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Abstract

Atomic swaps are a method for trustlessly swapping assets between two blockchains. They are easily
implemented between blockchains that have capability for hash timelocked contracts; however, when one
of the chains does not have any scripting capabilities, such as Monero, it introduces new challenges. A
BTC-XMR atomic swap protocol has already been described and implemented. This article describes
an ETH-XMR atomic swap protocol that utilizes the smart contract capabilities of Ethereum. Taking
into account Ethereum’s gas cost, it also uses off-chain discrete logarithm equality proofs as a method
for reduction of transaction fees.
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1 Background

Atomic swaps are a method for trustlessly swapping assets between two blockchains. It is entirely peer-to-
peer and requires no third party. Assuming the two participants are able to meet and agree on the amounts
to swap, the protocol is able to proceed to completion. If the protocol is not able to complete, for example,
if one party goes offline part-way through, both parties will be refunded.

This article describes a protocol for performing an atomic swap between Ethereum and Monero. However,
it can be generalized to work between any chain with smart contract capabilities equivalent to Ethereum
and any other chain without any such capabilities.

2 Situation

Say we have two parties, Alice and Bob, where Alice owns ETH and wants XMR, and Bob owns XMR and
wants ETH. Alice and Bob meet and agree on the amounts to swap. The method they utilize to meet is out
of the scope of this article, although a method is suggested in section 7.2.2.

3 Preliminaries

3.1 Ethereum

As part of its state transition, Ethereum executes its transactions through the Ethereum Virtual Machine
(EVM), a nearly-Turing complete machine (the reason it is not is due to “gas”, which puts an upper bound
on the amount of operations a transaction can do). Thus, any execution that will not exceed the block gas
limit can be performed. Gas is a measure of how expensive a transaction will be in terms of computing cost.
Every instruction in the EVM has an associated gas cost based off of how expensive the computation is. The
financial cost of a transaction is the gas required multiplied by the “gas price”, which is the cost per unit of
gas in ETH.

Ethereum uses the secp256k1 curve and ECDSA as its signing algorithm. Additionally, ECDSA has the
property of key recovery; one can recover the signing public key given a signature and its message.

Unfortunately, Ethereum has no layer-1 privacy. Every transaction is publicly visible, including sender
and recipient addresses, value transfers, smart contract calls, and smart contract bytecode. This limitation
will be further discussed in section 7.

3.2 Monero

Monero is a privacy-preserving blockchain that obfuscates the link between sender and recipient, as well as
the value transferred. It has no smart contract or scripting capabilities.

Unlike Ethereum, Monero uses the ed25519 curve. Monero also has two distinct types of private keys,
spend key and view keys. Spend keys are used to spend from an address, while with a view key you can only
view the balance of an address. The view key can be derived from the spend key, so by having a spend key
to an address you also have the view key. However, you cannot derive the spend key from a view key.

3.3 Discrete logarithm equality proof

As part of the protocol, we wish to verify that a public key on the ed25519 curve has the same discrete
logarithm as a public key on the secp256k1 curve. A zero-knowledge proof known as a discrete logarithm
equality proof is used to prove equivalence of the secret key corresponding to public keys on either curve.

The details of the implementation are out of the scope of this paper, but are outlined in [3].
The high-level API used in the protocol is as follows:

• dleq prove(x) → (Pa, Pb, proof) where x is a scalar and the discrete logarithm of Pa and Pb on
the secp256k1 and ed25519 curves respectively.

• dleq verify(Pa, Pb, proof) → (true | false)
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4 Protocol

The follow sections describe an ETH-XMR atomic swap protocol between two parties, Alice and Bob, where
Alice has ETH and wishes to swap for XMR, and Bob has XMR and wishes to swap for ETH.

4.1 On-chain functionality

In the first step of the protocol, Alice and Bob exchange newly-generated public keys on the ed25519 and
secp256k1 curves. For this section, we will refer to only the secp256k1 public keys, as they will be stored
on-chain. We will refer to Alice’s secp256k1 public key as Pa, with a corresponding private key xa. Similarly,
Bob has a public key Pb and a private key xb.

