warning -> info for low cost partial config (#231)

* warning -> info for low cost partial config
#195, #110

* when n_estimators < 0, use trained_estimator's

* log debug info

* test random seed

* remove "objective"; avoid ZeroDivisionError

* hp config to estimator params

* check type of searcher

* default n_jobs

* try import

* Update searchalgo_auto.py

* CLASSIFICATION

* auto_augment flag

* min_sample_size

* make catboost optional
This commit is contained in:
Chi Wang
2021-10-08 16:09:43 -07:00
committed by GitHub
parent a99e939404
commit f48ca2618f
22 changed files with 1938 additions and 1859 deletions

View File

@@ -2,7 +2,12 @@ import unittest
import numpy as np
import scipy.sparse
from sklearn.datasets import load_boston, load_iris, load_wine, load_breast_cancer
from sklearn.datasets import (
fetch_california_housing,
load_iris,
load_wine,
load_breast_cancer,
)
import pandas as pd
from datetime import datetime
@@ -17,59 +22,37 @@ from flaml.training_log import training_log_reader
class MyRegularizedGreedyForest(SKLearnEstimator):
def __init__(
self,
task="binary",
n_jobs=1,
max_leaf=4,
n_iter=1,
n_tree_search=1,
opt_interval=1,
learning_rate=1.0,
min_samples_leaf=1,
**params
):
def __init__(self, task="binary", **config):
super().__init__(task, **params)
super().__init__(task, **config)
if "regression" in task:
self.estimator_class = RGFRegressor
else:
if task in ("binary", "multi"):
self.estimator_class = RGFClassifier
# round integer hyperparameters
self.params = {
"n_jobs": n_jobs,
"max_leaf": int(round(max_leaf)),
"n_iter": int(round(n_iter)),
"n_tree_search": int(round(n_tree_search)),
"opt_interval": int(round(opt_interval)),
"learning_rate": learning_rate,
"min_samples_leaf": int(round(min_samples_leaf)),
}
else:
self.estimator_class = RGFRegressor
@classmethod
def search_space(cls, data_size, task):
space = {
"max_leaf": {
"domain": tune.qloguniform(lower=4, upper=data_size, q=1),
"domain": tune.lograndint(lower=4, upper=data_size),
"init_value": 4,
},
"n_iter": {
"domain": tune.qloguniform(lower=1, upper=data_size, q=1),
"domain": tune.lograndint(lower=1, upper=data_size),
"init_value": 1,
},
"n_tree_search": {
"domain": tune.qloguniform(lower=1, upper=32768, q=1),
"domain": tune.lograndint(lower=1, upper=32768),
"init_value": 1,
},
"opt_interval": {
"domain": tune.qloguniform(lower=1, upper=10000, q=1),
"domain": tune.lograndint(lower=1, upper=10000),
"init_value": 100,
},
"learning_rate": {"domain": tune.loguniform(lower=0.01, upper=20.0)},
"min_samples_leaf": {
"domain": tune.qloguniform(lower=1, upper=20, q=1),
"domain": tune.lograndint(lower=1, upper=20),
"init_value": 20,
},
}
@@ -97,15 +80,15 @@ def logregobj(preds, dtrain):
class MyXGB1(XGBoostEstimator):
"""XGBoostEstimator with logregobj as the objective function"""
def __init__(self, **params):
super().__init__(objective=logregobj, **params)
def __init__(self, **config):
super().__init__(objective=logregobj, **config)
class MyXGB2(XGBoostEstimator):
"""XGBoostEstimator with 'reg:squarederror' as the objective function"""
def __init__(self, **params):
super().__init__(objective="reg:squarederror", **params)
def __init__(self, **config):
super().__init__(objective="reg:squarederror", **config)
class MyLargeLGBM(LGBMEstimator):
@@ -266,7 +249,7 @@ class TestAutoML(unittest.TestCase):
"n_splits": 3,
"metric": "accuracy",
"log_training_metric": True,
"verbose": 1,
"verbose": 4,
"ensemble": True,
}
automl.fit(X, y, **automl_settings)
@@ -281,7 +264,7 @@ class TestAutoML(unittest.TestCase):
"n_splits": 3,
"metric": "accuracy",
"log_training_metric": True,
"verbose": 1,
"verbose": 4,
"ensemble": True,
}
automl.fit(X, y, **automl_settings)
