mirror of
https://github.com/microsoft/autogen.git
synced 2026-02-19 09:34:18 -05:00
set black with 120 line length (#975)
* set black with 120 line length * apply pre-commit * apply black
This commit is contained in:
@@ -7,9 +7,7 @@ from sklearn.metrics import mean_squared_error
|
||||
|
||||
data = fetch_california_housing(return_X_y=False, as_frame=True)
|
||||
df, X, y = data.frame, data.data, data.target
|
||||
df_train, _, X_train, X_test, _, y_test = train_test_split(
|
||||
df, X, y, test_size=0.33, random_state=42
|
||||
)
|
||||
df_train, _, X_train, X_test, _, y_test = train_test_split(df, X, y, test_size=0.33, random_state=42)
|
||||
csv_file_name = "test/housing.csv"
|
||||
df_train.to_csv(csv_file_name, index=False)
|
||||
# X, y = fetch_california_housing(return_X_y=True, as_frame=True)
|
||||
@@ -24,9 +22,7 @@ def train_lgbm(config: dict) -> dict:
|
||||
# train the model
|
||||
# train_set = lightgbm.Dataset(X_train, y_train)
|
||||
# LightGBM only accepts the csv with valid number format, if even these string columns are set to ignore.
|
||||
train_set = lightgbm.Dataset(
|
||||
csv_file_name, params={"label_column": "name:MedHouseVal", "header": True}
|
||||
)
|
||||
train_set = lightgbm.Dataset(csv_file_name, params={"label_column": "name:MedHouseVal", "header": True})
|
||||
model = lightgbm.train(params, train_set)
|
||||
# evaluate the model
|
||||
pred = model.predict(X_test)
|
||||
@@ -39,9 +35,7 @@ def test_tune_lgbm_csv():
|
||||
# load a built-in search space from flaml
|
||||
flaml_lgbm_search_space = LGBMEstimator.search_space(X_train.shape)
|
||||
# specify the search space as a dict from hp name to domain; you can define your own search space same way
|
||||
config_search_space = {
|
||||
hp: space["domain"] for hp, space in flaml_lgbm_search_space.items()
|
||||
}
|
||||
config_search_space = {hp: space["domain"] for hp, space in flaml_lgbm_search_space.items()}
|
||||
# give guidance about hp values corresponding to low training cost, i.e., {"n_estimators": 4, "num_leaves": 4}
|
||||
low_cost_partial_config = {
|
||||
hp: space["low_cost_init_value"]
|
||||
@@ -50,11 +44,7 @@ def test_tune_lgbm_csv():
|
||||
}
|
||||
# initial points to evaluate
|
||||
points_to_evaluate = [
|
||||
{
|
||||
hp: space["init_value"]
|
||||
for hp, space in flaml_lgbm_search_space.items()
|
||||
if "init_value" in space
|
||||
}
|
||||
{hp: space["init_value"] for hp, space in flaml_lgbm_search_space.items() if "init_value" in space}
|
||||
]
|
||||
# run the tuning, minimizing mse, with total time budget 3 seconds
|
||||
analysis = tune.run(
|
||||
|
||||
Reference in New Issue
Block a user