# `nodes.coffee` contains all of the node classes for the syntax tree. Most # nodes are created as the result of actions in the [grammar](grammar.html), # but some are created by other nodes as a method of code generation. To convert # the syntax tree into a string of JavaScript code, call `compile()` on the root. # Set up for both **Node.js** and the browser, by # including the [Scope](scope.html) class. if process? process.mixin require 'scope' process.mixin require 'helpers' else this.exports: this # Helper function that marks a node as a JavaScript *statement*, or as a # *pure_statement*. Statements must be wrapped in a closure when used as an # expression, and nodes tagged as *pure_statement* cannot be closure-wrapped # without losing their meaning. statement: (klass, only) -> klass::is_statement: -> true (klass::is_pure_statement: -> true) if only #### BaseNode # The **BaseNode** is the abstract base class for all nodes in the syntax tree. # Each subclass implements the `compile_node` method, which performs the # code generation for that node. To compile a node to JavaScript, # call `compile` on it, which wraps `compile_node` in some generic extra smarts, # to know when the generated code needs to be wrapped up in a closure. # An options hash is passed and cloned throughout, containing information about # the environment from higher in the tree (such as if a returned value is # being requested by the surrounding function), information about the current # scope, and indentation level. exports.BaseNode: class BaseNode # Common logic for determining whether to wrap this node in a closure before # compiling it, or to compile directly. We need to wrap if this node is a # *statement*, and it's not a *pure_statement*, and we're not at # the top level of a block (which would be unnecessary), and we haven't # already been asked to return the result (because statements know how to # return results). # # If a Node is *top_sensitive*, that means that it needs to compile differently # depending on whether it's being used as part of a larger expression, or is a # top-level statement within the function body. compile: (o) -> @options: merge o or {} @tab: o.indent del @options, 'operation' unless @operation_sensitive() top: if @top_sensitive() then @options.top else del @options, 'top' closure: @is_statement() and not @is_pure_statement() and not top and not @options.returns and not (this instanceof CommentNode) and not @contains (node) -> node.is_pure_statement() if closure then @compile_closure(@options) else @compile_node(@options) # Statements converted into expressions via closure-wrapping share a scope # object with their parent closure, to preserve the expected lexical scope. compile_closure: (o) -> @tab: o.indent o.shared_scope: o.scope ClosureNode.wrap(this).compile o # If the code generation wishes to use the result of a complex expression # in multiple places, ensure that the expression is only ever evaluated once, # by assigning it to a temporary variable. compile_reference: (o) -> reference: literal o.scope.free_variable() compiled: new AssignNode reference, this [compiled, reference] # Convenience method to grab the current indentation level, plus tabbing in. idt: (tabs) -> idt: @tab or '' num: (tabs or 0) + 1 idt += TAB while num -= 1 idt # Does this node, or any of its children, contain a node of a certain kind? # Recursively traverses down the *children* of the nodes, yielding to a block # and returning true when the block finds a match. `contains` does not cross # scope boundaries. contains: (block) -> for node in @children return true if block(node) return true if node.contains and node.contains block false # Perform an in-order traversal of the AST. Crosses scope boundaries. traverse: (block) -> for node in @children block node node.traverse block if node.traverse # `toString` representation of the node, for inspecting the parse tree. # This is what `coffee --nodes` prints out. toString: (idt) -> idt ||= '' '\n' + idt + @type + (child.toString(idt + TAB) for child in @children).join('') # Default implementations of the common node identification methods. Nodes # will override these with custom logic, if needed. unwrap: -> this children: [] is_statement: -> false is_pure_statement: -> false top_sensitive: -> false operation_sensitive: -> false #### Expressions # The expressions body is the list of expressions that forms the body of an # indented block of code -- the implementation of a function, a clause in an # `if`, `switch`, or `try`, and so on... exports.Expressions: class Expressions extends BaseNode type: 'Expressions' constructor: (nodes) -> @children: @expressions: