diff --git a/flaml/automl.py b/flaml/automl.py index c68c7e0fa..14617a6fe 100644 --- a/flaml/automl.py +++ b/flaml/automl.py @@ -2322,7 +2322,7 @@ class AutoML(BaseEstimator): try: from ray import __version__ as ray_version - assert ray_version >= "1.0.0" + assert ray_version >= "1.10.0" import ray from ray.tune.suggest import ConcurrencyLimiter except (ImportError, AssertionError): @@ -2341,7 +2341,7 @@ class AutoML(BaseEstimator): try: from ray import __version__ as ray_version - assert ray_version >= "1.0.0" + assert ray_version >= "1.10.0" from ray.tune.suggest.optuna import OptunaSearch as SearchAlgo except (ImportError, AssertionError): from .searcher.suggestion import OptunaSearch as SearchAlgo @@ -2510,7 +2510,7 @@ class AutoML(BaseEstimator): try: from ray import __version__ as ray_version - assert ray_version >= "1.0.0" + assert ray_version >= "1.10.0" from ray.tune.suggest import ConcurrencyLimiter except (ImportError, AssertionError): from .searcher.suggestion import ConcurrencyLimiter @@ -2520,7 +2520,7 @@ class AutoML(BaseEstimator): try: from ray import __version__ as ray_version - assert ray_version >= "1.0.0" + assert ray_version >= "1.10.0" from ray.tune.suggest.optuna import OptunaSearch as SearchAlgo except (ImportError, AssertionError): from .searcher.suggestion import OptunaSearch as SearchAlgo diff --git a/flaml/searcher/blendsearch.py b/flaml/searcher/blendsearch.py index b166691ed..da1913c5b 100644 --- a/flaml/searcher/blendsearch.py +++ b/flaml/searcher/blendsearch.py @@ -11,7 +11,7 @@ import pickle try: from ray import __version__ as ray_version - assert ray_version >= "1.0.0" + assert ray_version >= "1.10.0" from ray.tune.suggest import Searcher from ray.tune.suggest.optuna import OptunaSearch as GlobalSearch except (ImportError, AssertionError): @@ -856,7 +856,7 @@ class BlendSearch(Searcher): try: from ray import __version__ as ray_version - assert ray_version >= "1.0.0" + assert ray_version >= "1.10.0" from ray.tune import ( uniform, quniform, diff --git a/flaml/searcher/search_thread.py b/flaml/searcher/search_thread.py index a148256b8..fec85a7d3 100644 --- a/flaml/searcher/search_thread.py +++ b/flaml/searcher/search_thread.py @@ -8,7 +8,7 @@ import numpy as np try: from ray import __version__ as ray_version - assert ray_version >= "1.0.0" + assert ray_version >= "1.10.0" from ray.tune.suggest import Searcher except (ImportError, AssertionError): from .suggestion import Searcher diff --git a/flaml/tune/__init__.py b/flaml/tune/__init__.py index 755159339..7c441c32a 100644 --- a/flaml/tune/__init__.py +++ b/flaml/tune/__init__.py @@ -1,7 +1,7 @@ try: from ray import __version__ as ray_version - assert ray_version >= "1.0.0" + assert ray_version >= "1.10.0" from ray.tune import ( uniform, quniform, diff --git a/flaml/tune/space.py b/flaml/tune/space.py index fbca06a1b..3f44d36f2 100644 --- a/flaml/tune/space.py +++ b/flaml/tune/space.py @@ -1,7 +1,7 @@ try: from ray import __version__ as ray_version - assert ray_version >= "1.0.0" + assert ray_version >= "1.10.0" from ray.tune import sample from ray.tune.suggest.variant_generator import generate_variants except (ImportError, AssertionError): diff --git a/flaml/tune/tune.py b/flaml/tune/tune.py index c6959dc39..b77d1eb62 100644 --- a/flaml/tune/tune.py +++ b/flaml/tune/tune.py @@ -10,7 +10,7 @@ import time try: from ray import __version__ as ray_version - assert ray_version >= "1.0.0" + assert ray_version >= "1.10.0" from ray.tune.analysis import ExperimentAnalysis as EA ray_import = True diff --git a/flaml/version.py b/flaml/version.py index 1f4c4d43b..5becc17c0 100644 --- a/flaml/version.py +++ b/flaml/version.py @@ -1 +1 @@ -__version__ = "0.10.1" +__version__ = "1.0.0" diff --git a/test/tune/test_searcher.py b/test/tune/test_searcher.py index 61fcc3cb0..fd0dd7b3d 100644 --- a/test/tune/test_searcher.py +++ b/test/tune/test_searcher.py @@ -4,7 +4,7 @@ import numpy as np try: from ray import __version__ as ray_version - assert ray_version >= "1.0.0" + assert ray_version >= "1.10.0" from ray.tune import sample use_ray = True diff --git a/website/docs/Use-Cases/Task-Oriented-AutoML.md b/website/docs/Use-Cases/Task-Oriented-AutoML.md index b045a690f..1bc712389 100644 --- a/website/docs/Use-Cases/Task-Oriented-AutoML.md +++ b/website/docs/Use-Cases/Task-Oriented-AutoML.md @@ -11,10 +11,13 @@ - 'classification': classification. - 'regression': regression. - 'ts_forecast': time series forecasting. + - 'ts_forecast_classification': time series forecasting for classification. - 'rank': learning