@@ -296,7 +279,7 @@ class TestAutoML(unittest.TestCase):
"n_splits": 3,
"metric": "accuracy",
"log_training_metric": True,
"verbose": 1,
"verbose": 4,
"ensemble": True,
}
automl.fit(X, y, **automl_settings)
@@ -311,7 +294,7 @@ class TestAutoML(unittest.TestCase):
"n_splits": 3,
"metric": "accuracy",
"log_training_metric": True,
"verbose": 1,
"verbose": 4,
"ensemble": True,
}
automl.fit(X, y, **automl_settings)
@@ -525,7 +508,7 @@ class TestAutoML(unittest.TestCase):
"n_jobs": 1,
"model_history": True,
}
X_train, y_train = load_boston(return_X_y=True)
X_train, y_train = fetch_california_housing(return_X_y=True)
n = int(len(y_train) * 9 // 10)
automl_experiment.fit(
X_train=X_train[:n],
@@ -648,7 +631,7 @@ class TestAutoML(unittest.TestCase):
"n_concurrent_trials": 2,
"hpo_method": hpo_method,
}
X_train, y_train = load_boston(return_X_y=True)
X_train, y_train = fetch_california_housing(return_X_y=True)
try:
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
print(automl_experiment.predict(X_train))
@@ -861,8 +844,8 @@ class TestAutoML(unittest.TestCase):
automl_experiment = AutoML()
automl_settings = {
"time_budget": 3,
"metric": 'accuracy',
"task": 'classification',
"metric": "accuracy",
"task": "classification",
"log_file_name": "test/iris.log",
"log_training_metric": True,
"n_jobs": 1,
@@ -873,16 +856,19 @@ class TestAutoML(unittest.TestCase):
# test drop column
X_train.columns = range(X_train.shape[1])
X_train[X_train.shape[1]] = np.zeros(len(y_train))
automl_experiment.fit(X_train=X_train, y_train=y_train,
**automl_settings)
automl_experiment.fit(X_train=X_train, y_train=y_train, **automl_settings)
automl_val_accuracy = 1.0 - automl_experiment.best_loss
print('Best ML leaner:', automl_experiment.best_estimator)
print('Best hyperparmeter config:', automl_experiment.best_config)
print('Best accuracy on validation data: {0:.4g}'.format(automl_val_accuracy))
print('Training duration of best run: {0:.4g} s'.format(automl_experiment.best_config_train_time))
print("Best ML leaner:", automl_experiment.best_estimator)
print("Best hyperparmeter config:", automl_experiment.best_config)
print("Best accuracy on validation data: {0:.4g}".format(automl_val_accuracy))
print(
"Training duration of best run: {0:.4g} s".format(
automl_experiment.best_config_train_time
)
)
starting_points = {}
log_file_name = automl_settings['log_file_name']
log_file_name = automl_settings["log_file_name"]
with training_log_reader(log_file_name) as reader:
for record in reader.records():
config = record.config
@@ -893,25 +879,28 @@ class TestAutoML(unittest.TestCase):
max_iter = sum([len(s) for k, s in starting_points.items()])
automl_settings_resume = {
"time_budget": 2,
"metric": 'accuracy',
"task": 'classification',
"metric": "accuracy",
"task": "classification",
"log_file_name": "test/iris_resume_all.log",
"log_training_metric": True,
"n_jobs": 1,
"max_iter": max_iter,
"model_history": True,
"log_type": 'all',
"log_type": "all",
"starting_points": starting_points,
"append_log": True,
}
new_automl_experiment = AutoML()
new_automl_experiment.fit(X_train=X_train, y_train=y_train,
**automl_settings_resume)
new_automl_experiment.fit(
X_train=X_train, y_train=y_train, **automl_settings_resume
)
new_automl_val_accuracy = 1.0 - new_automl_experiment.best_loss
# print('Best ML leaner:', new_automl_experiment.best_estimator)
# print('Best hyperparmeter config:', new_automl_experiment.best_config)
print('Best accuracy on validation data: {0:.4g}'.format(new_automl_val_accuracy))
print(
"Best accuracy on validation data: {0:.4g}".format(new_automl_val_accuracy)
)
# print('Training duration of best run: {0:.4g} s'.format(new_automl_experiment.best_config_train_time))