Additionally, the swap requires two timelocks, t0 and t1 where t0 < t1.
alice address and bob address are the participants’s original Ethereum addresses, which should not cor-

respond to the swap keys Pa and Pb.
This protocol requires a smart contract to be deployed to the Ethereum blockchain that contains the

following functionality:

• initiate(alice address, bob address, Pa, Pb, t0, t1, value): Alice is able to initiate the swap
on-chain by storing Pa and Pb. She also specifies two timelocks t0 and t1. In the same step, she also
pays the contract the agreed upon ETH value.

• set ready(): After this is called, the contract allows Bob to call the claim(xb) function, while si-
multaneously disallowing Alice from calling refund(xa). Only Alice is able to call this function from
alice address. This function does not need to be called, as if t0 passes, the contract acts the same
as if set ready() was called.

• claim(xb): This function is only callable by Bob from bob address. Bob must provide the private
key to Pb stored in the contract. The contract performs a scalar basepoint multiplication on secp256k1
to verify that xb corresponds to Pb. If the verification succeeds, value ETH is transferred to Bob.
Otherwise, the transaction reverts. This function is only callable after t0 or set ready() is called, and
before t1 passes.

• refund(xa): This function is only callable by Alice from alice address. Alice must provide the
private key to Pa stored in the contract. The contract performs a scalar basepoint multiplication on
secp256k1 to verify that xa corresponds to Pa. If the verification succeeds, value ETH is transferred
to Alice. Otherwise, the transaction reverts. This function is only callable before t0 or the contract is
set to ready, or after t1.

The timelocks t0 and t1 are placed to prevent front-running; ie. neither Alice or Bob are able to redeem
funds at the same time. This prevents the case where one party submits their secret, and the secret is in the
mempool, and the counterparty front-runs them claiming both ETH and XMR. The timelocks also prevent
against parties going offline; for example, if Bob never claims the ETH, Alice is able to refund after t1.

4.2 Protocol steps

In this section, addition between two private keys is defined as scalar addition over the ed25519 field. Addition
between two public keys is defined at point addition over the ed25519 curve.

4.2.1 Success path

1. Alice and Bob meet and generate keypairs, where xa and xb are their respective secret keys, and Pa

and Pb are their respective public keys. They also generate va and vb from xa and xb which are private
Monero view keys.

2. Alice sends Bob Pa. Bob sends Alice Pb and vb. Note: Bob needs to send his private view key so that
Alice is able to later confirm the locked XMR amount.
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3. Alice calls initiate on-chain, locking her ETH in the smart contract and storing Pa and Pb.

4. Bob sees the swap initiation and confirms the amount locked and the public keys stored. He then locks
the XMR in the account specified by public key Pa + Pb, which has the corresponding private spend
key xa + xb and private view key va + vb. He notifies Alice that the XMR is locked.

5. Alice checks the XMR amount locked with view key va + vb. She then sets the contract to ready by
calling set ready(), allowing Bob to call claim(xb). Note: this step is not strictly necessary, and if
Alice does not call set ready(), then after t0 Bob is still able to claim. This simply speeds up the
process.

6. Bob sees that the contract is ready and calls claim(xb), passing in his secret xb. The contract verifies
that xb is the private key for Pb and transfers the funds to him.

7. Alice sees Bob’s secret xb and combines it with xa to claim the XMR in the account Pa + Pb.

4.2.2 Refund path

1. Same as above.

2. Same as above.

3. Same as above.

4. The refund case occurs when either:

(a) Bob does not lock the XMR, or locks an incorrect amount of XMR; or

(b) Bob never claims the ETH.

5. Alice is able to call refund(xa) passing in xa. The contract verifies that xa is the private key for Pa

and transfers the funds to her.

6. Bob sees Alice’s secret xa and combines it with xb to refund the XMR in the account Pa + Pb.

4.3 On-chain public key verification

The protocol can be implemented in two ways; one method would verify a secp256k1 public key on-chain,
the second verifies an ed25519 oublic key on-chain. Since Ethereum uses secp256k1 natively, it’s much more
gas efficient to verify a secp256k1 key on-chain. If an ed25519 on-chain verification was done, the public
keys exchanged in protocol step 1 would simply be the ed25519 public key corresponding to each party’s
secret. However, to verify a secp256k1 key on-chain, a DLEq proof is required to prove that the party’s
secret corresponds to a valid public key on both secp256k1 and ed25519 curves.