to rank. - 'seq-classification': sequence classification. - 'seq-regression': sequence regression. - 'summarization': text summarization. + - 'token-classification': token classification. + - 'multichoice-classification': multichoice classification. An optional input is `time_budget` for searching models and hyperparameters. When not specified, a default budget of 60 seconds will be used. @@ -104,18 +107,18 @@ The estimator list can contain one or more estimator names, each corresponding t #### Estimator * Built-in estimator. - - 'lgbm': LGBMEstimator. Hyperparameters: n_estimators, num_leaves, min_child_samples, learning_rate, log_max_bin (logarithm of (max_bin + 1) with base 2), colsample_bytree, reg_alpha, reg_lambda. - - 'xgboost': XGBoostSkLearnEstimator. Hyperparameters: n_estimators, max_leaves, max_depth, min_child_weight, learning_rate, subsample, colsample_bylevel, colsample_bytree, reg_alpha, reg_lambda. - - 'rf': RandomForestEstimator. Hyperparameters: n_estimators, max_features, max_leaves, criterion (for classification only). - - 'extra_tree': ExtraTreesEstimator. Hyperparameters: n_estimators, max_features, max_leaves, criterion (for classification only). - - 'lrl1': LRL1Classifier (sklearn.LogisticRegression with L1 regularization). Hyperparameters: C. - - 'lrl2': LRL2Classifier (sklearn.LogisticRegression with L2 regularization). Hyperparameters: C. - - 'catboost': CatBoostEstimator. Hyperparameters: early_stopping_rounds, learning_rate, n_estimators. - - 'kneighbor': KNeighborsEstimator. Hyperparameters: n_neighbors. - - 'prophet': Prophet. Hyperparameters: changepoint_prior_scale, seasonality_prior_scale, holidays_prior_scale, seasonality_mode. - - 'arima': ARIMA. Hyperparameters: p, d, q. - - 'sarimax': SARIMAX. Hyperparameters: p, d, q, P, D, Q, s. - - 'transformer': Huggingface transformer models. Hyperparameters: learning_rate, num_train_epochs, per_device_train_batch_size, warmup_ratio, weight_decay, adam_epsilon, seed. + - 'lgbm': LGBMEstimator for task "classification", "regression", "rank", "ts_forecast" and "ts_forecast_classification". Hyperparameters: n_estimators, num_leaves, min_child_samples, learning_rate, log_max_bin (logarithm of (max_bin + 1) with base 2), colsample_bytree, reg_alpha, reg_lambda. + - 'xgboost': XGBoostSkLearnEstimator for task "classification", "regression", "rank", "ts_forecast" and "ts_forecast_classification". Hyperparameters: n_estimators, max_leaves, max_depth, min_child_weight, learning_rate, subsample, colsample_bylevel, colsample_bytree, reg_alpha, reg_lambda. + - 'rf': RandomForestEstimator for task "classification", "regression", "ts_forecast" and "ts_forecast_classification". Hyperparameters: n_estimators, max_features, max_leaves, criterion (for classification only). + - 'extra_tree': ExtraTreesEstimator for task "classification", "regression", "ts_forecast" and "ts_forecast_classification". Hyperparameters: n_estimators, max_features, max_leaves, criterion (for classification only). + - 'lrl1': LRL1Classifier (sklearn.LogisticRegression with L1 regularization) for task "classification". Hyperparameters: C. + - 'lrl2': LRL2Classifier (sklearn.LogisticRegression with L2 regularization) for task "classification". Hyperparameters: C. + - 'catboost': CatBoostEstimator for task "classification" and "regression". Hyperparameters: early_stopping_rounds, learning_rate, n_estimators. + - 'kneighbor': KNeighborsEstimator for task "classification" and "regression". Hyperparameters: n_neighbors. + - 'prophet': Prophet for task "ts_forecast". Hyperparameters: changepoint_prior_scale, seasonality_prior_scale, holidays_prior_scale, seasonality_mode. + - 'arima': ARIMA for task "ts_forecast". Hyperparameters: p, d, q. + - 'sarimax': SARIMAX for task "ts_forecast". Hyperparameters: p, d, q, P, D, Q, s. + - 'transformer': Huggingface transformer models for task "seq-classification", "seq-regression", "multichoice-classification", "token-classification" and "summarization". Hyperparameters: learning_rate, num_train_epochs, per_device_train_batch_size, warmup_ratio, weight_decay, adam_epsilon, seed. * Custom estimator. Use custom estimator for: - tuning an estimator that is not built-in; - customizing search space for a built-in estimator. diff --git a/website/yarn.lock b/website/yarn.lock index b1f141ad1..9059dec6c 100644 --- a/website/yarn.lock +++ b/website/yarn.lock @@ -5485,7 +5485,7 @@ node-fetch@2.6.1: version "3.1.1" node-forge@^0.10.0: - version "1.0.0" + version "1.3.0" node-releases@^2.0.1: version "2.0.1"