time series forecasting with panel datasets (#541)

* time series forecasting with panel datasets
- integrate Temporal Fusion Transformer as a learner based on pytorchforecasting

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update setup.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update test_forecast.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update setup.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update setup.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update model.py and test_forecast.py
- remove blank lines

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update model.py to prevent errors

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update automl.py and data.py
- change forecast task name
- update documentation for fit() method

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update test_forecast.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update test_forecast.py
- add performance test
- use 'fit_kwargs_by_estimator'

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* add time index function

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update test_forecast.py performance test

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update data.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update automl.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update data.py to prevent type error

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update setup.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update for pytorch forecasting tft on panel datasets

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update automl.py documentations

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* - rename estimator
- add 'gpu_per_trial' for tft estimator

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update test_forecast.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* include ts panel forecasting as an example

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update model.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update documentations

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update automl_time_series_forecast.ipynb

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update documentations

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* "weights_summary" argument deprecated and removed for pl.Trainer()

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update model.py tft estimator prediction method

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update model.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update `fit_kwargs` documentation

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

* update automl.py

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>

Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
This commit is contained in:
Kevin Chen
2022-08-12 11:39:22 -04:00
committed by GitHub
parent b436459e47
commit f718d18b5e
9 changed files with 4841 additions and 2485 deletions

