# `nodes.coffee` contains all of the node classes for the syntax tree. Most # nodes are created as the result of actions in the [grammar](grammar.html), # but some are created by other nodes as a method of code generation. To convert # the syntax tree into a string of JavaScript code, call `compile()` on the root. # Set up for both **Node.js** and the browser, by # including the [Scope](scope.html) class and the [helper](helpers.html) functions. if process? Scope: require('./scope').Scope helpers: require('./helpers').helpers else this.exports: this helpers: this.helpers Scope: this.Scope # Import the helpers we plan to use. {compact, flatten, merge, del, include, indexOf, starts, ends}: helpers #### BaseNode # The **BaseNode** is the abstract base class for all nodes in the syntax tree. # Each subclass implements the `compileNode` method, which performs the # code generation for that node. To compile a node to JavaScript, # call `compile` on it, which wraps `compileNode` in some generic extra smarts, # to know when the generated code needs to be wrapped up in a closure. # An options hash is passed and cloned throughout, containing information about # the environment from higher in the tree (such as if a returned value is # being requested by the surrounding function), information about the current # scope, and indentation level. exports.BaseNode: class BaseNode # Common logic for determining whether to wrap this node in a closure before # compiling it, or to compile directly. We need to wrap if this node is a # *statement*, and it's not a *pureStatement*, and we're not at # the top level of a block (which would be unnecessary), and we haven't # already been asked to return the result (because statements know how to # return results). # # If a Node is *topSensitive*, that means that it needs to compile differently # depending on whether it's being used as part of a larger expression, or is a # top-level statement within the function body. compile: (o) -> @options: merge o or {} @tab: o.indent unless this instanceof ValueNode or this instanceof CallNode del @options, 'operation' del @options, 'chainRoot' unless this instanceof AccessorNode or this instanceof IndexNode top: if @topSensitive() then @options.top else del @options, 'top' closure: @isStatement() and not @isPureStatement() and not top and not @options.asStatement and not (this instanceof CommentNode) and not @containsPureStatement() if closure then @compileClosure(@options) else @compileNode(@options) # Statements converted into expressions via closure-wrapping share a scope # object with their parent closure, to preserve the expected lexical scope. compileClosure: (o) -> @tab: o.indent o.sharedScope: o.scope ClosureNode.wrap(this).compile o # If the code generation wishes to use the result of a complex expression # in multiple places, ensure that the expression is only ever evaluated once, # by assigning it to a temporary variable. compileReference: (o, options) -> pair: if not ((this instanceof CallNode or @contains((n) -> n instanceof CallNode)) or (this instanceof ValueNode and (not (@base instanceof LiteralNode) or @hasProperties()))) [this, this] else reference: literal o.scope.freeVariable() compiled: new AssignNode reference, this [compiled, reference] return pair unless options and options.precompile [pair[0].compile(o), pair[1].compile(o)] # Convenience method to grab the current indentation level, plus tabbing in. idt: (tabs) -> idt: @tab or '' num: (tabs or 0) + 1 idt: + TAB while num: - 1 idt # Construct a node that returns the current node's result. # Note that this is overridden for smarter behavior for # many statement nodes (eg IfNode, ForNode)... makeReturn: -> new ReturnNode this # Does this node, or any of its children, contain a node of a certain kind? # Recursively traverses down the *children* of the nodes, yielding to a block # and returning true when the block finds a match. `contains` does not cross # scope boundaries. contains: (block) -> contains: false @traverseChildren false, (node) -> if block(node) contains: true return false contains # Is this node of a certain type, or does it contain the type? containsType: (type) -> this instanceof type or @contains (n) -> n instanceof type # Convenience for the most common use of contains. Does the node contain # a pure statement? containsPureStatement: -> @isPureStatement() or @contains (n) -> n.isPureStatement() # Perform an in-order traversal of the AST. Crosses scope boundaries. traverse: (block) -> @traverseChildren true, block # `toString` representation of the node, for inspecting the parse tree. # This is what `coffee --nodes` prints out. toString: (idt, override) -> idt: or '' children: (child.toString idt + TAB for child in @collectChildren()).join('') '\n' + idt + (override or @class) + children eachChild: (func) -> return unless @children for attr in @children when this[attr] for child in flatten [this[attr]] return if func(child) is false collectChildren: -> nodes: [] @eachChild (node) -> nodes.push node nodes traverseChildren: (crossScope, func) -> @eachChild (child) -> func.apply(this, arguments) child.traverseChildren(crossScope, func) if child instanceof BaseNode # Default implementations of the common node properties and methods. Nodes # will override these with custom logic, if needed. class: 'BaseNode' children: [] unwrap: -> this isStatement: -> no isPureStatement: -> no topSensitive: -> no #### Expressions # The expressions body is the list of expressions that forms the body of an # indented block of code -- the implementation of a function, a clause in an # `if`, `switch`, or `try`, and so on... exports.Expressions: class Expressions extends BaseNode class: 'Expressions' children: ['expressions'] isStatement: -> yes constructor: (nodes) -> @expressions: compact flatten nodes or [] # Tack an expression on to the end of this expression list. push: (node) -> @expressions.push(node) this # Add an expression at the beginning of this expression list. unshift: (node) -> @expressions.unshift(node) this # If this Expressions consists of just a single