update dev8 (#4417)

This commit is contained in:
Eric Zhu
2024-11-27 14:39:31 -08:00
committed by GitHub
parent 7c8d25c448
commit f70869f236
17 changed files with 468 additions and 457 deletions

View File

@@ -61,7 +61,7 @@ AgentChat </div>
High-level API that includes preset agents and teams for building multi-agent systems.
```sh
pip install 'autogen-agentchat==0.4.0.dev7'
pip install 'autogen-agentchat==0.4.0.dev8'
```
💡 *Start here if you are looking for an API similar to AutoGen 0.2*
@@ -82,7 +82,7 @@ Get Started
Provides building blocks for creating asynchronous, event driven multi-agent systems.
```sh
pip install 'autogen-core==0.4.0.dev7'
pip install 'autogen-core==0.4.0.dev8'
```
+++

View File

@@ -31,10 +31,10 @@ myst:
Library that is at a similar level of abstraction as AutoGen 0.2, including default agents and group chat.
```sh
pip install 'autogen-agentchat==0.4.0.dev7'
pip install 'autogen-agentchat==0.4.0.dev8'
```
[{fas}`circle-info;pst-color-primary` User Guide](/user-guide/agentchat-user-guide/index.md) | [{fas}`file-code;pst-color-primary` API Reference](/reference/python/autogen_agentchat/autogen_agentchat.rst) | [{fab}`python;pst-color-primary` PyPI](https://pypi.org/project/autogen-agentchat/0.4.0.dev7/) | [{fab}`github;pst-color-primary` Source](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-agentchat)
[{fas}`circle-info;pst-color-primary` User Guide](/user-guide/agentchat-user-guide/index.md) | [{fas}`file-code;pst-color-primary` API Reference](/reference/python/autogen_agentchat/autogen_agentchat.rst) | [{fab}`python;pst-color-primary` PyPI](https://pypi.org/project/autogen-agentchat/0.4.0.dev8/) | [{fab}`github;pst-color-primary` Source](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-agentchat)
:::
(pkg-info-autogen-core)=
@@ -46,10 +46,10 @@ pip install 'autogen-agentchat==0.4.0.dev7'
Implements the core functionality of the AutoGen framework, providing basic building blocks for creating multi-agent systems.
```sh
pip install 'autogen-core==0.4.0.dev7'
pip install 'autogen-core==0.4.0.dev8'
```
[{fas}`circle-info;pst-color-primary` User Guide](/user-guide/core-user-guide/index.md) | [{fas}`file-code;pst-color-primary` API Reference](/reference/python/autogen_core/autogen_core.rst) | [{fab}`python;pst-color-primary` PyPI](https://pypi.org/project/autogen-core/0.4.0.dev7/) | [{fab}`github;pst-color-primary` Source](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-core)
[{fas}`circle-info;pst-color-primary` User Guide](/user-guide/core-user-guide/index.md) | [{fas}`file-code;pst-color-primary` API Reference](/reference/python/autogen_core/autogen_core.rst) | [{fab}`python;pst-color-primary` PyPI](https://pypi.org/project/autogen-core/0.4.0.dev8/) | [{fab}`github;pst-color-primary` Source](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-core)
:::
(pkg-info-autogen-ext)=
@@ -61,7 +61,7 @@ pip install 'autogen-core==0.4.0.dev7'
Implementations of core components that interface with external services, or use extra dependencies. For example, Docker based code execution.