View File

@@ -28,7 +28,7 @@ print(automl.predict(X_train[84:]))
#### Sample output
```python
```
[flaml.automl: 01-21 08:01:20] {2018} INFO - task = ts_forecast
[flaml.automl: 01-21 08:01:20] {2020} INFO - Data split method: time
[flaml.automl: 01-21 08:01:20] {2024} INFO - Evaluation method: holdout
@@ -502,7 +502,7 @@ print(automl.predict(multi_X_test))
#### Sample Output
```python
```
[flaml.automl: 02-28 21:32:26] {2458} INFO - iteration 15, current learner xgboost
[flaml.automl: 02-28 21:32:26] {2620} INFO - at 6.2s, estimator xgboost's best error=0.0959, best estimator prophet's best error=0.0592
[flaml.automl: 02-28 21:32:26] {2458} INFO - iteration 16, current learner extra_tree
@@ -594,7 +594,8 @@ print("True label", discrete_y_test)
```
#### Sample Output
```python
```
[flaml.automl: 02-28 21:53:03] {2060} INFO - task = ts_forecast_classification
[flaml.automl: 02-28 21:53:03] {2062} INFO - Data split method: time
[flaml.automl: 02-28 21:53:03] {2066} INFO - Evaluation method: holdout
@@ -679,4 +680,886 @@ print("True label", discrete_y_test)
[flaml.automl: 02-28 21:53:04] {2235} INFO - Time taken to find the best model: 0.8547139167785645
```
### Forecasting with Panel Datasets
Panel time series datasets involves multiple individual time series. For example, see Stallion demand dataset from PyTorch Forecasting, orginally from Kaggle.
```python
def get_stalliion_data():
from pytorch_forecasting.data.examples import get_stallion_data
data = get_stallion_data()
# add time index - For datasets with no missing values, FLAML will automate this process
data["time_idx"] = data["date"].dt.year * 12 + data["date"].dt.month
data["time_idx"] -= data["time_idx"].min()
# add additional features
data["month"] = data.date.dt.month.astype(str).astype(
"category"
) # categories have be strings
data["log_volume"] = np.log(data.volume + 1e-8)
data["avg_volume_by_sku"] = data.groupby(
["time_idx", "sku"], observed=True
).volume.transform("mean")
data["avg_volume_by_agency"] = data.groupby(
["time_idx", "agency"], observed=True
).volume.transform("mean")
# we want to encode special days as one variable and thus need to first reverse one-hot encoding
special_days = [
"easter_day",
"good_friday",
"new_year",
"christmas",
"labor_day",
"independence_day",
"revolution_day_memorial",
"regional_games",
"beer_capital",
"music_fest",
]
data[special_days] = (
data[special_days]
.apply(lambda x: x.map({0: "-", 1: x.name}))
.astype("category")
)
return data, special_days
data, special_days = get_stalliion_data()
time_horizon = 6 # predict six months
training_cutoff = data["time_idx"].max() - time_horizon
data["time_idx"] = data["time_idx"].astype("int")
ts_col = data.pop("date")
data.insert(0, "date", ts_col)
# FLAML assumes input is not sorted, but we sort here for comparison purposes with y_test
data = data.sort_values(["agency", "sku", "date"])
X_train = data[lambda x: x.time_idx <= training_cutoff]
X_test = data[lambda x: x.time_idx > training_cutoff]
y_train = X_train.pop("volume")
y_test = X_test.pop("volume")
automl = AutoML()
# Configure settings for FLAML model
settings = {
"time_budget": budget, # total running time in seconds
"metric": "mape", # primary metric
"task": "ts_forecast_panel", # task type
"log_file_name": "test/stallion_forecast.log", # flaml log file
"eval_method": "holdout",
}
# Specify kwargs for TimeSeriesDataSet used by TemporalFusionTransformerEstimator
fit_kwargs_by_estimator = {
"tft": {
"max_encoder_length": 24,
"static_categoricals": ["agency", "sku"],
"static_reals": ["avg_population_2017", "avg_yearly_household_income_2017"],
"time_varying_known_categoricals": ["special_days", "month"],
"variable_groups": {
"special_days": special_days
}, # group of categorical variables can be treated as one variable
"time_varying_known_reals": [
"time_idx",
"price_regular",
"discount_in_percent",
],
"time_varying_unknown_categoricals": [],
"time_varying_unknown_reals": [
"y", # always need a 'y' column for the target column
"log_volume",
"industry_volume",
"soda_volume",
"avg_max_temp",
"avg_volume_by_agency",
"avg_volume_by_sku",
],
"batch_size": 256,
"max_epochs": 1,
"gpu_per_trial": -1,
}
}
# Train the model
automl.fit(
X_train=X_train,
y_train=y_train,
**settings,
period=time_horizon,
group_ids=["agency", "sku"],
fit_kwargs_by_estimator=fit_kwargs_by_estimator,
)
# Compute predictions of testing dataset
y_pred = automl.predict(X_test)
print(y_test)
print(y_pred)
# best model
print(automl.model.estimator)
```
#### Sample Output
```
[flaml.automl: 07-28 21:26:03] {2478} INFO - task = ts_forecast_panel
[flaml.automl: 07-28 21:26:03] {2480} INFO - Data split method: time
[flaml.automl: 07-28 21:26:03] {2483} INFO - Evaluation method: holdout
[flaml.automl: 07-28 21:26:03] {2552} INFO - Minimizing error metric: mape
[flaml.automl: 07-28 21:26:03] {2694} INFO - List of ML learners in AutoML Run: ['tft']
[flaml.automl: 07-28 21:26:03] {2986} INFO - iteration 0, current learner tft
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
| Name | Type | Params
----------------------------------------------------------------------------------------
0 | loss | QuantileLoss | 0
1 | logging_metrics | ModuleList | 0
2 | input_embeddings | MultiEmbedding | 1.3 K
3 | prescalers | ModuleDict | 256
4 | static_variable_selection | VariableSelectionNetwork | 3.4 K
5 | encoder_variable_selection | VariableSelectionNetwork | 8.0 K
6 | decoder_variable_selection | VariableSelectionNetwork | 2.7 K
7 | static_context_variable_selection | GatedResidualNetwork | 1.1 K
8 | static_context_initial_hidden_lstm | GatedResidualNetwork | 1.1 K
9 | static_context_initial_cell_lstm | GatedResidualNetwork | 1.1 K
10 | static_context_enrichment | GatedResidualNetwork | 1.1 K
11 | lstm_encoder | LSTM | 4.4 K
12 | lstm_decoder | LSTM | 4.4 K
13 | post_lstm_gate_encoder | GatedLinearUnit | 544
14 | post_lstm_add_norm_encoder | AddNorm | 32
15 | static_enrichment | GatedResidualNetwork | 1.4 K
16 | multihead_attn | InterpretableMultiHeadAttention | 676
17 | post_attn_gate_norm | GateAddNorm | 576
18 | pos_wise_ff | GatedResidualNetwork | 1.1 K
19 | pre_output_gate_norm | GateAddNorm | 576
20 | output_layer | Linear | 119
----------------------------------------------------------------------------------------
33.6 K Trainable params
0 Non-trainable params
33.6 K Total params
0.135 Total estimated model params size (MB)