node, unwrap it by pulling # it back out. unwrap: -> if @expressions.length is 1 then @expressions[0] else this # Is this an empty block of code? empty: -> @expressions.length is 0 # An Expressions node does not return its entire body, rather it # ensures that the final expression is returned. makeReturn: -> idx: @expressions.length - 1 last: @expressions[idx] last: @expressions[idx: - 1] if last instanceof CommentNode return this if not last or last instanceof ReturnNode @expressions[idx]: last.makeReturn() this # A bound function uses a local `__this` variable instead of the real `this`. rewriteThis: -> @traverseChildren false, (child) -> if child instanceof ValueNode and child.base.value is 'this' child.base: literal '__this' # An **Expressions** is the only node that can serve as the root. compile: (o) -> o: or {} if o.scope then super(o) else @compileRoot(o) compileNode: (o) -> (@compileExpression(node, merge(o)) for node in @expressions).join("\n") # If we happen to be the top-level **Expressions**, wrap everything in # a safety closure, unless requested not to. # It would be better not to generate them in the first place, but for now, # clean up obvious double-parentheses. compileRoot: (o) -> o.indent: @tab: if o.noWrap then '' else TAB o.scope: new Scope(null, this, null) code: @compileWithDeclarations(o) code: code.replace(TRAILING_WHITESPACE, '') code: code.replace(DOUBLE_PARENS, '($1)') if o.noWrap then code else "(function() {\n$code\n})();\n" # Compile the expressions body for the contents of a function, with # declarations of all inner variables pushed up to the top. compileWithDeclarations: (o) -> code: @compileNode(o) code: "${@tab}var ${o.scope.compiledAssignments()};\n$code" if o.scope.hasAssignments(this) code: "${@tab}var ${o.scope.compiledDeclarations()};\n$code" if not o.globals and o.scope.hasDeclarations(this) code # Compiles a single expression within the expressions body. If we need to # return the result, and it's an expression, simply return it. If it's a # statement, ask the statement to do so. compileExpression: (node, o) -> @tab: o.indent compiledNode: node.compile merge o, {top: true} if node.isStatement() then compiledNode else "${@idt()}$compiledNode;" # Wrap up the given nodes as an **Expressions**, unless it already happens # to be one. Expressions.wrap: (nodes) -> return nodes[0] if nodes.length is 1 and nodes[0] instanceof Expressions new Expressions(nodes) #### LiteralNode # Literals are static values that can be passed through directly into # JavaScript without translation, such as: strings, numbers, # `true`, `false`, `null`... exports.LiteralNode: class LiteralNode extends BaseNode class: 'LiteralNode' constructor: (value) -> @value: value # Break and continue must be treated as pure statements -- they lose their # meaning when wrapped in a closure. isStatement: -> @value is 'break' or @value is 'continue' isPureStatement: LiteralNode::isStatement compileNode: (o) -> idt: if @isStatement() then @idt() else '' end: if @isStatement() then ';' else '' "$idt$@value$end" toString: (idt) -> " \"$@value\"" #### ReturnNode # A `return` is a *pureStatement* -- wrapping it in a closure wouldn't # make sense. exports.ReturnNode: class ReturnNode extends BaseNode class: 'ReturnNode' isStatement: -> yes isPureStatement: -> yes children: ['expression'] constructor: (expression) -> @expression: expression makeReturn: -> this compile: (o) -> expr: @expression.makeReturn() return expr.compile o unless expr instanceof ReturnNode super o compileNode: (o) -> o.asStatement: true if @expression.isStatement() "${@tab}return ${@expression.compile(o)};" #### ValueNode # A value, variable or literal or parenthesized, indexed or dotted into, # or vanilla. exports.ValueNode: class ValueNode extends BaseNode SOAK: " == undefined ? undefined : " class: 'ValueNode' children: ['base', 'properties'] # A **ValueNode** has a base and a list of property accesses. constructor: (base, properties) -> @base: base @properties: (properties or []) # Add a property access to the list. push: (prop) -> @properties.push(prop) this hasProperties: -> !!@properties.length # Some boolean checks for the benefit of other nodes. isArray: -> @base instanceof ArrayNode and not @hasProperties() isObject: -> @base instanceof ObjectNode and not @hasProperties() isSplice: -> @hasProperties() and @properties[@properties.length - 1] instanceof SliceNode makeReturn: -> if @hasProperties() then super() else @base.makeReturn() # The value can be unwrapped as its inner node, if there are no attached # properties. unwrap: -> if @properties.length then this else @base # Values are considered to be statements if their base is a statement. isStatement: -> @base.isStatement and @base.isStatement() and not @hasProperties() isNumber: -> @base instanceof LiteralNode and @base.value.match NUMBER # Works out if the value is the start of a chain. isStart: (o) -> return true if this is o.chainRoot and @properties[0] instanceof AccessorNode node: o.chainRoot.base or o.chainRoot.variable while node instanceof CallNode then node: node.variable node is this # Override compile to unwrap the value when possible. compile: (o) -> if not o.top or @properties.length then super(o) else @base.compile(o) # We compile a value to JavaScript by compiling and joining each property. # Things get much more insteresting if the chain of properties has *soak* # operators `?.` interspersed. Then we have to take care not to accidentally # evaluate a anything twice when building the soak chain. compileNode: (o) -> only: del o, 'onlyFirst' op: del o, 'operation' props: if only then @properties[0...