Files
circomlib-ml/test/circuits/mnist_test.circom
2022-12-03 21:13:47 +08:00

64 lines
1.5 KiB
Plaintext

pragma circom 2.0.0;
include "../../circuits/Conv2D.circom";
include "../../circuits/Dense.circom";
include "../../circuits/ArgMax.circom";
include "../../circuits/ReLU.circom";
include "../../circuits/Flatten2D.circom";
template mnist() {
signal input in[28][28][1];
signal input conv2d_weights[3][3][1][1];
signal input conv2d_bias[1];
signal input dense_weights[676][10];
signal input dense_bias[10];
signal output out;
component conv2d = Conv2D(28,28,1,1,3,1);
component flatten = Flatten2D(26,26,1);
component relu[26*26];
component dense = Dense(676,10);
component argmax = ArgMax(10);
for (var i=0; i<28; i++) {
for (var j=0; j<28; j++) {
conv2d.in[i][j][0] <== in[i][j][0];
}
}
for (var i=0; i<3; i++) {
for (var j=0; j<3; j++) {
conv2d.weights[i][j][0][0] <== conv2d_weights[i][j][0][0];
}
}
conv2d.bias[0] <== conv2d_bias[0];
for (var i=0; i<26; i++) {
for (var j=0; j<26; j++) {
flatten.in[i][j][0] <== conv2d.out[i][j][0];
}
}
for (var i=0; i<26*26; i++) {
relu[i] = ReLU();
relu[i].in <== flatten.out[i];
dense.in[i] <== relu[i].out;
for (var j=0; j<10; j++) {
dense.weights[i][j] <== dense_weights[i][j];
}
}
for (var i=0; i<10; i++) {
dense.bias[i] <== dense_bias[i];
}
for (var i=0; i<10; i++) {
log(dense.out[i]);
argmax.in[i] <== dense.out[i];
}
out <== argmax.out;
}
component main = mnist();