```sh
pip install 'autogen-ext==0.4.0.dev7'
pip install 'autogen-ext==0.4.0.dev8'
```
Extras:
@@ -71,7 +71,7 @@ Extras:
- `docker` needed for {py:class}`~autogen_ext.code_executors.DockerCommandLineCodeExecutor`
- `openai` needed for {py:class}`~autogen_ext.models.OpenAIChatCompletionClient`
[{fas}`circle-info;pst-color-primary` User Guide](/user-guide/extensions-user-guide/index.md) | [{fas}`file-code;pst-color-primary` API Reference](/reference/python/autogen_ext/autogen_ext.rst) | [{fab}`python;pst-color-primary` PyPI](https://pypi.org/project/autogen-ext/0.4.0.dev7/) | [{fab}`github;pst-color-primary` Source](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-ext)
[{fas}`circle-info;pst-color-primary` User Guide](/user-guide/extensions-user-guide/index.md) | [{fas}`file-code;pst-color-primary` API Reference](/reference/python/autogen_ext/autogen_ext.rst) | [{fab}`python;pst-color-primary` PyPI](https://pypi.org/project/autogen-ext/0.4.0.dev8/) | [{fab}`github;pst-color-primary` Source](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-ext)
:::
(pkg-info-autogen-magentic-one)=

View File

@@ -61,7 +61,7 @@ Install the `autogen-agentchat` package using pip:
```bash
pip install 'autogen-agentchat==0.4.0.dev7'
pip install 'autogen-agentchat==0.4.0.dev8'
```
```{note}
@@ -74,7 +74,7 @@ To use the OpenAI and Azure OpenAI models, you need to install the following
extensions:
```bash
pip install 'autogen-ext[openai]==0.4.0.dev7'
pip install 'autogen-ext[openai]==0.4.0.dev8'
```
## Install Docker for Code Execution

View File

@@ -37,7 +37,7 @@
},
"outputs": [],
"source": [
"pip install 'autogen-agentchat==0.4.0.dev7' 'autogen-ext[openai]==0.4.0.dev7'"
"pip install 'autogen-agentchat==0.4.0.dev8' 'autogen-ext[openai]==0.4.0.dev8'"
]
},
{

View File

@@ -1,187 +1,187 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Models\n",
"\n",
"In many cases, agents need access to model services such as OpenAI, Azure OpenAI, and local models.\n",
"AgentChat utilizes model clients provided by the\n",
"[`autogen-ext`](../../core-user-guide/framework/model-clients.ipynb) package."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## OpenAI\n",
"\n",
"To access OpenAI models, you need to install the `openai` extension to use the {py:class}`~autogen_ext.models.OpenAIChatCompletionClient`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "shellscript"
}
},
"outputs": [],
"source": [
"pip install 'autogen-ext[openai]==0.4.0.dev7'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You will also need to obtain an [API key](https://platform.openai.com/account/api-keys) from OpenAI."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"from autogen_ext.models import OpenAIChatCompletionClient\n",
"\n",
"opneai_model_client = OpenAIChatCompletionClient(\n",
" model=\"gpt-4o-2024-08-06\",\n",
" # api_key=\"sk-...\", # Optional if you have an OPENAI_API_KEY environment variable set.\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To test the model client, you can use the following code:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CreateResult(finish_reason='stop', content='The capital of France is Paris.', usage=RequestUsage(prompt_tokens=15, completion_tokens=7), cached=False, logprobs=None)\n"
]
}
],
"source": [
"from autogen_core.components.models import UserMessage\n",
"\n",
"result = await opneai_model_client.create([UserMessage(content=\"What is the capital of France?\", source=\"user\")])\n",
"print(result)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```{note}\n",
"You can use this client with models hosted on OpenAI-compatible endpoints, however, we have not tested this functionality.\n",
"See {py:class}`~autogen_ext.models.OpenAIChatCompletionClient` for more information.\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Azure OpenAI\n",
"\n",
"Install the `azure` and `openai` extensions to use the {py:class}`~autogen_ext.models.AzureOpenAIChatCompletionClient`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "shellscript"
}
},
"outputs": [],
"source": [
"pip install 'autogen-ext[openai,azure]==0.4.0.dev7'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To use the client, you need to provide your deployment id, Azure Cognitive Services endpoint, api version, and model capabilities.\n",
"For authentication, you can either provide an API key or an Azure Active Directory (AAD) token credential.\n",
"\n",
"The following code snippet shows how to use AAD authentication.\n",
"The identity used must be assigned the [Cognitive Services OpenAI User](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/role-based-access-control#cognitive-services-openai-user) role."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from autogen_ext.models import AzureOpenAIChatCompletionClient\n",
"from azure.identity import DefaultAzureCredential, get_bearer_token_provider\n",
"\n",
"# Create the token provider\n",
"token_provider = get_bearer_token_provider(DefaultAzureCredential(), \"https://cognitiveservices.azure.com/.default\")\n",
"\n",
"az_model_client = AzureOpenAIChatCompletionClient(\n",
" azure_deployment=\"{your-azure-deployment}\",\n",