compact flatten nodes or [] # Tack an expression on to the end of this expression list. push: (node) -> @expressions.push(node) this # Add an expression at the beginning of this expression list. unshift: (node) -> @expressions.unshift(node) this # If this Expressions consists of just a single node, unwrap it by pulling # it back out. unwrap: -> if @expressions.length is 1 then @expressions[0] else this # Is this an empty block of code? empty: -> @expressions.length is 0 # Is the given node the last one in this block of expressions? is_last: (node) -> l: @expressions.length last_index: if @expressions[l - 1] instanceof CommentNode then 2 else 1 node is @expressions[l - last_index] # An **Expressions** is the only node that can serve as the root. compile: (o) -> o ||= {} if o.scope then super(o) else @compile_root(o) compile_node: (o) -> (@compile_expression(node, merge(o)) for node in @expressions).join("\n") # If we happen to be the top-level **Expressions**, wrap everything in # a safety closure, unless requested not to. compile_root: (o) -> o.indent: @tab: if o.no_wrap then '' else TAB o.scope: new Scope(null, this, null) code: if o.globals then @compile_node(o) else @compile_with_declarations(o) code: code.replace(TRAILING_WHITESPACE, '') if o.no_wrap then code else "(function(){\n$code\n})();\n" # Compile the expressions body for the contents of a function, with # declarations of all inner variables pushed up to the top. compile_with_declarations: (o) -> code: @compile_node(o) args: @contains (node) -> node instanceof ValueNode and node.is_arguments() code: "${@tab}arguments = Array.prototype.slice.call(arguments, 0);\n$code" if args code: "${@tab}var ${o.scope.compiled_assignments()};\n$code" if o.scope.has_assignments(this) code: "${@tab}var ${o.scope.compiled_declarations()};\n$code" if o.scope.has_declarations(this) code # Compiles a single expression within the expressions body. If we need to # return the result, and it's an expression, simply return it. If it's a # statement, ask the statement to do so. compile_expression: (node, o) -> @tab: o.indent stmt: node.is_statement() returns: del(o, 'returns') and @is_last(node) and not node.is_pure_statement() return (if stmt then '' else @idt()) + node.compile(merge(o, {top: true})) + (if stmt then '' else ';') unless returns return node.compile(merge(o, {returns: true})) if node.is_statement() "${@tab}return ${node.compile(o)};" # Wrap up the given nodes as an **Expressions**, unless it already happens # to be one. Expressions.wrap: (nodes) -> return nodes[0] if nodes.length is 1 and nodes[0] instanceof Expressions new Expressions(nodes) statement Expressions #### LiteralNode # Literals are static values that can be passed through directly into # JavaScript without translation, such as: strings, numbers, # `true`, `false`, `null`... exports.LiteralNode: class LiteralNode extends BaseNode type: 'Literal' constructor: (value) -> @value: value # Break and continue must be treated as pure statements -- they lose their # meaning when wrapped in a closure. is_statement: -> @value is 'break' or @value is 'continue' is_pure_statement: LiteralNode::is_statement compile_node: (o) -> idt: if @is_statement() then @idt() else '' end: if @is_statement() then ';' else '' "$idt$@value$end" toString: (idt) -> " \"$@value\"" #### ReturnNode # A `return` is a *pure_statement* -- wrapping it in a closure wouldn't # make sense. exports.ReturnNode: class ReturnNode extends BaseNode type: 'Return' constructor: (expression) -> @children: [@expression: expression] compile_node: (o) -> return @expression.compile(merge(o, {returns: true})) if @expression.is_statement() "${@tab}return ${@expression.compile(o)};" statement ReturnNode, true #### ValueNode # A value, variable or literal or parenthesized, indexed or dotted into, # or vanilla. exports.ValueNode: class ValueNode extends BaseNode type: 'Value' SOAK: " == undefined ? undefined : " # A **ValueNode** has a base and a list of property accesses. constructor: (base, properties) -> @children: flatten [@base: base, @properties: (properties or [])] # Add a property access to the list. push: (prop) -> @properties.push(prop) @children.push(prop) this operation_sensitive: -> true has_properties: -> !!@properties.length # Some boolean checks for the benefit of other nodes. is_array: -> @base instanceof ArrayNode and not @has_properties() is_object: -> @base instanceof ObjectNode and not @has_properties() is_splice: -> @has_properties() and @properties[@properties.length - 1] instanceof SliceNode is_arguments: -> @base.value is 'arguments' # The value can be unwrapped as its inner node, if there are no attached # properties. unwrap: -> if @properties.length then this else @base # Values are considered to be statements if their base is a statement. is_statement: -> @base.is_statement and @base.is_statement() and not @has_properties() # We compile a value to JavaScript by compiling and joining each property. # Things get much more insteresting if the chain of properties has *soak* # operators `?.