@properties.length - 1] else @properties o.chainRoot: or this baseline: @base.compile o baseline: "($baseline)" if @hasProperties() and (@base instanceof ObjectNode or @isNumber()) complete: @last: baseline for prop, i in props @source: baseline if prop.soakNode if @base instanceof CallNode or @base.contains((n) -> n instanceof CallNode) and i is 0 temp: o.scope.freeVariable() complete: "(${ baseline: temp } = ($complete))" complete: "typeof $complete === \"undefined\" || $baseline" if i is 0 and @isStart(o) complete: + @SOAK + (baseline: + prop.compile(o)) else part: prop.compile(o) baseline: + part complete: + part @last: part if op and @wrapped then "($complete)" else complete #### CommentNode # CoffeeScript passes through block comments as JavaScript block comments # at the same position. exports.CommentNode: class CommentNode extends BaseNode class: 'CommentNode' isStatement: -> yes constructor: (lines) -> @lines: lines makeReturn: -> this compileNode: (o) -> sep: "\n$@tab" "$@tab/*$sep${ @lines.join(sep) }\n$@tab*/" #### CallNode # Node for a function invocation. Takes care of converting `super()` calls into # calls against the prototype's function of the same name. exports.CallNode: class CallNode extends BaseNode class: 'CallNode' children: ['variable', 'args'] constructor: (variable, args) -> @isNew: false @isSuper: variable is 'super' @variable: if @isSuper then null else variable @args: (args or []) @compileSplatArguments: (o) -> SplatNode.compileSplattedArray.call(this, @args, o) # Tag this invocation as creating a new instance. newInstance: -> @isNew: true this prefix: -> if @isNew then 'new ' else '' # Grab the reference to the superclass' implementation of the current method. superReference: (o) -> methname: o.scope.method.name meth: if o.scope.method.proto "${o.scope.method.proto}.__superClass__.$methname" else if methname "${methname}.__superClass__.constructor" else throw new Error "cannot call super on an anonymous function." # Compile a vanilla function call. compileNode: (o) -> o.chainRoot: this unless o.chainRoot for arg in @args when arg instanceof SplatNode compilation: @compileSplat(o) unless compilation args: (arg.compile(o) for arg in @args).join(', ') compilation: if @isSuper then @compileSuper(args, o) else "${@prefix()}${@variable.compile(o)}($args)" if o.operation and @wrapped then "($compilation)" else compilation # `super()` is converted into a call against the superclass's implementation # of the current function. compileSuper: (args, o) -> "${@superReference(o)}.call(this${ if args.length then ', ' else '' }$args)" # If you call a function with a splat, it's converted into a JavaScript # `.apply()` call to allow an array of arguments to be passed. # If it's a constructor, then things get real tricky. We have to inject an # inner constructor in order to be able to pass the varargs. compileSplat: (o) -> meth: if @variable then @variable.compile(o) else @superReference(o) obj: @variable and @variable.source or 'this' if obj.match(/\(/) temp: o.scope.freeVariable() obj: temp meth: "($temp = ${ @variable.source })${ @variable.last }" if @isNew utility 'extends' """ (function() { ${@idt(1)}var ctor = function(){}; ${@idt(1)}__extends(ctor, $meth); ${@idt(1)}return ${meth}.apply(new ctor, ${ @compileSplatArguments(o) }); $@tab}).call(this) """ else "${@prefix()}${meth}.apply($obj, ${ @compileSplatArguments(o) })" #### ExtendsNode # Node to extend an object's prototype with an ancestor object. # After `goog.inherits` from the # [Closure Library](http://closure-library.googlecode.com/svn/docs/closureGoogBase.js.html). exports.ExtendsNode: class ExtendsNode extends BaseNode class: 'ExtendsNode' children: ['child', 'parent'] constructor: (child, parent) -> @child: child @parent: parent # Hooks one constructor into another's prototype chain. compileNode: (o) -> ref: new ValueNode literal utility 'extends' (new CallNode ref, [@child, @parent]).compile o #### AccessorNode # A `.` accessor into a property of a value, or the `::` shorthand for # an accessor into the object's prototype. exports.AccessorNode: class AccessorNode extends BaseNode class: 'AccessorNode' children: ['name'] constructor: (name, tag) -> @name: name @prototype: if tag is 'prototype' then '.prototype' else '' @soakNode: tag is 'soak' compileNode: (o) -> name: @name.compile o o.chainRoot.wrapped: or @soakNode namePart: if name.match(IS_STRING) then "[$name]" else ".$name" @prototype + namePart #### IndexNode # A `[ ... ]` indexed accessor into an array or object. exports.IndexNode: class IndexNode extends BaseNode class: 'IndexNode' children: ['index'] constructor: (index) -> @index: index compileNode: (o) -> o.chainRoot.wrapped: or @soakNode idx: @index.compile o prefix: if @proto then '.prototype' else '' "$prefix[$idx]" #### RangeNode # A range literal. Ranges can be used to extract portions (slices) of arrays, # to specify a range for comprehensions, or as a value, to be expanded into the # corresponding array of integers at runtime. exports.RangeNode: class RangeNode extends BaseNode class: 'RangeNode' children: ['from', 'to'] constructor: (from, to, exclusive) -> @from: from @to: to @exclusive: !!exclusive @equals: if @exclusive then '' else '=' # Compiles the range's source variables -- where it starts and where it ends. # But only if they need to be cached to avoid double evaluation. compileVariables: (o) -> o: merge(o, {top: true}) [@from, @fromVar]: @from.compileReference o, {precompile: yes} [@to, @toVar]: @to.compileReference o, {precompile: yes} [@fromNum, @toNum]: [@fromVar.match(SIMPLENUM), @toVar.match(SIMPLENUM)] parts: [] parts.push @from if @from isnt @fromVar parts.push @to if @to isnt @toVar if parts.length then "${parts.join('; ')}; " else '' # When compiled normally, the range returns the contents of the *for loop* # needed to iterate over the values in the range. Used by comprehensions. compileNode: (o) -> return @compileArray(o) unless o.index return @compileSimple(o) if @fromNum and @toNum idx: del o, 'index' step: del o, 'step' vars: "$idx = $@fromVar" intro: "($@fromVar <= $@toVar ? $idx" compare: "$intro <$@equals $@toVar : $idx >$@equals $@toVar)" stepPart: if step then step.compile(o) else '1' incr: if step then "$idx += $stepPart" else "$intro += $stepPart : $idx -= $stepPart)" "$vars; $compare; $incr" # Compile a simple range comprehension, with integers. compileSimple: (o) -> [from, to]: [parseInt(@fromNum, 10), parseInt(@toNum, 10)] idx: del o, 'index' step: del o, 'step' step: and "$idx += ${step.compile(o)}" if from <= to "$idx = $from; $idx <$@equals $to; ${step or "$idx++"}" else "$idx = $from; $idx >$@equals $to; ${step or "$idx--"}" # When used as a value, expand the range into the equivalent array. compileArray: (o) -> idt: @idt 1 vars: @compileVariables(merge(o, {indent: idt})) result: o.scope.freeVariable() i: o.scope.freeVariable() pre: "\n${idt}${result} = []; ${vars}" if @fromNum and @toNum o.index: i body: @compileSimple o else clause: "$@fromVar <= $@toVar ?" body: "var $i = $@fromVar; $clause $i <$@equals $@toVar : $i >$@equals $@toVar; $clause $i += 1 : $i -= 1" post: "{ ${result}.push($i) };\n${idt}return $result;\n$o.indent" "(function() {${pre}\n${idt}for ($body)$post}).call(this)" #### SliceNode # An array slice literal. Unlike JavaScript's `Array#slice`, the second parameter # specifies the index of the end of the slice, just as the first parameter # is the index of the beginning. exports.SliceNode: class SliceNode extends BaseNode class: 'SliceNode' children: ['range'] constructor: (range) -> @range: range compileNode: (o) -> from: @range.from.compile(o) to: @range.to.compile(o) plusPart: if @range.exclusive then '' else ' + 1' ".slice($from, $to$plusPart)" #### ObjectNode # An object literal, nothing fancy. exports.ObjectNode: class ObjectNode extends BaseNode class: 'ObjectNode' children: ['properties'] constructor: (props) -> @objects: @properties: props or [] compileNode: (o) -> o.indent: @idt 1 nonComments: prop for prop in @properties when not (prop instanceof CommentNode) lastNoncom: nonComments[nonComments.length - 1] props: for prop, i in @properties join: ",\n" join: "\n" if (prop is lastNoncom) or (prop instanceof CommentNode) join: '' if i is @properties.length - 1 indent: if prop instanceof CommentNode then '' else @idt 1 prop: new AssignNode prop, prop, 'object' unless prop instanceof AssignNode or prop instanceof CommentNode indent + prop.compile(o) + join props: props.join('') inner: if props then '\n' + props + '\n' + @idt() else '' "{$inner}" #### ArrayNode # An array literal. exports.ArrayNode: class ArrayNode extends BaseNode class: 'ArrayNode' children: ['objects'] constructor: (objects) -> @objects: objects or [] @compileSplatLiteral: (o) -> SplatNode.compileSplattedArray.call(this, @objects, o) compileNode: (o) -> o.indent: @idt 1 objects: [] for obj, i in @objects code: obj.compile(o) if obj instanceof SplatNode return @compileSplatLiteral o else if obj instanceof CommentNode objects.push "\n$code\n$o.indent" else if i is @objects.length - 1 objects.push code else objects.push "$code, " objects: objects.join('') if indexOf(objects, '\n') >= 0 "[\n${@idt(1)}$objects\n$@tab]" else "[$objects]" #### ClassNode # The CoffeeScript class definition. exports.ClassNode: class ClassNode extends BaseNode class: 'ClassNode' children: ['variable', 'parent', 'properties'] isStatement: -> yes # Initialize a **ClassNode** with its name, an optional superclass, and a # list of prototype property assignments. constructor: (variable, parent, props) -> @variable: variable @parent: parent @properties: props or [] @returns: false makeReturn: -> @returns: true this # Instead of generating the JavaScript string directly, we build up the # equivalent syntax tree and compile that, in pieces. You can see the # constructor, property assignments, and inheritance getting built out below. compileNode: (o) -> extension: @parent and new ExtendsNode(@variable, @parent) props: new Expressions o.top: true me: null className: @variable.compile o constScope: null if @parent applied: new ValueNode(@parent, [new AccessorNode(literal('apply'))]) constructor: new CodeNode([], new Expressions([ new CallNode(applied, [literal('this'), literal('arguments')]) ])) else constructor: new CodeNode for prop in @properties [pvar, func]: [prop.variable, prop.value] if pvar and pvar.base.value is 'constructor' and func instanceof CodeNode throw new Error "cannot define a constructor as a bound function." if func.bound func.name: className func.body.push new ReturnNode literal 'this' @variable: new ValueNode @variable @variable.namespaced: include func.name, '.' constructor: func continue if func instanceof CodeNode and func.bound func.bound: false constScope: or new Scope(o.scope, constructor.body, constructor) me: or constScope.freeVariable() pname: pvar.compile(o) constructor.body.push new ReturnNode literal 'this' if constructor.body.empty() constructor.body.unshift literal "this.${pname} = function(){ return ${className}.prototype.${pname}.apply($me, arguments); }" if pvar access: if prop.context is 'this' then pvar.base.properties[0] else new AccessorNode(pvar, 'prototype') val: new ValueNode(@variable, [access]) prop: new AssignNode(val, func) props.push prop constructor.body.unshift literal "$me = this" if me construct: @idt() + (new AssignNode(@variable, constructor)).compile(merge o, {sharedScope: constScope}) + ';' props: if !props.empty() then '\n' + props.compile(o) else '' extension: if extension then '\n' + @idt() + extension.compile(o) + ';' else '' returns: if @returns then '\n' + new ReturnNode(@variable).compile(o) else '' "$construct$extension$props$returns" #### AssignNode # The **AssignNode** is used to assign a local variable to value, or to set the # property of an object -- including within object literals. exports.AssignNode: class AssignNode extends BaseNode # Matchers for detecting prototype assignments. PROTO_ASSIGN: /^(\S+)\.prototype/ LEADING_DOT: /^\.(prototype\.)?