The protocol is modified as follows:

1. In step 1, each party generates their secret x.

(a) They also generate a DLEq proof using x, which returns Psecp256k1, Ped25519 and proof .

(b) They send both public keys and proof to the counterparty, which verifies them with dleq verify(Psecp256k1,

Ped25519, proof). If the proof is not valid, the protocol aborts.

Then, the public keys passed into the smart contract when Alice locks are the secp256k1 keys of each
party.
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5 Limitations

5.1 Privacy concerns

The current protocol has privacy concerns. On the Monero side, as all transactions are private by default, the
receiver of the Monero has their privacy protected. However, on the Ethereum side, all transaction details
are visible. Since the swap contract is deployed on-chain, even if the source code is not uploaded on a block
explorer like Etherscan, it is still evident which accounts are interacting with the swap. Timing attacks can
then be used to link an Ethereum account to a Monero account. Additionally, centralized parties can choose
to ban accounts that interact with the atomic swap contract.

Section 7.1 and 7.2 aim to provide a high-level overview of the next iteration of the protocol which
addresses these issues.

5.2 Griefing attacks

The protocol currently requires the ETH holder to move first, as if the XMR holder moves first, the ETH
holder can simply go offline and the XMR is locked forever. This requires implementations to make the XMR
holder the swap “maker”; ie. an XMR holder to wishes to swap for ETH must advertise a swap offer. Then,
an ETH holder can act as the “taker”, taking one of the existing offers by locking their ETH. Assuming the
XMR holder actually holds the XMR they have advertised and is willing to follow the protocol, this scenario
works. However, if the offer maker does not actually hold the XMR they claim to, or they go offline right
after the offer is taken, then the ETH holder has no option but to refund their ETH. In this case, the ETH
holder has lost some ETH due to the gas fees of initiating the swap as well as refunding, while the XMR
holder has lost nothing.

6 Protocol using adaptor signatures

This section describes an ETH-XMR atomic swap protocol that uses adaptor signatures to greatly reduce
gas fees. Unfortunately, this protocol does not work due to being unable to access account state within an
Ethereum smart contract.

6.1 Preliminaries

6.1.1 Adaptor signatures

Adaptor signatures or one-time verifiably encrypted signatures are a method of encrypting a usual ECDSA
or Schnorr signature with some encryption key. Given an encrypted signature and decryption key, the
unencrypted signature is revealed. Alternatively, given an encrypted signature and corresponding decrypted
signature, the secret decryption key can be revealed. This is how they are used within atomic swap.

The encryption key Y is derived from the secret key y with Y = G ∗ y where G is the elliptic curve base
point.

The methods for ECDSA adaptor signatures is as follows:

Signing: ecdsa adaptor sign

• Input:

– x: signing private key

– Y : encryption public key

– message: message to sign

• Output:

– DLEq proof π

– adaptor signature σa
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Verification: ecdsa adaptor verify

• Input:

– adaptor signature σa and DLEq proof π

– P : signing public key

– Y : encryption public key

– message: message

• Output:

– true or false

Signature decryption: ecdsa adaptor decrypt

• Input:

– adaptor signature σa

– y: decryption secret key

• Output:

– ECDSA signature σ

Secret encryption key recovery: ecdsa adaptor recover

• Input:

– Y : encryption public key

– σa: adaptor signature

– σ: ECDSA signature

• Output:

– secret decryption key y or error

6.2 Protocol description

6.2.1 On-chain functionality

The following is a minimal smart contract for an adaptor-signature based atomic swap.

contract SwapV2 {

address payable owner;

address payable claimer;

uint256 timeout_0;

uint256 timeout_1;

constructor(address _claimer, uint256 _timeoutDuration) public payable {

owner = msg.sender;

claimer = _claimer;

timeout_0 = block.timestamp + _timeoutDuration;

timeout_1 = block.timestamp + (_timeoutDuration * 2);