` interspersed. Then we have to take care not to accidentally # evaluate a anything twice when building the soak chain. compile_node: (o) -> soaked: false only: del(o, 'only_first') op: del(o, 'operation') props: if only then @properties[0...@properties.length - 1] else @properties baseline: @base.compile o baseline: "($baseline)" if @base instanceof ObjectNode and @has_properties() complete: @last: baseline for prop in props @source: baseline if prop.soak_node soaked: true if @base instanceof CallNode and prop is props[0] temp: o.scope.free_variable() complete: "($temp = $complete)$@SOAK" + (baseline: temp + prop.compile(o)) else complete: complete + @SOAK + (baseline += prop.compile(o)) else part: prop.compile(o) baseline += part complete += part @last: part if op and soaked then "($complete)" else complete #### CommentNode # CoffeeScript passes through comments as JavaScript comments at the # same position. exports.CommentNode: class CommentNode extends BaseNode type: 'Comment' constructor: (lines) -> @lines: lines this compile_node: (o) -> "$@tab//" + @lines.join("\n$@tab//") statement CommentNode #### CallNode # Node for a function invocation. Takes care of converting `super()` calls into # calls against the prototype's function of the same name. exports.CallNode: class CallNode extends BaseNode type: 'Call' constructor: (variable, args) -> @children: flatten [@variable: variable, @args: (args or [])] @prefix: '' # Tag this invocation as creating a new instance. new_instance: -> @prefix: 'new ' this # Add an argument to the call's arugment list. push: (arg) -> @args.push(arg) @children.push(arg) this # Compile a vanilla function call. compile_node: (o) -> return @compile_splat(o) if @args[@args.length - 1] instanceof SplatNode args: (arg.compile(o) for arg in @args).join(', ') return @compile_super(args, o) if @variable is 'super' "$@prefix${@variable.compile(o)}($args)" # `super()` is converted into a call against the superclass's implementation # of the current function. compile_super: (args, o) -> methname: o.scope.method.name meth: if o.scope.method.proto "${o.scope.method.proto}.__superClass__.$methname" else "${methname}.__superClass__.constructor" "${meth}.call(this${ if args.length then ', ' else '' }$args)" # If you call a function with a splat, it's converted into a JavaScript # `.apply()` call to allow the variable-length arguments. compile_splat: (o) -> meth: @variable.compile o obj: @variable.source or 'this' if obj.match(/\(/) temp: o.scope.free_variable() obj: temp meth: "($temp = ${ @variable.source })${ @variable.last }" args: for arg, i in @args code: arg.compile o code: if arg instanceof SplatNode then code else "[$code]" if i is 0 then code else ".concat($code)" "$@prefix${meth}.apply($obj, ${ args.join('') })" #### ExtendsNode # Node to extend an object's prototype with an ancestor object. # After `goog.inherits` from the # [Closure Library](http://closure-library.googlecode.com/svn/docs/closure_goog_base.js.html). exports.ExtendsNode: class ExtendsNode extends BaseNode type: 'Extends' code: ''' function(child, parent) { var ctor = function(){ }; ctor.prototype = parent.prototype; child.__superClass__ = parent.prototype; child.prototype = new ctor(); child.prototype.constructor = child; } ''' constructor: (child, parent) -> @children: [@child: child, @parent: parent] # Hooks one constructor into another's prototype chain. compile_node: (o) -> o.scope.assign('__extends', @code, true) ref: new ValueNode literal('__extends') call: new CallNode ref, [@child, @parent] call.compile(o) #### AccessorNode # A `.