/ class: 'AssignNode' children: ['variable', 'value'] constructor: (variable, value, context) -> @variable: variable @value: value @context: context topSensitive: -> true isValue: -> @variable instanceof ValueNode makeReturn: -> return new Expressions [this, new ReturnNode(@variable)] isStatement: -> @isValue() and (@variable.isArray() or @variable.isObject()) # Compile an assignment, delegating to `compilePatternMatch` or # `compileSplice` if appropriate. Keep track of the name of the base object # we've been assigned to, for correct internal references. If the variable # has not been seen yet within the current scope, declare it. compileNode: (o) -> top: del o, 'top' return @compilePatternMatch(o) if @isStatement() return @compileSplice(o) if @isValue() and @variable.isSplice() stmt: del o, 'asStatement' name: @variable.compile(o) last: if @isValue() then @variable.last.replace(@LEADING_DOT, '') else name match: name.match(@PROTO_ASSIGN) proto: match and match[1] if @value instanceof CodeNode @value.name: last if last.match(IDENTIFIER) @value.proto: proto if proto val: @value.compile o return "$name: $val" if @context is 'object' o.scope.find name unless @isValue() and (@variable.hasProperties() or @variable.namespaced) val: "$name = $val" return "$@tab$val;" if stmt if top then val else "($val)" # Brief implementation of recursive pattern matching, when assigning array or # object literals to a value. Peeks at their properties to assign inner names. # See the [ECMAScript Harmony Wiki](http://wiki.ecmascript.org/doku.php?id=harmony:destructuring) # for details. compilePatternMatch: (o) -> valVar: o.scope.freeVariable() value: if @value.isStatement() then ClosureNode.wrap(@value) else @value assigns: ["$@tab$valVar = ${ value.compile(o) };"] o.top: true o.asStatement: true splat: false for obj, i in @variable.base.objects # A regular array pattern-match. idx: i if @variable.isObject() if obj instanceof AssignNode # A regular object pattern-match. [obj, idx]: [obj.value, obj.variable.base] else # A shorthand `{a, b, c}: val` pattern-match. idx: obj if not (obj instanceof ValueNode or obj instanceof SplatNode) throw new Error 'pattern matching must use only identifiers on the left-hand side.' isString: idx.value and idx.value.match IS_STRING accessClass: if isString or @variable.isArray() then IndexNode else AccessorNode if obj instanceof SplatNode and not splat val: literal(obj.compileValue(o, valVar, (oindex: indexOf(@variable.base.objects, obj)), (olength: @variable.base.objects.length) - oindex - 1)) splat: true else idx: literal(if splat then "${valVar}.length - ${olength - idx}" else idx) if typeof idx isnt 'object' val: new ValueNode(literal(valVar), [new accessClass(idx)]) assigns.push(new AssignNode(obj, val).compile(o)) code: assigns.join("\n") code # Compile the assignment from an array splice literal, using JavaScript's # `Array#splice` method. compileSplice: (o) -> name: @variable.compile merge o, {onlyFirst: true} l: @variable.properties.length range: @variable.properties[l - 1].range plus: if range.exclusive then '' else ' + 1' from: range.from.compile(o) to: range.to.compile(o) + ' - ' + from + plus val: @value.compile(o) "${name}.splice.apply($name, [$from, $to].concat($val))" #### CodeNode # A function definition. This is the only node that creates a new Scope. # When for the purposes of walking the contents of a function body, the CodeNode # has no *children* -- they're within the inner scope. exports.CodeNode: class CodeNode extends BaseNode class: 'CodeNode' children: ['params', 'body'] constructor: (params, body, tag) -> @params: params or [] @body: body or new Expressions @bound: tag is 'boundfunc' # Compilation creates a new scope unless explicitly asked to share with the # outer scope. Handles splat parameters in the parameter list by peeking at # the JavaScript `arguments` objects. If the function is bound with the `=>` # arrow, generates a wrapper that saves the current value of `this` through # a closure. compileNode: (o) -> sharedScope: del o, 'sharedScope' top: del o, 'top' o.scope: sharedScope or new Scope(o.scope, @body, this) o.top: true o.indent: @idt(if @bound then 2 else 1) del o, 'noWrap' del o, 'globals' i: 0 splat: undefined params: [] for param in @params if param instanceof SplatNode and not splat? splat: param splat.index: i splat.trailings: [] splat.arglength: @params.length @body.unshift(splat) else if splat? splat.trailings.push(param) else params.push(param) i: + 1 params: (param.compile(o) for param in params) @body.makeReturn() @body.rewriteThis() if @bound (o.scope.parameter(param)) for param in params code: if @body.expressions.length then "\n${ @body.compileWithDeclarations(o) }\n" else '' func: "function(${ params.join(', ') }) {$code${ code and @idt(if @bound then 1 else 0) }}" func: "($func)" if top and not @bound return func unless @bound "(function(__this) {\n${@idt(1)}return $func;\n$@tab})(this)" topSensitive: -> true # Short-circuit traverseChildren method to prevent it from crossing scope boundaries # unless crossScope is true traverseChildren: (crossScope, func) -> super(crossScope, func) if crossScope toString: (idt) -> idt: or '' children: (child.toString(idt + TAB) for child in @collectChildren()).join('') "\n$idt$children" #### SplatNode # A splat, either as a parameter to a function, an argument to a call, # or as part of a destructuring assignment. exports.SplatNode: class SplatNode extends BaseNode class: 'SplatNode' children: ['name'] constructor: (name) -> name: literal(name) unless name.compile @name: name compileNode: (o) -> if @index? then @compileParam(o) else @name.compile(o) # Compiling a parameter splat means recovering the parameters that succeed # the splat in the parameter list, by slicing the arguments object. compileParam: (o) -> name: @name.compile(o) o.scope.find name len: o.scope.freeVariable() o.scope.assign len, "arguments.length" variadic: o.scope.freeVariable() o.scope.assign variadic, "$len >= $@arglength" for trailing, idx in @trailings pos: @trailings.length - idx o.scope.assign(trailing.compile(o), "arguments[$variadic ? $len - $pos : ${@index + idx}]") "$name = ${utility('slice')}.call(arguments, $@index, $len - ${@trailings.length})" # A compiling a splat as a destructuring assignment means slicing arguments # from the right-hand-side's corresponding array. compileValue: (o, name, index, trailings) -> trail: if trailings then ", ${name}.length - $trailings" else '' "${utility 'slice'}.call($name, $index$trail)" # Utility function that converts arbitrary number of elements, mixed with # splats, to a proper array @compileSplattedArray: (list, o) -> args: [] for arg, i in list code: arg.compile o prev: args[last: args.length - 