}

function claim() public {

require(msg.sender == claimer);
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require(block.timestamp < timeout_1 && block.timestamp > timeout_0);

claimer.transfer(this.value);

selfdestruct();

}

function refund() public {

require(msg.sender == owner);

require(block.timestamp > timeout_1 || block.timestamp < timeout_0);

owner.transfer(this.value);

selfdestruct();

}

}

6.2.2 Success path

1. Alice and Bob meet and generate ed25519 keypairs, where xa and xb are their respective secret keys,
and Pa and Pb are their respective public keys. item Alice prepares to lock her ETH in a smart
contract by determining the CREATE2 address where the contract will be deployed to. If the contract is
a “factory” contract (ie. a contract that can instantiate swaps within it) where the address is already
known, this step can be omitted.

2. Alice sends Bob the swap contract address. Bob prepares a transaction txclaim that calls claim(). He
creates an adaptor signature σclaim adaptor on txclaim with the public encryption key Y (and secret
decryption key y. He sends this adaptor, his Ethereum address, and txclaim to Alice. He also privately
decrypts σclaim, a valid signature on txclaim, from σclaim using ecdsa adaptor decrypt.

3. Alice checks that txclaim is well-formed and locks her ETH in the swap contract, setting Bob’s Ethereum
address as the claimer.

4. Bob sees that the ETH was locked and confirms that the claimer address is correct. He then locks his
XMR in the Monero address with public key Pa + Y , thus the private key is xa + y.

5. After timeout0 passes, Bob submits the signed txclaim on-chain. This reveals σclaim, which Alice
combines with σclaim adaptor to reveal the secret encryption key y.

6. Alice claims the XMR in the acount Pa + Y as she now knows the private key, which is xa + y.

6.2.3 Refund path

1. Same as above.

2. Same as above.

3. Same as above. Additionally, Alice prepares txrefund that calls refund(). She sends Bob an adaptor
signature σrefund adaptor on txrefund where the public encryption key is Pa. She also privately signs
txrefund using ecdsa adaptor decrypt, creating σrefund. If Alice decides to call refund(), xa is revealed
to Bob.

4. If Bob locks his XMR, the step is the same as step 5 above.

5. If Bob locked his XMR, but was unable to claim the ETH before timeout1, Alice will call refund().
Then, he can combine σrefund with txrefund to reveal xa and regain access to the XMR locked in
Pa + Yb.
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6.3 Limitation

Currently, this protocol is not possible. This is because there is no way to check for an account nonce
within an Ethereum smart contract. Since account nonce is part of the transactions txclaim and txrefund,
it’s possible for a party to create a transaction and adaptor with some nonce nonce, but then submit some
transaction in-between sending the adaptor and calling the swap contract. Then, the contract will still accept
the transaction, but the signature will be on a transaction with nonce + 1. Since this transaction is not the
same as that signed by the adaptor, the counterparty will be unable to extract the secret encryption key.

7 Further work

7.1 Preserving privacy by shielding ETH

As mentioned in section 5, the Ethereum side of the swap has effectively no privacy, as Ethereum has no
layer-1 privacy. A potential method to circumvent this would be to add a ZK-shielded pool to the swap
contract.

The method could work as follows:

• If an ETH-holder wishes to initiate a swap, they deposit their ETH into the swap’s shielded pool and
receive a receipt that acts as a proof of deposit. They can also use this receipt to simply withdraw the
funds without doing a swap.

• When initiate() is called, instead of sending funds with the call, the receipt is passed and validated
by the smart contract.

• When the funds are claimed from the contract, the receipt’s funds are marked as withdrawn.

This method adds a layer of plausible deniability to users who deposit in the swap; it cannot be proven
as it could previously that an atomic swap occured. It also has the effect of mixing swap users’s funds.

This could be implemented as a custom solution to the swap or potentially as an integration with existing
solutions. The benefit of integration with an existing solution would be a much greater anonymity set, but
the drawback is that the swap contract must be interoperable with external smart contracts.