" model=\"{model-name, such as gpt-4o}\",\n",
" api_version=\"2024-06-01\",\n",
" azure_endpoint=\"https://{your-custom-endpoint}.openai.azure.com/\",\n",
" azure_ad_token_provider=token_provider, # Optional if you choose key-based authentication.\n",
" # api_key=\"sk-...\", # For key-based authentication.\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"See [here](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/managed-identity#chat-completions) for how to use the Azure client directly or for more info."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Local Models\n",
"\n",
"We are working on it. Stay tuned!"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Models\n",
"\n",
"In many cases, agents need access to model services such as OpenAI, Azure OpenAI, and local models.\n",
"AgentChat utilizes model clients provided by the\n",
"[`autogen-ext`](../../core-user-guide/framework/model-clients.ipynb) package."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## OpenAI\n",
"\n",
"To access OpenAI models, you need to install the `openai` extension to use the {py:class}`~autogen_ext.models.OpenAIChatCompletionClient`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "shellscript"
}
},
"outputs": [],
"source": [
"pip install 'autogen-ext[openai]==0.4.0.dev8'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You will also need to obtain an [API key](https://platform.openai.com/account/api-keys) from OpenAI."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"from autogen_ext.models import OpenAIChatCompletionClient\n",
"\n",
"opneai_model_client = OpenAIChatCompletionClient(\n",
" model=\"gpt-4o-2024-08-06\",\n",
" # api_key=\"sk-...\", # Optional if you have an OPENAI_API_KEY environment variable set.\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To test the model client, you can use the following code:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CreateResult(finish_reason='stop', content='The capital of France is Paris.', usage=RequestUsage(prompt_tokens=15, completion_tokens=7), cached=False, logprobs=None)\n"
]
}
],
"source": [
"from autogen_core.components.models import UserMessage\n",
"\n",
"result = await opneai_model_client.create([UserMessage(content=\"What is the capital of France?\", source=\"user\")])\n",
"print(result)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```{note}\n",
"You can use this client with models hosted on OpenAI-compatible endpoints, however, we have not tested this functionality.\n",
"See {py:class}`~autogen_ext.models.OpenAIChatCompletionClient` for more information.\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Azure OpenAI\n",
"\n",
"Install the `azure` and `openai` extensions to use the {py:class}`~autogen_ext.models.AzureOpenAIChatCompletionClient`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "shellscript"
}
},
"outputs": [],
"source": [
"pip install 'autogen-ext[openai,azure]==0.4.0.dev8'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To use the client, you need to provide your deployment id, Azure Cognitive Services endpoint, api version, and model capabilities.\n",
"For authentication, you can either provide an API key or an Azure Active Directory (AAD) token credential.\n",
"\n",
"The following code snippet shows how to use AAD authentication.\n",
"The identity used must be assigned the [Cognitive Services OpenAI User](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/role-based-access-control#cognitive-services-openai-user) role."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from autogen_ext.models import AzureOpenAIChatCompletionClient\n",
"from azure.identity import DefaultAzureCredential, get_bearer_token_provider\n",
"\n",
"# Create the token provider\n",
"token_provider = get_bearer_token_provider(DefaultAzureCredential(), \"https://cognitiveservices.azure.com/.default\")\n",
"\n",
"az_model_client = AzureOpenAIChatCompletionClient(\n",
" azure_deployment=\"{your-azure-deployment}\",\n",
" model=\"{model-name, such as gpt-4o}\",\n",
" api_version=\"2024-06-01\",\n",
" azure_endpoint=\"https://{your-custom-endpoint}.openai.azure.com/\",\n",
" azure_ad_token_provider=token_provider, # Optional if you choose key-based authentication.\n",
" # api_key=\"sk-...\", # For key-based authentication.\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"See [here](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/managed-identity#chat-completions) for how to use the Azure client directly or for more info."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Local Models\n",
"\n",
"We are working on it. Stay tuned!"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,223 +1,223 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Distributed Agent Runtime\n",
"\n",
"```{attention}\n",
"The distributed agent runtime is an experimental feature. Expect breaking changes\n",
"to the API.\n",
"```\n",
"\n",
"A distributed agent runtime facilitates communication and agent lifecycle management\n",
"across process boundaries.\n",
"It consists of a host service and at least one worker runtime.\n",
"\n",
"The host service maintains connections to all active worker runtimes,\n",
