
for _, v := range values {
if v == nil {
return nil, fmt.Errorf("value cannot be nil")
}
vBytes := v.Bytes()
if len(vBytes) > 255 {
return nil, fmt.Errorf("value byte length cannot exceed 255")
}
val := append([]byte{byte(len(vBytes))}, vBytes...)
bFullValue = append(bFullValue, val...)
}
return bFullValue, nil
}
// fullValueToValues converts the bytes of the full value encoded into a slice
// of big.Int values. It iterates over the bytes of the full value and extracts
// the length of each value and the bytes of the value to build the big.Int
// values.
func fullValueToValues(fullValue []byte) []*big.Int {
values := []*big.Int{}
iter := slices.Clone(fullValue)
for len(iter) > 0 {
lenV := int(iter[0])
values = append(values, new(big.Int).SetBytes(iter[1:1+lenV]))
iter = iter[1+lenV:]
}
return values
}
// encodeBigIntData converts a big.Int key and a slice of big.Int values into the
// bytes of the key, the bytes of the value used to build the tree and the
// bytes of the full value encoded
func encodeBigIntData(hFn HashFunction, keyLen int, key *big.Int, values []*big.Int) ([]byte, []byte, []byte, error) {
if key == nil {
return nil, nil, nil, fmt.Errorf("key cannot be nil")
}
// calculate the bytes of the key
bKey := bigIntToLeafKey(keyLen, key)
// calculate the bytes of the full values (should be reversible)
bFullValue, err := valuesToFullValue(values)
if err != nil {
return nil, nil, nil, err
}
// calculate the value used to build the tree
bValue, err := encodeBigIntValues(hFn, values...)
if err != nil {
return nil, nil, nil, err
}
return bKey, bValue, bFullValue, nil
}
// encodeBigIntValues converts a slice of big.Int values into the bytes of the
// value used to build the tree. It hashes the bytes of the big.Int values
// using the hash function of the tree.
func encodeBigIntValues(hFn HashFunction, values ...*big.Int) ([]byte, error) {
chunks := make([][]byte, len(values))
for _, v := range values {
// truncate the value if it exceeds the maximum chunk bytes
value, err := hFn.SafeValue(v.Bytes())
if err != nil {
return nil, err
}
chunks = append(chunks, value)
}
return hFn.Hash(chunks...)
}