Epoch 19: 100%|██████████| 129/129 [00:56<00:00, 2.27it/s, loss=45.9, v_num=2, train_loss_step=43.00, val_loss=65.20, train_loss_epoch=46.50]
[flaml.automl: 07-28 21:46:46] {3114} INFO - Estimated sufficient time budget=12424212s. Estimated necessary time budget=12424s.
[flaml.automl: 07-28 21:46:46] {3161} INFO - at 1242.6s,\testimator tft's best error=1324290483134574.7500,\tbest estimator tft's best error=1324290483134574.7500
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
| Name | Type | Params
----------------------------------------------------------------------------------------
0 | loss | QuantileLoss | 0
1 | logging_metrics | ModuleList | 0
2 | input_embeddings | MultiEmbedding | 1.3 K
3 | prescalers | ModuleDict | 256
4 | static_variable_selection | VariableSelectionNetwork | 3.4 K
5 | encoder_variable_selection | VariableSelectionNetwork | 8.0 K
6 | decoder_variable_selection | VariableSelectionNetwork | 2.7 K
7 | static_context_variable_selection | GatedResidualNetwork | 1.1 K
8 | static_context_initial_hidden_lstm | GatedResidualNetwork | 1.1 K
9 | static_context_initial_cell_lstm | GatedResidualNetwork | 1.1 K
10 | static_context_enrichment | GatedResidualNetwork | 1.1 K
11 | lstm_encoder | LSTM | 4.4 K
12 | lstm_decoder | LSTM | 4.4 K
13 | post_lstm_gate_encoder | GatedLinearUnit | 544
14 | post_lstm_add_norm_encoder | AddNorm | 32
15 | static_enrichment | GatedResidualNetwork | 1.4 K
16 | multihead_attn | InterpretableMultiHeadAttention | 676
17 | post_attn_gate_norm | GateAddNorm | 576
18 | pos_wise_ff | GatedResidualNetwork | 1.1 K
19 | pre_output_gate_norm | GateAddNorm | 576
20 | output_layer | Linear | 119
----------------------------------------------------------------------------------------
33.6 K Trainable params
0 Non-trainable params
33.6 K Total params
0.135 Total estimated model params size (MB)
Epoch 19: 100%|██████████| 145/145 [01:03<00:00, 2.28it/s, loss=45.2, v_num=3, train_loss_step=46.30, val_loss=67.60, train_loss_epoch=48.10]
[flaml.automl: 07-28 22:08:05] {3425} INFO - retrain tft for 1279.6s
[flaml.automl: 07-28 22:08:05] {3432} INFO - retrained model: TemporalFusionTransformer(
(loss): QuantileLoss()
(logging_metrics): ModuleList(
(0): SMAPE()
(1): MAE()
(2): RMSE()
(3): MAPE()
)
(input_embeddings): MultiEmbedding(
(embeddings): ModuleDict(
(agency): Embedding(58, 16)
(sku): Embedding(25, 10)
(special_days): TimeDistributedEmbeddingBag(11, 6, mode=sum)
(month): Embedding(12, 6)
)
)
(prescalers): ModuleDict(
(avg_population_2017): Linear(in_features=1, out_features=8, bias=True)
(avg_yearly_household_income_2017): Linear(in_features=1, out_features=8, bias=True)
(encoder_length): Linear(in_features=1, out_features=8, bias=True)
(y_center): Linear(in_features=1, out_features=8, bias=True)
(y_scale): Linear(in_features=1, out_features=8, bias=True)
(time_idx): Linear(in_features=1, out_features=8, bias=True)
(price_regular): Linear(in_features=1, out_features=8, bias=True)
(discount_in_percent): Linear(in_features=1, out_features=8, bias=True)
(relative_time_idx): Linear(in_features=1, out_features=8, bias=True)
(y): Linear(in_features=1, out_features=8, bias=True)
(log_volume): Linear(in_features=1, out_features=8, bias=True)
(industry_volume): Linear(in_features=1, out_features=8, bias=True)
(soda_volume): Linear(in_features=1, out_features=8, bias=True)
(avg_max_temp): Linear(in_features=1, out_features=8, bias=True)
(avg_volume_by_agency): Linear(in_features=1, out_features=8, bias=True)
(avg_volume_by_sku): Linear(in_features=1, out_features=8, bias=True)
)
(static_variable_selection): VariableSelectionNetwork(
(flattened_grn): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((7,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=66, out_features=7, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=7, out_features=7, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=7, out_features=14, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((7,), eps=1e-05, elementwise_affine=True)
)
)
)
(single_variable_grns): ModuleDict(
(agency): ResampleNorm(
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(sku): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(avg_population_2017): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(avg_yearly_household_income_2017): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(encoder_length): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(y_center): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(y_scale): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
)
(prescalers): ModuleDict(
(avg_population_2017): Linear(in_features=1, out_features=8, bias=True)
(avg_yearly_household_income_2017): Linear(in_features=1, out_features=8, bias=True)
(encoder_length): Linear(in_features=1, out_features=8, bias=True)
(y_center): Linear(in_features=1, out_features=8, bias=True)
(y_scale): Linear(in_features=1, out_features=8, bias=True)
)
(softmax): Softmax(dim=-1)
)
(encoder_variable_selection): VariableSelectionNetwork(
(flattened_grn): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((13,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=100, out_features=13, bias=True)
(elu): ELU(alpha=1.0)
(context): Linear(in_features=16, out_features=13, bias=False)
(fc2): Linear(in_features=13, out_features=13, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=13, out_features=26, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((13,), eps=1e-05, elementwise_affine=True)
)
)
)
(single_variable_grns): ModuleDict(
(special_days): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(month): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(time_idx): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(price_regular): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(discount_in_percent): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(relative_time_idx): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(y): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(log_volume): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(industry_volume): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(soda_volume): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(avg_max_temp): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(avg_volume_by_agency): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(avg_volume_by_sku): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
)
(prescalers): ModuleDict(
(time_idx): Linear(in_features=1, out_features=8, bias=True)
(price_regular): Linear(in_features=1, out_features=8, bias=True)
