Files
autogen/README.md
Mark Harley 44ddf9e104 Refactor into automl subpackage (#809)
* Refactor into automl subpackage

Moved some of the packages into an automl subpackage to tidy before the
task-based refactor. This is in response to discussions with the group
and a comment on the first task-based PR.

Only changes here are moving subpackages and modules into the new
automl, fixing imports to work with this structure and fixing some
dependencies in setup.py.

* Fix doc building post automl subpackage refactor

* Fix broken links in website post automl subpackage refactor

* Fix broken links in website post automl subpackage refactor

* Remove vw from test deps as this is breaking the build

* Move default back to the top-level

I'd moved this to automl as that's where it's used internally, but had
missed that this is actually part of the public interface so makes sense
to live where it was.

* Re-add top level modules with deprecation warnings

flaml.data, flaml.ml and flaml.model are re-added to the top level,
being re-exported from flaml.automl for backwards compatability. Adding
a deprecation warning so that we can have a planned removal later.

* Fix model.py line-endings

* Pin pytorch-lightning to less than 1.8.0

We're seeing strange lightning related bugs from pytorch-forecasting
since the release of lightning 1.8.0. Going to try constraining this to
see if we have a fix.

* Fix the lightning version pin

Was optimistic with setting it in the 1.7.x range, but that isn't
compatible with python 3.6

* Remove lightning version pin

* Revert dependency version changes

* Minor change to retrigger the build

* Fix line endings in ml.py and model.py

Co-authored-by: Qingyun Wu <qingyun.wu@psu.edu>
Co-authored-by: EgorKraevTransferwise <egor.kraev@transferwise.com>
2022-12-06 15:46:08 -05:00

7.2 KiB

PyPI version Conda version Build Python Version Downloads Join the chat at https://gitter.im/FLAMLer/community

A Fast Library for Automated Machine Learning & Tuning


🔥 Update (2022/08): We will give a hands-on tutorial on FLAML at KDD 2022 on 08/16/2022.

What is FLAML

FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner. It can also be used to tune generic hyperparameters for MLOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations and so on.

  1. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It supports both classifcal machine learning models and deep neural networks.
  2. It is easy to customize or extend. Users can find their desired customizability from a smooth range: minimal customization (computational resource budget), medium customization (e.g., scikit-style learner, search space and metric), or full customization (arbitrary training and evaluation code).
  3. It supports fast automatic tuning, capable of handling complex constraints/guidance/early stopping. FLAML is powered by a new, cost-effective hyperparameter optimization and learner selection method invented by Microsoft Research.

FLAML has a .NET implementation in ML.NET, an open-source, cross-platform machine learning framework for .NET. In ML.NET, you can use FLAML via low-code solutions like Model Builder Visual Studio extension and the cross-platform ML.NET CLI. Alternatively, you can use the ML.NET AutoML API for a code-first experience.

Installation

Python

FLAML requires Python version >= 3.7. It can be installed from pip:

pip install flaml

To run the notebook examples, install flaml with the [notebook] option:

pip install flaml[notebook]

.NET

Use the following guides to get started with FLAML in .NET:

Quickstart

from flaml import AutoML
automl = AutoML()
automl.fit(X_train, y_train, task="classification")
  • You can restrict the learners and use FLAML as a fast hyperparameter tuning tool for XGBoost, LightGBM, Random Forest etc. or a customized learner.
automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"])
from flaml import tune
tune.run(evaluation_function, config={}, low_cost_partial_config={}, time_budget_s=3600)
  • Zero-shot AutoML allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task.
from flaml.default import LGBMRegressor

# Use LGBMRegressor in the same way as you use lightgbm.LGBMRegressor.
estimator = LGBMRegressor()
# The hyperparameters are automatically set according to the training data.
estimator.fit(X_train, y_train)

Documentation

You can find a detailed documentation about FLAML here where you can find the API documentation, use cases and examples.

In addition, you can find:

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

If you are new to GitHub here is a detailed help source on getting involved with development on GitHub.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.