"facilitates message delivery, and keeps sessions for all direct messages (i.e., RPCs).\n",
"A worker runtime processes application code (agents) and connects to the host service.\n",
"It also advertises the agents which they support to the host service,\n",
"so the host service can deliver messages to the correct worker.\n",
"\n",
"````{note}\n",
"The distributed agent runtime requires extra dependencies, install them using:\n",
"```bash\n",
"pip install autogen-core[grpc]==0.4.0.dev7\n",
"```\n",
"````\n",
"\n",
"We can start a host service using {py:class}`~autogen_core.application.WorkerAgentRuntimeHost`."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from autogen_core.application import WorkerAgentRuntimeHost\n",
"\n",
"host = WorkerAgentRuntimeHost(address=\"localhost:50051\")\n",
"host.start() # Start a host service in the background."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above code starts the host service in the background and accepts\n",
"worker connections on port 50051.\n",
"\n",
"Before running worker runtimes, let's define our agent.\n",
"The agent will publish a new message on every message it receives.\n",
"It also keeps track of how many messages it has published, and \n",
"stops publishing new messages once it has published 5 messages."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from dataclasses import dataclass\n",
"\n",
"from autogen_core.base import MessageContext\n",
"from autogen_core.components import DefaultTopicId, RoutedAgent, default_subscription, message_handler\n",
"\n",
"\n",
"@dataclass\n",
"class MyMessage:\n",
" content: str\n",
"\n",
"\n",
"@default_subscription\n",
"class MyAgent(RoutedAgent):\n",
" def __init__(self, name: str) -> None:\n",
" super().__init__(\"My agent\")\n",
" self._name = name\n",
" self._counter = 0\n",
"\n",
" @message_handler\n",
" async def my_message_handler(self, message: MyMessage, ctx: MessageContext) -> None:\n",
" self._counter += 1\n",
" if self._counter > 5:\n",
" return\n",
" content = f\"{self._name}: Hello x {self._counter}\"\n",
" print(content)\n",
" await self.publish_message(MyMessage(content=content), DefaultTopicId())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can set up the worker agent runtimes.\n",
"We use {py:class}`~autogen_core.application.WorkerAgentRuntime`.\n",
"We set up two worker runtimes. Each runtime hosts one agent.\n",
"All agents publish and subscribe to the default topic, so they can see all\n",
"messages being published.\n",
"\n",
"To run the agents, we publishes a message from a worker."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"worker1: Hello x 1\n",
"worker2: Hello x 1\n",
"worker2: Hello x 2\n",
"worker1: Hello x 2\n",
"worker1: Hello x 3\n",
"worker2: Hello x 3\n",
"worker2: Hello x 4\n",
"worker1: Hello x 4\n",
"worker1: Hello x 5\n",
"worker2: Hello x 5\n"
]
}
],
"source": [
"import asyncio\n",
"\n",
"from autogen_core.application import WorkerAgentRuntime\n",
"\n",
"worker1 = WorkerAgentRuntime(host_address=\"localhost:50051\")\n",
"worker1.start()\n",
"await MyAgent.register(worker1, \"worker1\", lambda: MyAgent(\"worker1\"))\n",
"\n",
"worker2 = WorkerAgentRuntime(host_address=\"localhost:50051\")\n",
"worker2.start()\n",
"await MyAgent.register(worker2, \"worker2\", lambda: MyAgent(\"worker2\"))\n",
"\n",
"await worker2.publish_message(MyMessage(content=\"Hello!\"), DefaultTopicId())\n",
"\n",
"# Let the agents run for a while.\n",
"await asyncio.sleep(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can see each agent published exactly 5 messages.\n",
"\n",
"To stop the worker runtimes, we can call {py:meth}`~autogen_core.application.WorkerAgentRuntime.stop`."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"await worker1.stop()\n",
"await worker2.stop()\n",
"\n",
"# To keep the worker running until a termination signal is received (e.g., SIGTERM).\n",
"# await worker1.stop_when_signal()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can call {py:meth}`~autogen_core.application.WorkerAgentRuntimeHost.stop`\n",
"to stop the host service."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"await host.stop()\n",
"\n",
"# To keep the host service running until a termination signal (e.g., SIGTERM)\n",
"# await host.stop_when_signal()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Next Steps\n",
"To see complete examples of using distributed runtime, please take a look at the following samples:\n",
"\n",
"- [Distributed Workers](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-core/samples/worker) \n",
"- [Distributed Semantic Router](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-core/samples/semantic_router) \n",
"- [Distributed Group Chat](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-core/samples/distributed-group-chat) \n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "agnext",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Distributed Agent Runtime\n",
"\n",
"```{attention}\n",
"The distributed agent runtime is an experimental feature. Expect breaking changes\n",
"to the API.\n",
"```\n",
"\n",