1] if not (arg instanceof SplatNode) if prev and starts(prev, '[') and ends(prev, ']') args[last]: "${prev.substr(0, prev.length - 1)}, $code]" continue else if prev and starts(prev, '.concat([') and ends(prev, '])') args[last]: "${prev.substr(0, prev.length - 2)}, $code])" continue else code: "[$code]" args.push(if i is 0 then code else ".concat($code)") args.join('') #### WhileNode # A while loop, the only sort of low-level loop exposed by CoffeeScript. From # it, all other loops can be manufactured. Useful in cases where you need more # flexibility or more speed than a comprehension can provide. exports.WhileNode: class WhileNode extends BaseNode class: 'WhileNode' children: ['condition', 'guard', 'body'] isStatement: -> yes constructor: (condition, opts) -> if opts and opts.invert condition: new ParentheticalNode condition if condition instanceof OpNode condition: new OpNode('!', condition) @condition: condition @guard: opts and opts.guard addBody: (body) -> @body: body this makeReturn: -> @returns: true this topSensitive: -> true # The main difference from a JavaScript *while* is that the CoffeeScript # *while* can be used as a part of a larger expression -- while loops may # return an array containing the computed result of each iteration. compileNode: (o) -> top: del(o, 'top') and not @returns o.indent: @idt 1 o.top: true cond: @condition.compile(o) set: '' unless top rvar: o.scope.freeVariable() set: "$@tab$rvar = [];\n" @body: PushNode.wrap(rvar, @body) if @body pre: "$set${@tab}while ($cond)" @body: Expressions.wrap([new IfNode(@guard, @body)]) if @guard if @returns post: '\n' + new ReturnNode(literal(rvar)).compile(merge(o, {indent: @idt()})) else post: '' "$pre {\n${ @body.compile(o) }\n$@tab}$post" #### OpNode # Simple Arithmetic and logical operations. Performs some conversion from # CoffeeScript operations into their JavaScript equivalents. exports.OpNode: class OpNode extends BaseNode # The map of conversions from CoffeeScript to JavaScript symbols. CONVERSIONS: { '==': '===' '!=': '!==' } # The list of operators for which we perform # [Python-style comparison chaining](http://docs.python.org/reference/expressions.html#notin). CHAINABLE: ['<', '>', '>=', '<=', '===', '!=='] # Our assignment operators that have no JavaScript equivalent. ASSIGNMENT: ['||=', '&&=', '?='] # Operators must come before their operands with a space. PREFIX_OPERATORS: ['typeof', 'delete'] class: 'OpNode' children: ['first', 'second'] constructor: (operator, first, second, flip) -> @first: first @second: second @operator: @CONVERSIONS[operator] or operator @flip: !!flip isUnary: -> not @second isChainable: -> indexOf(@CHAINABLE, @operator) >= 0 toString: (idt) -> super(idt, @class + ' ' + @operator) compileNode: (o) -> o.operation: true return @compileChain(o) if @isChainable() and @first.unwrap() instanceof OpNode and @first.unwrap().isChainable() return @compileAssignment(o) if indexOf(@ASSIGNMENT, @operator) >= 0 return @compileUnary(o) if @isUnary() return @compileExistence(o) if @operator is '?' [@first.compile(o), @operator, @second.compile(o)].join ' ' # Mimic Python's chained comparisons when multiple comparison operators are # used sequentially. For example: # # bin/coffee -e "puts 50 < 65 > 10" # true compileChain: (o) -> shared: @first.unwrap().second [@first.second, shared]: shared.compileReference(o) if shared.containsType CallNode [first, second, shared]: [@first.compile(o), @second.compile(o), shared.compile(o)] "($first) && ($shared $@operator $second)" # When compiling a conditional assignment, take care to ensure that the # operands are only evaluated once, even though we have to reference them # more than once. compileAssignment: (o) -> [first, second]: [@first.compile(o), @second.compile(o)] o.scope.find(first) if first.match(IDENTIFIER) return "$first = ${ ExistenceNode.compileTest(o, @first) } ? $first : $second" if @operator is '?=' "$first = $first ${ @operator.substr(0, 2) } $second" # If this is an existence operator, we delegate to `ExistenceNode.compileTest` # to give us the safe references for the variables. compileExistence: (o) -> [first, second]: [@first.compile(o), @second.compile(o)] test: ExistenceNode.compileTest(o, @first) "$test ? $first : $second" # Compile a unary **OpNode**. compileUnary: (o) -> space: if indexOf(@PREFIX_OPERATORS, @operator) >= 0 then ' ' else '' parts: [@operator, space, @first.compile(o)] parts: parts.reverse() if @flip parts.join('') #### InNode exports.InNode: class InNode extends BaseNode class: 'InNode' children: ['object', 'array'] constructor: (object, array) -> @object: object @array: array isArray: -> @array instanceof ValueNode and @array.isArray() compileNode: (o) -> [@obj1, @obj2]: @object.compileReference o, {precompile: yes} if @isArray() then @compileOrTest(o) else @compileLoopTest(o) compileOrTest: (o) -> tests: for item, i in @array.base.objects "${item.compile(o)} === ${if i then @obj2 else @obj1}" "(${tests.join(' || ')})" compileLoopTest: (o) -> [@arr1, @arr2]: @array.compileReference o, {precompile: yes} [i, l]: [o.scope.freeVariable(), o.scope.freeVariable()] prefix: if @obj1 isnt @obj2 then @obj1 + '; ' else '' "!!(function(){ ${prefix}for (var $i=0, $l=${@arr1}.length; $i<$l; $i++) if (${@arr2}[$i] === $@obj2) return true; }).call(this)" #### TryNode # A classic *try/catch/finally* block. exports.TryNode: class TryNode extends BaseNode class: 'TryNode' children: ['attempt', 'recovery', 'ensure'] isStatement: -> yes constructor: (attempt, error, recovery, ensure) -> @attempt: attempt @recovery: recovery @ensure: ensure @error: error makeReturn: -> @attempt: @attempt.makeReturn() if @attempt @recovery: @recovery.makeReturn() if @recovery this # Compilation is more or less as you would expect -- the *finally* clause # is optional, the *catch* is not. compileNode: (o) -> o.indent: @idt 1 o.top: true attemptPart: @attempt.compile(o) errorPart: if @error then " (${ @error.compile(o) }) " else ' ' catchPart: if @recovery then " catch$errorPart{\n${ @recovery.compile(o) }\n$@tab}" else '' finallyPart: (@ensure or '') and ' finally {\n' + @ensure.compile(merge(o)) + "\n$@tab}" "${@tab}try {\n$attemptPart\n$@tab}$catchPart$finallyPart" #### ThrowNode # Simple node to throw an exception. exports.ThrowNode: class ThrowNode extends BaseNode class: 'ThrowNode' children: ['expression'] isStatement: -> yes constructor: (expression) -> @expression: expression # A **ThrowNode** is already a return, of sorts... makeReturn: -> return this compileNode: (o) -> "${@tab}throw ${@expression.compile(o)};" #### ExistenceNode # Checks a variable for existence -- not *null* and not *undefined*. This is # similar to `.nil?