(discount_in_percent): Linear(in_features=1, out_features=8, bias=True)
(relative_time_idx): Linear(in_features=1, out_features=8, bias=True)
(y): Linear(in_features=1, out_features=8, bias=True)
(log_volume): Linear(in_features=1, out_features=8, bias=True)
(industry_volume): Linear(in_features=1, out_features=8, bias=True)
(soda_volume): Linear(in_features=1, out_features=8, bias=True)
(avg_max_temp): Linear(in_features=1, out_features=8, bias=True)
(avg_volume_by_agency): Linear(in_features=1, out_features=8, bias=True)
(avg_volume_by_sku): Linear(in_features=1, out_features=8, bias=True)
)
(softmax): Softmax(dim=-1)
)
(decoder_variable_selection): VariableSelectionNetwork(
(flattened_grn): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((6,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=44, out_features=6, bias=True)
(elu): ELU(alpha=1.0)
(context): Linear(in_features=16, out_features=6, bias=False)
(fc2): Linear(in_features=6, out_features=6, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=6, out_features=12, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((6,), eps=1e-05, elementwise_affine=True)
)
)
)
(single_variable_grns): ModuleDict(
(special_days): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(month): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(time_idx): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(price_regular): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(discount_in_percent): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(relative_time_idx): GatedResidualNetwork(
(resample_norm): ResampleNorm(
(resample): TimeDistributedInterpolation()
(gate): Sigmoid()
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(fc1): Linear(in_features=8, out_features=8, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=8, out_features=8, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=8, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
)
(prescalers): ModuleDict(
(time_idx): Linear(in_features=1, out_features=8, bias=True)
(price_regular): Linear(in_features=1, out_features=8, bias=True)
(discount_in_percent): Linear(in_features=1, out_features=8, bias=True)
(relative_time_idx): Linear(in_features=1, out_features=8, bias=True)
)
(softmax): Softmax(dim=-1)
)
(static_context_variable_selection): GatedResidualNetwork(
(fc1): Linear(in_features=16, out_features=16, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=16, out_features=16, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=16, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(static_context_initial_hidden_lstm): GatedResidualNetwork(
(fc1): Linear(in_features=16, out_features=16, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=16, out_features=16, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=16, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(static_context_initial_cell_lstm): GatedResidualNetwork(
(fc1): Linear(in_features=16, out_features=16, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=16, out_features=16, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=16, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(static_context_enrichment): GatedResidualNetwork(
(fc1): Linear(in_features=16, out_features=16, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=16, out_features=16, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=16, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(lstm_encoder): LSTM(16, 16, num_layers=2, batch_first=True, dropout=0.1)
(lstm_decoder): LSTM(16, 16, num_layers=2, batch_first=True, dropout=0.1)
(post_lstm_gate_encoder): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=16, out_features=32, bias=True)
)
(post_lstm_gate_decoder): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=16, out_features=32, bias=True)
)
(post_lstm_add_norm_encoder): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(post_lstm_add_norm_decoder): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
(static_enrichment): GatedResidualNetwork(
(fc1): Linear(in_features=16, out_features=16, bias=True)
(elu): ELU(alpha=1.0)
(context): Linear(in_features=16, out_features=16, bias=False)
(fc2): Linear(in_features=16, out_features=16, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=16, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(multihead_attn): InterpretableMultiHeadAttention(
(dropout): Dropout(p=0.1, inplace=False)
(v_layer): Linear(in_features=16, out_features=4, bias=True)
(q_layers): ModuleList(
(0): Linear(in_features=16, out_features=4, bias=True)
(1): Linear(in_features=16, out_features=4, bias=True)
(2): Linear(in_features=16, out_features=4, bias=True)
(3): Linear(in_features=16, out_features=4, bias=True)
)
(k_layers): ModuleList(
(0): Linear(in_features=16, out_features=4, bias=True)
(1): Linear(in_features=16, out_features=4, bias=True)
(2): Linear(in_features=16, out_features=4, bias=True)
(3): Linear(in_features=16, out_features=4, bias=True)
)
(attention): ScaledDotProductAttention(
(softmax): Softmax(dim=2)
)
(w_h): Linear(in_features=4, out_features=16, bias=False)
)
(post_attn_gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=16, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
(pos_wise_ff): GatedResidualNetwork(
(fc1): Linear(in_features=16, out_features=16, bias=True)
(elu): ELU(alpha=1.0)
(fc2): Linear(in_features=16, out_features=16, bias=True)
(gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(dropout): Dropout(p=0.1, inplace=False)
(fc): Linear(in_features=16, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
)
(pre_output_gate_norm): GateAddNorm(
(glu): GatedLinearUnit(
(fc): Linear(in_features=16, out_features=32, bias=True)
)
(add_norm): AddNorm(
(norm): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
)
)
(output_layer): Linear(in_features=16, out_features=7, bias=True)
)
[flaml.automl: 07-28 22:08:05] {2725} INFO - fit succeeded
[flaml.automl: 07-28 22:08:05] {2726} INFO - Time taken to find the best model: 1242.6435902118683
[flaml.automl: 07-28 22:08:05] {2737} WARNING - Time taken to find the best model is 414% of the provided time budget and not all estimators' hyperparameter search converged. Consider increasing the time budget.\n"
]
}
],
```
[Link to notebook](https://github.com/microsoft/FLAML/blob/main/notebook/automl_time_series_forecast.ipynb) | [Open in colab](https://colab.research.google.com/github/microsoft/FLAML/blob/main/notebook/automl_time_series_forecast.ipynb)