7.2 Network-level privacy

Currently, the protocol requires at least 2 messages to be exchanged. These are the key exchange messages
exchanged by the swap participants to initiate the swap. Assuming the participants are able to watch events
occuring on the blockchain, no other messages necessarily need to be sent.

7.2.1 Sender-recipient privacy

For a swap to initiate, the two parties must establish a connection between each other to exchange their
swap keys. However, this reveals the IPs of each party to the counterparty. A party who wishes to monitor
the network and determine who is requesting initiation of swaps, and with what amount, can easily do
so without monetary recourse. They can simply spin up nodes that join the network and advertise swap
offers and record who attempts to initiate with them, thereby determining IP addresses that want Monero.
Alternatively, they can search for providers offering XMR, and thus find the IPs of users who reportedly
own Monero.

A simple solution is for users of the swap to use a VPN service. This will hide their real IP from other
network participants. The drawback is that the user must trust the VPN provider not to publish their
network activity.

Two potential solutions for this are onion routing or a mixnet. Onion routing allows network messages
to be wrapped in successive layers of encryption, which must be unwrapped by each relaying node one at a
time until the destination is reached. This hides the sender of the message from the relay nodes as well as the
receipient, and hides the recipient’s address from the sender. There exist implementations of a Tor transport
for the lip2p library used by the current swap implementation, which may be integrated for increased privacy.
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Alternatively, a mixnet can also be utilized. A mixnet provides greater privacy and resistance to metadata
attacks than onion routing. Messages sent via onion routing may be correlated by timing and packet size.
A mixnet prevents against this by “mixing” different packets together before sending them out from a relay
node, as to obfuscate the size of a packet. As well, the relay node holds on to them for random intervals
of time. This prevents against both timing attacks at the cost of greater latency. Using a mixnet for the
networking implementation of the swap would be ideal, as latency is not critical; the swap users can simply
set a sufficiently large timeout to negate the effects of latency. However, more research would need to be
conducted into existing mixnet implementations that can be used, which is out of the scope of this document.

7.2.2 DHT privacy

The current atomic swap implementation uses a distributed hash table (DHT) for discovery of peers on the
network, particular those who are providing swap offers. While not necessaily within the scope of an atomic
swap protocol, which does not dictate how the participants meet, any implementation that uses a DHT will
need to consider the privacy implications. However, a DHT is preferred for peer discovery over centralized
alternatives such as a website, which may be censored or taken down by the hosting party. Additionally,
by discovering peers through a centralized service, the website host becomes aware of every IP that visits
the website, which would not be the case with a swap implementation that operates entirely through a
peer-to-peer network.

DHTs are used to store and retrieve content in a decentralized, peer-to-peer network. Content is replicated
between nodes, which can then be retrieved by a user by querying nodes in the network to “get closer” and
eventually retrieve the contract they are searching for. DHTs are used in a blockchain context for peer
discovery. A node in the network will advertise themselves in the DHT which can then be found by another
party searching through the DHT. Similarly, they are used in the swap implementation to discover peers.

Most DHT implementations are not privacy-preserving and leak metadata about who is hosting what
content, who is requesting it, and when. Similarly to the previous section, someone who wishes to extract
metadata from the network can create a large number of nodes, wait until the DHT content gets replicated
to them, then determine who is requesting that data.

There has been research done into DHT implementations that preserve privacy of lookups, for example
Octopus [4]. A swap implementation which aims to be as privacy-preserving as possible should use a privacy-
preserving DHT implementation for peer and offer discovery.

7.3 Direct swaps for ERC20 tokens

An extension to the protocol could be direct swaps for ERC20 tokens. This could be implemented by
modifying the swap contract to internally call transfer() on an ERC20 when initiate is called.

However, this method requires liquidity of ERC20 tokens, which may not be feasible especially for more
niche tokens. Another method could be integrating with a DEX such as Uniswap so that once when swap
completes, the ETH is automatically exchanged on the DEX for the desired token.

8 Conclusion

In summary, a protocol for trustless, peer-to-peer ETH-XMR atomic swaps has been described in this article.
As well, limitations of the protocol in regards to privacy, griefing attacks, and gas costs has been discussed.
Future research and implementation work has been outlined regarding privacy improvements and extensions.
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