` in Ruby, and avoids having to consult a JavaScript truth # table. exports.ExistenceNode: class ExistenceNode extends BaseNode class: 'ExistenceNode' children: ['expression'] constructor: (expression) -> @expression: expression compileNode: (o) -> ExistenceNode.compileTest(o, @expression) # The meat of the **ExistenceNode** is in this static `compileTest` method # because other nodes like to check the existence of their variables as well. # Be careful not to double-evaluate anything. @compileTest: (o, variable) -> [first, second]: variable.compileReference o "(typeof ${first.compile(o)} !== \"undefined\" && ${second.compile(o)} !== null)" #### ParentheticalNode # An extra set of parentheses, specified explicitly in the source. At one time # we tried to clean up the results by detecting and removing redundant # parentheses, but no longer -- you can put in as many as you please. # # Parentheses are a good way to force any statement to become an expression. exports.ParentheticalNode: class ParentheticalNode extends BaseNode class: 'ParentheticalNode' children: ['expression'] constructor: (expression) -> @expression: expression isStatement: -> @expression.isStatement() makeReturn: -> @expression.makeReturn() topSensitive: -> yes compileNode: (o) -> top: del o, 'top' code: @expression.compile(o) if @isStatement() return (if top then "$@tab$code;" else code) l: code.length code: code.substr(o, l-1) if code.substr(l-1, 1) is ';' if @expression instanceof AssignNode then code else "($code)" #### ForNode # CoffeeScript's replacement for the *for* loop is our array and object # comprehensions, that compile into *for* loops here. They also act as an # expression, able to return the result of each filtered iteration. # # Unlike Python array comprehensions, they can be multi-line, and you can pass # the current index of the loop as a second parameter. Unlike Ruby blocks, # you can map and filter in a single pass. exports.ForNode: class ForNode extends BaseNode class: 'ForNode' children: ['body', 'source', 'guard'] isStatement: -> yes constructor: (body, source, name, index) -> @body: body @name: name @index: index or null @source: source.source @guard: source.guard @step: source.step @raw: !!source.raw @object: !!source.object [@name, @index]: [@index, @name] if @object @pattern: @name instanceof ValueNode throw new Error('index cannot be a pattern matching expression') if @index instanceof ValueNode @returns: false topSensitive: -> true makeReturn: -> @returns: true this compileReturnValue: (val, o) -> return '\n' + new ReturnNode(literal(val)).compile(o) if @returns return '\n' + val if val '' # Welcome to the hairiest method in all of CoffeeScript. Handles the inner # loop, filtering, stepping, and result saving for array, object, and range # comprehensions. Some of the generated code can be shared in common, and # some cannot. compileNode: (o) -> topLevel: del(o, 'top') and not @returns range: @source instanceof ValueNode and @source.base instanceof RangeNode and not @source.properties.length source: if range then @source.base else @source codeInBody: @body.contains (n) -> n instanceof CodeNode scope: o.scope name: @name and @name.compile o index: @index and @index.compile o scope.find name if name and not @pattern and not codeInBody scope.find index if index rvar: scope.freeVariable() unless topLevel ivar: if range then name else if codeInBody then scope.freeVariable() else index or scope.freeVariable() varPart: '' guardPart: '' body: Expressions.wrap([@body]) if range sourcePart: source.compileVariables(o) forPart: source.compile merge o, {index: ivar, step: @step} else svar: scope.freeVariable() sourcePart: "$svar = ${ @source.compile(o) };" if @pattern namePart: new AssignNode(@name, literal("$svar[$ivar]")).compile(merge o, {indent: @idt(1), top: true}) + '\n' else namePart: "$name = $svar[$ivar]" if name unless @object lvar: scope.freeVariable() stepPart: if @step then "$ivar += ${ @step.compile(o) }" else "$ivar++" forPart: "$ivar = 0, $lvar = ${svar}.length; $ivar < $lvar; $stepPart" sourcePart: (if rvar then "$rvar = []; " else '') + sourcePart sourcePart: if sourcePart then "$@tab$sourcePart\n$@tab" else @tab returnResult: @compileReturnValue(rvar, o) body: PushNode.wrap(rvar, body) unless topLevel if @guard body: Expressions.wrap([new IfNode(@guard, body)]) if codeInBody body.unshift literal "var $namePart" if namePart body.unshift literal "var $index = $ivar" if index body: ClosureNode.wrap(body, true) else varPart: (namePart or '') and (if @pattern then namePart else "${@idt(1)}$namePart;\n") if @object forPart: "$ivar in $svar" guardPart: "\n${@idt(1)}if (!