diff --git a/README.md b/README.md index 6428d73..3997463 100644 --- a/README.md +++ b/README.md @@ -177,6 +177,56 @@ cd bark && pip install . ``` +## 🤗 Transformers Usage + +Bark is available in the 🤗 Transformers library from version 4.31.0 onwards, requiring minimal dependencies +and additional packages. Steps to get started: + +1. First install the 🤗 [Transformers library](https://github.com/huggingface/transformers) from main: + +``` +pip install git+https://github.com/huggingface/transformers.git +``` + +2. Run the following Python code to generate speech samples: + +```py +from transformers import AutoProcessor, BarkModel + +processor = AutoProcessor.from_pretrained("suno/bark") +model = BarkModel.from_pretrained("suno/bark") + +voice_preset = "v2/en_speaker_6" + +inputs = processor("Hello, my dog is cute", voice_preset=voice_preset) + +audio_array = model.generate(**inputs) +audio_array = audio_array.cpu().numpy().squeeze() +``` + +3. Listen to the audio samples either in an ipynb notebook: + +```py +from IPython.display import Audio + +sample_rate = model.generation_config.sample_rate +Audio(audio_array, rate=sample_rate) +``` + +Or save them as a `.wav` file using a third-party library, e.g. `scipy`: + +```py +import scipy + +sample_rate = model.generation_config.sample_rate +scipy.io.wavfile.write("bark_out.wav", rate=sample_rate, data=audio_array) +``` + +For more details on using the Bark model for inference using the 🤗 Transformers library, refer to the +[Bark docs](https://huggingface.co/docs/transformers/main/en/model_doc/bark) or the hands-on +[Google Colab](https://colab.research.google.com/drive/1dWWkZzvu7L9Bunq9zvD-W02RFUXoW-Pd?usp=sharing). + + ## 🛠️ Hardware and Inference Speed Bark has been tested and works on both CPU and GPU (`pytorch 2.0+`, CUDA 11.7 and CUDA 12.0).