View File

@@ -1,6 +1,6 @@
from flaml.tune.space import unflatten_hierarchical
from flaml import AutoML
from sklearn.datasets import load_boston
from sklearn.datasets import fetch_california_housing
import os
import unittest
import logging
@@ -9,7 +9,6 @@ import io
class TestLogging(unittest.TestCase):
def test_logging_level(self):
from flaml import logger, logger_formatter
@@ -30,8 +29,8 @@ class TestLogging(unittest.TestCase):
automl = AutoML()
automl_settings = {
"time_budget": 1,
"metric": 'rmse',
"task": 'regression',
"metric": "rmse",
"task": "regression",
"log_file_name": training_log,
"log_training_metric": True,
"n_jobs": 1,
@@ -39,35 +38,42 @@ class TestLogging(unittest.TestCase):
"keep_search_state": True,
"learner_selector": "roundrobin",
}
X_train, y_train = load_boston(return_X_y=True)
X_train, y_train = fetch_california_housing(return_X_y=True)
n = len(y_train) >> 1
print(automl.model, automl.classes_, automl.predict(X_train))
automl.fit(X_train=X_train[:n], y_train=y_train[:n],
X_val=X_train[n:], y_val=y_train[n:],
**automl_settings)
automl.fit(
X_train=X_train[:n],
y_train=y_train[:n],
X_val=X_train[n:],
y_val=y_train[n:],
**automl_settings
)
logger.info(automl.search_space)
logger.info(automl.low_cost_partial_config)
logger.info(automl.points_to_evaluate)
logger.info(automl.cat_hp_cost)
import optuna as ot
study = ot.create_study()
from flaml.tune.space import define_by_run_func, add_cost_to_space
sample = define_by_run_func(study.ask(), automl.search_space)
logger.info(sample)
logger.info(unflatten_hierarchical(sample, automl.search_space))
add_cost_to_space(
automl.search_space, automl.low_cost_partial_config,
automl.cat_hp_cost
automl.search_space, automl.low_cost_partial_config, automl.cat_hp_cost
)
logger.info(automl.search_space["ml"].categories)
config = automl.best_config.copy()
config['learner'] = automl.best_estimator
config["learner"] = automl.best_estimator
automl.trainable({"ml": config})
from flaml import tune, BlendSearch
from flaml.automl import size
from functools import partial
search_alg = BlendSearch(
metric='val_loss', mode='min',
metric="val_loss",
mode="min",
space=automl.search_space,
low_cost_partial_config=automl.low_cost_partial_config,
points_to_evaluate=automl.points_to_evaluate,
@@ -75,19 +81,25 @@ class TestLogging(unittest.TestCase):
prune_attr=automl.prune_attr,
min_resource=automl.min_resource,
max_resource=automl.max_resource,
config_constraints=[(partial(size, automl._state), '<=', automl._mem_thres)],
metric_constraints=automl.metric_constraints)
config_constraints=[
(partial(size, automl._state), "<=", automl._mem_thres)
],
metric_constraints=automl.metric_constraints,
)
analysis = tune.run(
automl.trainable, search_alg=search_alg, # verbose=2,
time_budget_s=1, num_samples=-1)
print(min(trial.last_result["val_loss"]
for trial in analysis.trials))
config = analysis.trials[-1].last_result['config']['ml']
automl._state._train_with_config(config['learner'], config)
automl.trainable,
search_alg=search_alg, # verbose=2,
time_budget_s=1,
num_samples=-1,
)
print(min(trial.last_result["val_loss"] for trial in analysis.trials))
config = analysis.trials[-1].last_result["config"]["ml"]
automl._state._train_with_config(config["learner"], config)
# Check if the log buffer is populated.
self.assertTrue(len(buf.getvalue()) > 0)
import pickle
with open('automl.pkl', 'wb') as f:
with open("automl.pkl", "wb") as f:
pickle.dump(automl, f, pickle.HIGHEST_PROTOCOL)
print(automl.__version__)