${utility('hasProp')}.call($svar, $ivar)) continue;" unless @raw body: body.compile(merge(o, {indent: @idt(1), top: true})) vars: if range then name else "$name, $ivar" "${sourcePart}for ($forPart) {$guardPart\n$varPart$body\n$@tab}$returnResult" #### IfNode # *If/else* statements. Our *switch/when* will be compiled into this. Acts as an # expression by pushing down requested returns to the last line of each clause. # # Single-expression **IfNodes** are compiled into ternary operators if possible, # because ternaries are already proper expressions, and don't need conversion. exports.IfNode: class IfNode extends BaseNode class: 'IfNode' children: ['condition', 'switchSubject', 'body', 'elseBody', 'assigner'] constructor: (condition, body, tags) -> @condition: condition @body: body @tags: tags or {} if @tags.invert @condition: new OpNode('!', new ParentheticalNode(@condition)) else if @condition instanceof OpNode and @condition.operator is 'instanceof' @condition: new ParentheticalNode(@condition) @elseBody: null @isChain: false bodyNode: -> @body?.unwrap() elseBodyNode: -> @elseBody?.unwrap() forceStatement: -> @tags.statement: true this # Tag a chain of **IfNodes** with their object(s) to switch on for equality # tests. `rewriteSwitch` will perform the actual change at compile time. switchesOver: (expression) -> @switchSubject: expression this # Rewrite a chain of **IfNodes** with their switch condition for equality. # Ensure that the switch expression isn't evaluated more than once. rewriteSwitch: (o) -> @assigner: @switchSubject unless (@switchSubject.unwrap() instanceof LiteralNode) variable: literal(o.scope.freeVariable()) @assigner: new AssignNode(variable, @switchSubject) @switchSubject: variable @condition: for cond, i in flatten [@condition] cond: new ParentheticalNode(cond) if cond instanceof OpNode new OpNode('==', (if i is 0 then @assigner else @switchSubject), cond) @elseBodyNode().switchesOver(@switchSubject) if @isChain # prevent this rewrite from happening again @switchSubject: undefined this # Rewrite a chain of **IfNodes** to add a default case as the final *else*. addElse: (elseBody, statement) -> if @isChain @elseBodyNode().addElse elseBody, statement else @isChain: elseBody instanceof IfNode @elseBody: @ensureExpressions elseBody this # The **IfNode** only compiles into a statement if either of its bodies needs # to be a statement. Otherwise a ternary is safe. isStatement: -> @statement: or !!(@tags.statement or @bodyNode().isStatement() or (@elseBody and @elseBodyNode().isStatement())) compileCondition: (o) -> (cond.compile(o) for cond in flatten([@condition])).join(' || ') compileNode: (o) -> if @isStatement() then @compileStatement(o) else @compileTernary(o) makeReturn: -> if @isStatement() @body: and @ensureExpressions(@body.makeReturn()) @elseBody: and @ensureExpressions(@elseBody.makeReturn()) this else new ReturnNode this ensureExpressions: (node) -> if node instanceof Expressions then node else new Expressions [node] # Compile the **IfNode** as a regular *if-else* statement. Flattened chains # force inner *else* bodies into statement form. compileStatement: (o) -> @rewriteSwitch(o) if @switchSubject child: del o, 'chainChild' condO: merge o o.indent: @idt 1 o.top: true ifDent: if child then '' else @idt() comDent: if child then @idt() else '' body: @body.compile(o) ifPart: "${ifDent}if (${ @compileCondition(condO) }) {\n$body\n$@tab}" return ifPart unless @elseBody elsePart: if @isChain ' else ' + @elseBodyNode().compile(merge(o, {indent: @idt(), chainChild: true})) else " else {\n${ @elseBody.compile(o) }\n$@tab}" "$ifPart$elsePart" # Compile the IfNode as a ternary operator. compileTernary: (o) -> o.operation: true ifPart: @condition.compile(o) + ' ? ' + @bodyNode().compile(o) elsePart: if @elseBody then @elseBodyNode().compile(o) else 'null' "$ifPart : $elsePart" # Faux-Nodes # ---------- #### PushNode # Faux-nodes are never created by the grammar, but are used during code # generation to generate other combinations of nodes. The **PushNode** creates # the tree for `array.push(value)`, which is helpful for recording the result # arrays from comprehensions. PushNode: exports.PushNode: { wrap: (array, expressions) -> expr: expressions.unwrap() return expressions if expr.isPureStatement() or expr.containsPureStatement() Expressions.wrap([new CallNode( new ValueNode(literal(array), [new AccessorNode(literal('push'))]), [expr] )]) } #### ClosureNode # A faux-node used to wrap an expressions body in a closure. ClosureNode: exports.ClosureNode: { # Wrap the expressions body, unless it contains a pure statement, # in which case, no dice. If the body mentions `this` or `arguments`, # then make sure that the closure wrapper preserves the original values. wrap: (expressions, statement) -> return expressions if expressions.containsPureStatement() func: new ParentheticalNode(new CodeNode([], Expressions.wrap([expressions]))) args: [] mentionsArgs: expressions.contains (n) -> n instanceof LiteralNode and (n.value is 'arguments') mentionsThis: expressions.contains (n) -> (n instanceof LiteralNode and (n.value is 'this')) or (n instanceof CodeNode and n.bound) if mentionsArgs or mentionsThis meth: literal(if mentionsArgs then 'apply' else 'call') args: [literal('this')] args.push literal 'arguments' if mentionsArgs func: new ValueNode func, [new AccessorNode(meth)] call: new CallNode(func, args) if statement then Expressions.wrap([call]) else call } # Utility Functions # ----------------- UTILITIES: { # Correctly set up a prototype chain for inheritance, including a reference # to the superclass for `super()` calls. See: # [goog.inherits](http://closure-library.googlecode.com/svn/docs/closureGoogBase.js.source.html#line1206). extends: """ function(child, parent) { var ctor = function(){}; ctor.prototype = parent.prototype; child.prototype = new ctor(); child.prototype.constructor = child; if (typeof parent.extended === "function") parent.extended(child); child.__superClass__ = parent.prototype; } """ # Shortcuts to speed up the lookup time for native functions. hasProp: 'Object.prototype.hasOwnProperty' slice: 'Array.prototype.slice' } # Constants # --------- # Tabs are two spaces for pretty printing. TAB: ' ' # Trim out all trailing whitespace, so that the generated code plays nice # with Git. TRAILING_WHITESPACE: /[ \t]+$/gm # Obvious redundant parentheses should be removed. DOUBLE_PARENS: /\(\(([^\(\)\n]*)\)\)/g # Keep these identifier regexes in sync with the Lexer. IDENTIFIER: /^[a-zA-Z\$_](\w|\$)*$/ NUMBER : /^(((\b0(x|X)[0-9a-fA-F]+)|((\b[0-9]+(\.[0-9]+)?|\.[0-9]+)(e[+\-]?[0-9]+)?)))\b$/i SIMPLENUM : /^-?\d+/ # Is a literal value a string? IS_STRING: /^['"]/ # Utility Functions # ----------------- # Handy helper for a generating LiteralNode. literal: (name) -> new LiteralNode(name) # Helper for ensuring that utility functions are assigned at the top level. utility: (name) -> ref: "__$name" Scope.root.assign ref, UTILITIES[name] ref