diff --git a/test/tune/test_lexiflow.py b/test/tune/test_lexiflow.py index 2d4495456..49422bd9d 100644 --- a/test/tune/test_lexiflow.py +++ b/test/tune/test_lexiflow.py @@ -5,7 +5,6 @@ from flaml import tune import torch.nn.functional as F import torchvision import numpy as np -from ray import tune as raytune DEVICE = torch.device("cpu") BATCHSIZE = 128 @@ -91,15 +90,15 @@ def _test_lexiflow(): lexico_objectives["modes"] = ["min", "min"] search_space = { - "n_layers": raytune.randint(lower=1, upper=3), - "n_units_l0": raytune.randint(lower=4, upper=128), - "n_units_l1": raytune.randint(lower=4, upper=128), - "n_units_l2": raytune.randint(lower=4, upper=128), - "dropout_0": raytune.uniform(lower=0.2, upper=0.5), - "dropout_1": raytune.uniform(lower=0.2, upper=0.5), - "dropout_2": raytune.uniform(lower=0.2, upper=0.5), - "lr": raytune.loguniform(lower=1e-5, upper=1e-1), - "n_epoch": raytune.randint(lower=1, upper=20), + "n_layers": tune.randint(lower=1, upper=3), + "n_units_l0": tune.randint(lower=4, upper=128), + "n_units_l1": tune.randint(lower=4, upper=128), + "n_units_l2": tune.randint(lower=4, upper=128), + "dropout_0": tune.uniform(lower=0.2, upper=0.5), + "dropout_1": tune.uniform(lower=0.2, upper=0.5), + "dropout_2": tune.uniform(lower=0.2, upper=0.5), + "lr": tune.loguniform(lower=1e-5, upper=1e-1), + "n_epoch": tune.randint(lower=1, upper=20), } low_cost_partial_config = {