View File

@@ -12,6 +12,7 @@
- 'regression': regression.
- 'ts_forecast': time series forecasting.
- 'ts_forecast_classification': time series forecasting for classification.
- 'ts_forecast_panel': time series forecasting for panel datasets (multiple time series).
- 'rank': learning to rank.
- 'seq-classification': sequence classification.
- 'seq-regression': sequence regression.
@@ -119,6 +120,7 @@ The estimator list can contain one or more estimator names, each corresponding t
- 'arima': ARIMA for task "ts_forecast". Hyperparameters: p, d, q.
- 'sarimax': SARIMAX for task "ts_forecast". Hyperparameters: p, d, q, P, D, Q, s.
- 'transformer': Huggingface transformer models for task "seq-classification", "seq-regression", "multichoice-classification", "token-classification" and "summarization". Hyperparameters: learning_rate, num_train_epochs, per_device_train_batch_size, warmup_ratio, weight_decay, adam_epsilon, seed.
- 'temporal_fusion_transform': TemporalFusionTransformerEstimator for task "ts_forecast_panel". Hyperparameters: gradient_clip_val, hidden_size, hidden_continuous_size, attention_head_size, dropout, learning_rate.
* Custom estimator. Use custom estimator for:
- tuning an estimator that is not built-in;
- customizing search space for a built-in estimator.