* rm classification head in nlp
* rm classification head in nlp
* rm classification head in nlp
* adding test cases for switch classification head
* adding test cases for switch classification head
* Update test/nlp/test_autohf_classificationhead.py
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* adding test cases for switch classification head
* run each test separately
* skip classification head test on windows
* disabling wandb reporting
* fix test nlp custom metric
* fix test nlp custom metric
* fix test nlp custom metric
* fix test nlp custom metric
* fix test nlp custom metric
* fix test nlp custom metric
* fix test nlp custom metric
* fix test nlp custom metric
* fix test nlp custom metric
* fix test nlp custom metric
* fix test nlp custom metric
* Update website/docs/Examples/AutoML-NLP.md
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* Update website/docs/Examples/AutoML-NLP.md
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* fix test nlp custom metric
Co-authored-by: Chi Wang <wang.chi@microsoft.com>
* update forecasting with exogeneous variables example
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* update forecasting with exogeneous variables example on website
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* rerun automl_time_series_forecast with new predict function for tft
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* correct spelling error
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
Signed-off-by: Kevin Chen <chenkevin.8787@gmail.com>
* add pipeline tuner component and dependencies.
* clean code.
* do not need force rerun.
* replace the resources.
* update metrics retrieving.
* Update test/pipeline_tuning_example/requirements.txt
* Update test/pipeline_tuning_example/train/env.yaml
* Update test/pipeline_tuning_example/tuner/env.yaml
* Update test/pipeline_tuning_example/tuner/tuner_func.py
* Update test/pipeline_tuning_example/data_prep/env.yaml
* fix issues found by lint with flake8.
* add documentation
* add data.
* do not need AML resource for local run.
* AML -> AzureML
* clean code.
* Update website/docs/Examples/Tune-AzureML pipeline.md
* rename and add pip install.
* update figure name.
* align docs with code.
* remove extra line.
* refactoring TransformersEstimator to support default and custom_hp
* handling starting_points not in search space
* addressing starting point more than max_iter
* fixing upper < lower bug
* fix a bug when using ray & update ray on aml
When using with_parameters(), the config argument must be the first argument in the trainable function.
* make training function runnable standalone
* query logged runs
* mlflow log when using ray
* key check for newer version of ray #363
* catch importerror
* log and load AutoML model
* retrain if necessary when ensemble fails