"A distributed agent runtime facilitates communication and agent lifecycle management\n",
"across process boundaries.\n",
"It consists of a host service and at least one worker runtime.\n",
"\n",
"The host service maintains connections to all active worker runtimes,\n",
"facilitates message delivery, and keeps sessions for all direct messages (i.e., RPCs).\n",
"A worker runtime processes application code (agents) and connects to the host service.\n",
"It also advertises the agents which they support to the host service,\n",
"so the host service can deliver messages to the correct worker.\n",
"\n",
"````{note}\n",
"The distributed agent runtime requires extra dependencies, install them using:\n",
"```bash\n",
"pip install autogen-core[grpc]==0.4.0.dev8\n",
"```\n",
"````\n",
"\n",
"We can start a host service using {py:class}`~autogen_core.application.WorkerAgentRuntimeHost`."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from autogen_core.application import WorkerAgentRuntimeHost\n",
"\n",
"host = WorkerAgentRuntimeHost(address=\"localhost:50051\")\n",
"host.start() # Start a host service in the background."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above code starts the host service in the background and accepts\n",
"worker connections on port 50051.\n",
"\n",
"Before running worker runtimes, let's define our agent.\n",
"The agent will publish a new message on every message it receives.\n",
"It also keeps track of how many messages it has published, and \n",
"stops publishing new messages once it has published 5 messages."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from dataclasses import dataclass\n",
"\n",
"from autogen_core.base import MessageContext\n",
"from autogen_core.components import DefaultTopicId, RoutedAgent, default_subscription, message_handler\n",
"\n",
"\n",
"@dataclass\n",
"class MyMessage:\n",
" content: str\n",
"\n",
"\n",
"@default_subscription\n",
"class MyAgent(RoutedAgent):\n",
" def __init__(self, name: str) -> None:\n",
" super().__init__(\"My agent\")\n",
" self._name = name\n",
" self._counter = 0\n",
"\n",
" @message_handler\n",
" async def my_message_handler(self, message: MyMessage, ctx: MessageContext) -> None:\n",
" self._counter += 1\n",
" if self._counter > 5:\n",
" return\n",
" content = f\"{self._name}: Hello x {self._counter}\"\n",
" print(content)\n",
" await self.publish_message(MyMessage(content=content), DefaultTopicId())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can set up the worker agent runtimes.\n",
"We use {py:class}`~autogen_core.application.WorkerAgentRuntime`.\n",
"We set up two worker runtimes. Each runtime hosts one agent.\n",
"All agents publish and subscribe to the default topic, so they can see all\n",
"messages being published.\n",
"\n",
"To run the agents, we publishes a message from a worker."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"worker1: Hello x 1\n",
"worker2: Hello x 1\n",
"worker2: Hello x 2\n",
"worker1: Hello x 2\n",
"worker1: Hello x 3\n",
"worker2: Hello x 3\n",
"worker2: Hello x 4\n",
"worker1: Hello x 4\n",
"worker1: Hello x 5\n",
"worker2: Hello x 5\n"
]
}
],
"source": [
"import asyncio\n",
"\n",
"from autogen_core.application import WorkerAgentRuntime\n",
"\n",
"worker1 = WorkerAgentRuntime(host_address=\"localhost:50051\")\n",
"worker1.start()\n",
"await MyAgent.register(worker1, \"worker1\", lambda: MyAgent(\"worker1\"))\n",
"\n",
"worker2 = WorkerAgentRuntime(host_address=\"localhost:50051\")\n",
"worker2.start()\n",
"await MyAgent.register(worker2, \"worker2\", lambda: MyAgent(\"worker2\"))\n",
"\n",
"await worker2.publish_message(MyMessage(content=\"Hello!\"), DefaultTopicId())\n",
"\n",
"# Let the agents run for a while.\n",
"await asyncio.sleep(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can see each agent published exactly 5 messages.\n",
"\n",
"To stop the worker runtimes, we can call {py:meth}`~autogen_core.application.WorkerAgentRuntime.stop`."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"await worker1.stop()\n",
"await worker2.stop()\n",
"\n",
"# To keep the worker running until a termination signal is received (e.g., SIGTERM).\n",
"# await worker1.stop_when_signal()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can call {py:meth}`~autogen_core.application.WorkerAgentRuntimeHost.stop`\n",
"to stop the host service."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"await host.stop()\n",
"\n",
"# To keep the host service running until a termination signal (e.g., SIGTERM)\n",
"# await host.stop_when_signal()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Next Steps\n",
"To see complete examples of using distributed runtime, please take a look at the following samples:\n",
"\n",
"- [Distributed Workers](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-core/samples/worker) \n",
"- [Distributed Semantic Router](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-core/samples/semantic_router) \n",
"- [Distributed Group Chat](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-core/samples/distributed-group-chat) \n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "agnext",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}