mirror of
https://github.com/microsoft/autogen.git
synced 2026-02-04 16:54:55 -05:00
random search (#213)
* random search as a child class of CFO * random search in sequential search of AutoML * time to find best model as a property of AutoML
This commit is contained in:
@@ -1,50 +1,66 @@
|
||||
from openml.exceptions import OpenMLServerException
|
||||
|
||||
|
||||
def test_automl(budget=5, dataset_format='dataframe', hpo_method=None):
|
||||
def test_automl(budget=5, dataset_format="dataframe", hpo_method=None):
|
||||
from flaml.data import load_openml_dataset
|
||||
|
||||
try:
|
||||
X_train, X_test, y_train, y_test = load_openml_dataset(
|
||||
dataset_id=1169, data_dir='test/', dataset_format=dataset_format)
|
||||
dataset_id=1169, data_dir="test/", dataset_format=dataset_format
|
||||
)
|
||||
except OpenMLServerException:
|
||||
print("OpenMLServerException raised")
|
||||
return
|
||||
''' import AutoML class from flaml package '''
|
||||
""" import AutoML class from flaml package """
|
||||
from flaml import AutoML
|
||||
|
||||
automl = AutoML()
|
||||
settings = {
|
||||
"time_budget": budget, # total running time in seconds
|
||||
"metric": 'accuracy', # primary metrics can be chosen from: ['accuracy','roc_auc','roc_auc_ovr','roc_auc_ovo','f1','log_loss','mae','mse','r2']
|
||||
"task": 'classification', # task type
|
||||
"log_file_name": 'airlines_experiment.log', # flaml log file
|
||||
"seed": 7654321, # random seed
|
||||
'hpo_method': hpo_method
|
||||
"metric": "accuracy", # primary metrics can be chosen from: ['accuracy','roc_auc','roc_auc_ovr','roc_auc_ovo','f1','log_loss','mae','mse','r2']
|
||||
"task": "classification", # task type
|
||||
"log_file_name": "airlines_experiment.log", # flaml log file
|
||||
"seed": 7654321, # random seed
|
||||
"hpo_method": hpo_method,
|
||||
}
|
||||
'''The main flaml automl API'''
|
||||
"""The main flaml automl API"""
|
||||
automl.fit(X_train=X_train, y_train=y_train, **settings)
|
||||
''' retrieve best config and best learner'''
|
||||
print('Best ML leaner:', automl.best_estimator)
|
||||
print('Best hyperparmeter config:', automl.best_config)
|
||||
print('Best accuracy on validation data: {0:.4g}'.format(1 - automl.best_loss))
|
||||
print('Training duration of best run: {0:.4g} s'.format(automl.best_config_train_time))
|
||||
""" retrieve best config and best learner """
|
||||
print("Best ML leaner:", automl.best_estimator)
|
||||
print("Best hyperparmeter config:", automl.best_config)
|
||||
print("Best accuracy on validation data: {0:.4g}".format(1 - automl.best_loss))
|
||||
print(
|
||||
"Training duration of best run: {0:.4g} s".format(automl.best_config_train_time)
|
||||
)
|
||||
print(automl.model.estimator)
|
||||
''' pickle and save the automl object '''
|
||||
print("time taken to find best model:", automl.time_to_find_best_model)
|
||||
""" pickle and save the automl object """
|
||||
import pickle
|
||||
with open('automl.pkl', 'wb') as f:
|
||||
|
||||
with open("automl.pkl", "wb") as f:
|
||||
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
|
||||
''' compute predictions of testing dataset '''
|
||||
""" compute predictions of testing dataset """
|
||||
y_pred = automl.predict(X_test)
|
||||
print('Predicted labels', y_pred)
|
||||
print('True labels', y_test)
|
||||
print("Predicted labels", y_pred)
|
||||
print("True labels", y_test)
|
||||
y_pred_proba = automl.predict_proba(X_test)[:, 1]
|
||||