View File

@@ -2,15 +2,14 @@ import os
import unittest
from tempfile import TemporaryDirectory
from sklearn.datasets import load_boston
from sklearn.datasets import fetch_california_housing
from flaml import AutoML
from flaml.training_log import training_log_reader
class TestTrainingLog(unittest.TestCase):
def test_training_log(self, path='test_training_log.log'):
def test_training_log(self, path="test_training_log.log"):
with TemporaryDirectory() as d:
filename = os.path.join(d, path)
@@ -19,8 +18,8 @@ class TestTrainingLog(unittest.TestCase):
automl = AutoML()
automl_settings = {
"time_budget": 1,
"metric": 'mse',
"task": 'regression',
"metric": "mse",
"task": "regression",
"log_file_name": filename,
"log_training_metric": True,
"mem_thres": 1024 * 1024,
@@ -31,10 +30,9 @@ class TestTrainingLog(unittest.TestCase):
"ensemble": True,
"keep_search_state": True,
}
X_train, y_train = load_boston(return_X_y=True)
X_train, y_train = fetch_california_housing(return_X_y=True)
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
automl._state._train_with_config(
automl.best_estimator, automl.best_config)
automl._state._train_with_config(automl.best_estimator, automl.best_config)
# Check if the training log file is populated.
self.assertTrue(os.path.exists(filename))
@@ -49,11 +47,11 @@ class TestTrainingLog(unittest.TestCase):
automl.fit(X_train=X_train, y_train=y_train, **automl_settings)
automl._selected.update(None, 0)
automl = AutoML()
automl.fit(X_train=X_train, y_train=y_train, max_iter=0)
automl.fit(X_train=X_train, y_train=y_train, max_iter=0, task="regression")
def test_illfilename(self):
try:
self.test_training_log('/')
self.test_training_log("/")
except IsADirectoryError:
print("IsADirectoryError happens as expected in linux.")
except PermissionError:

View File

@@ -72,8 +72,9 @@ except (ImportError, AssertionError):
searcher = BlendSearch(
metric="m", global_search_alg=searcher, metric_constraints=[("c", "<", 1)]
)
searcher.set_search_properties(metric="m2", config=config)
searcher.set_search_properties(config={"time_budget_s": 0})
searcher.set_search_properties(
metric="m2", config=config, setting={"time_budget_s": 0}
)
c = searcher.suggest("t1")
searcher.on_trial_complete("t1", {"config": c}, True)
c = searcher.suggest("t2")
@@ -146,3 +147,11 @@ except (ImportError, AssertionError):
print(searcher.suggest("t4"))
searcher.on_trial_complete({"t1"}, {})
searcher.on_trial_result({"t2"}, {})
np.random.seed(654321)
searcher = RandomSearch(
space=config,
points_to_evaluate=[{"a": 7, "b": 1e-3}, {"a": 6, "b": 3e-4}],
)
print(searcher.suggest("t1"))
print(searcher.suggest("t2"))
print(searcher.suggest("t3"))