''' compute different metric values on testing dataset'''
|
||||
""" compute different metric values on testing dataset """
|
||||
from flaml.ml import sklearn_metric_loss_score
|
||||
print('accuracy', '=', 1 - sklearn_metric_loss_score('accuracy', y_pred, y_test))
|
||||
print('roc_auc', '=', 1 - sklearn_metric_loss_score('roc_auc', y_pred_proba, y_test))
|
||||
print('log_loss', '=', sklearn_metric_loss_score('log_loss', y_pred_proba, y_test))
|
||||
|
||||
print("accuracy", "=", 1 - sklearn_metric_loss_score("accuracy", y_pred, y_test))
|
||||
print(
|
||||
"roc_auc", "=", 1 - sklearn_metric_loss_score("roc_auc", y_pred_proba, y_test)
|
||||
)
|
||||
print("log_loss", "=", sklearn_metric_loss_score("log_loss", y_pred_proba, y_test))
|
||||
from flaml.data import get_output_from_log
|
||||
time_history, best_valid_loss_history, valid_loss_history, config_history, metric_history = \
|
||||
get_output_from_log(filename=settings['log_file_name'], time_budget=60)
|
||||
|
||||
(
|
||||
time_history,
|
||||
best_valid_loss_history,
|
||||
valid_loss_history,
|
||||
config_history,
|
||||
metric_history,
|
||||
) = get_output_from_log(filename=settings["log_file_name"], time_budget=60)
|
||||
for config in config_history:
|
||||
print(config)
|
||||
print(automl.prune_attr)
|
||||
@@ -53,37 +69,40 @@ def test_automl(budget=5, dataset_format='dataframe', hpo_method=None):
|
||||
|
||||
|
||||
def test_automl_array():
|
||||
test_automl(5, 'array', 'bs')
|
||||
test_automl(5, "array", "bs")
|
||||
|
||||
|
||||
def test_mlflow():
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
subprocess.check_call([sys.executable, "-m", "pip", "install", "mlflow"])
|
||||
import mlflow
|
||||
from flaml.data import load_openml_task
|
||||
|
||||
try:
|
||||
X_train, X_test, y_train, y_test = load_openml_task(
|
||||
task_id=7592, data_dir='test/')
|
||||
task_id=7592, data_dir="test/"
|
||||
)
|
||||
except OpenMLServerException:
|
||||
print("OpenMLServerException raised")
|
||||
return
|
||||
''' import AutoML class from flaml package '''
|
||||
""" import AutoML class from flaml package """
|
||||
from flaml import AutoML
|
||||
|
||||
automl = AutoML()
|
||||
settings = {
|
||||
"time_budget": 5, # total running time in seconds
|
||||
"metric": 'accuracy', # primary metrics can be chosen from: ['accuracy','roc_auc','roc_auc_ovr','roc_auc_ovo','f1','log_loss','mae','mse','r2']
|
||||
"estimator_list": ['lgbm', 'rf', 'xgboost'], # list of ML learners
|
||||
"task": 'classification', # task type
|
||||
"metric": "accuracy", # primary metrics can be chosen from: ['accuracy','roc_auc','roc_auc_ovr','roc_auc_ovo','f1','log_loss','mae','mse','r2']
|
||||
"estimator_list": ["lgbm", "rf", "xgboost"], # list of ML learners
|
||||
"task": "classification", # task type
|
||||
"sample": False, # whether to subsample training data
|
||||
"log_file_name": 'adult.log', # flaml log file
|
||||
"log_file_name": "adult.log", # flaml log file
|
||||
}
|
||||
mlflow.set_experiment("flaml")
|
||||
with mlflow.start_run():
|
||||
'''The main flaml automl API'''
|
||||
automl.fit(
|
||||
X_train=X_train, y_train=y_train, **settings)
|
||||
"""The main flaml automl API"""
|
||||
automl.fit(X_train=X_train, y_train=y_train, **settings)
|
||||
# subprocess.check_call([sys.executable, "-m", "pip", "uninstall", "mlflow"])
|
||||
automl._mem_thres = 0
|
||||
print(automl.trainable(automl.points_to_evaluate[0]))
|
||||
|
||||
Reference in New Issue
Block a user