` accessor into a property of a value, or the `::` shorthand for # an accessor into the object's prototype. exports.AccessorNode: class AccessorNode extends BaseNode type: 'Accessor' constructor: (name, tag) -> @children: [@name: name] @prototype: tag is 'prototype' @soak_node: tag is 'soak' this compile_node: (o) -> '.' + (if @prototype then 'prototype.' else '') + @name.compile(o) #### IndexNode # An indexed accessor into an array or object. exports.IndexNode: class IndexNode extends BaseNode type: 'Index' constructor: (index, tag) -> @children: [@index: index] @soak_node: tag is 'soak' compile_node: (o) -> idx: @index.compile o "[$idx]" #### RangeNode # A range literal. Ranges can be used to extract portions (slices) of arrays, # to specify a range for comprehensions, or as a value, to be expanded into the # corresponding array of integers at runtime. exports.RangeNode: class RangeNode extends BaseNode type: 'Range' constructor: (from, to, exclusive) -> @children: [@from: from, @to: to] @exclusive: !!exclusive # Compiles the range's source variables -- where it starts and where it ends. compile_variables: (o) -> @tab: o.indent [@from_var, @to_var]: [o.scope.free_variable(), o.scope.free_variable()] [from, to]: [@from.compile(o), @to.compile(o)] "$@from_var = $from; $@to_var = $to;\n$@tab" # When compiled normally, the range returns the contents of the *for loop* # needed to iterate over the values in the range. Used by comprehensions. compile_node: (o) -> return @compile_array(o) unless o.index idx: del o, 'index' step: del o, 'step' vars: "$idx = $@from_var" step: if step then step.compile(o) else '1' equals: if @exclusive then '' else '=' intro: "($@from_var <= $@to_var ? $idx" compare: "$intro <$equals $@to_var : $idx >$equals $@to_var)" incr: "$intro += $step : $idx -= $step)" "$vars; $compare; $incr" # When used as a value, expand the range into the equivalent array. In the # future, the code this generates should probably be cleaned up by handwriting # it instead of wrapping nodes. compile_array: (o) -> name: o.scope.free_variable() body: Expressions.wrap([literal(name)]) arr: Expressions.wrap([new ForNode(body, {source: (new ValueNode(this))}, literal(name))]) (new ParentheticalNode(new CallNode(new CodeNode([], arr)))).compile(o) #### SliceNode # An array slice literal. Unlike JavaScript's `Array#slice`, the second parameter # specifies the index of the end of the slice, just as the first parameter # is the index of the beginning. exports.SliceNode: class SliceNode extends BaseNode type: 'Slice' constructor: (range) -> @children: [@range: range] this compile_node: (o) -> from: @range.from.compile(o) to: @range.to.compile(o) plus_part: if @range.exclusive then '' else ' + 1' ".slice($from, $to$plus_part)" #### ObjectNode # An object literal, nothing fancy. exports.ObjectNode: class ObjectNode extends BaseNode type: 'Object' constructor: (props) -> @children: @objects: @properties: props or [] # All the mucking about with commas is to make sure that CommentNodes and # AssignNodes get interleaved correctly, with no trailing commas or # commas affixed to comments. # # *TODO: Extract this and add it to ArrayNode*. compile_node: (o) -> o.indent: @idt(1) non_comments: prop for prop in @properties when not (prop instanceof CommentNode) last_noncom: non_comments[non_comments.length - 1] props: for prop, i in @properties join: ",\n" join: "\n" if (prop is last_noncom) or (prop instanceof CommentNode) join: '' if i is @properties.length - 1 indent: if prop instanceof CommentNode then '' else @idt(1) indent + prop.compile(o) + join props: props.join('') inner: if props then '\n' + props + '\n' + @idt() else '' "{$inner}" #### ArrayNode # An array literal. exports.ArrayNode: class ArrayNode extends BaseNode type: 'Array' constructor: (objects) -> @children: @objects: objects or [] compile_node: (o) -> o.indent: @idt(1) objects: for obj, i in @objects code: obj.compile(o) if obj instanceof CommentNode "\n$code\n$o.indent" else if i is @objects.length - 1 code else "$code, " objects: objects.join('') ending: if objects.indexOf('\n') >= 0 then "\n$@tab]" else ']' "[$objects$ending" #### ClassNode # The CoffeeScript class definition. exports.ClassNode: class ClassNode extends BaseNode type: 'Class' # Initialize a **ClassNode** with its name, an optional superclass, and a # list of prototype property assignments. constructor: (variable, parent, props) -> @children: compact flatten [@variable: variable, @parent: parent, @properties: props or []] # Instead of generating the JavaScript string directly, we build up the # equivalent syntax tree and compile that, in pieces. You can see the # constructor, property assignments, and inheritance getting built out below. compile_node: (o) -> extension: @parent and new ExtendsNode(@variable, @parent) constructor: null props: new Expressions() o.top: true ret: del o, 'returns' for prop in @properties if prop.variable and prop.variable.base.value is 'constructor' func: prop.value func.body.push(new ReturnNode(literal('this'))) constructor: new AssignNode(@variable, func) else if prop.variable val: new ValueNode(@variable, [new AccessorNode(prop.variable, 'prototype')]) prop: new AssignNode(val, prop.value) props.push prop if not constructor if @parent applied: new ValueNode(@parent, [new AccessorNode(literal('apply'))]) constructor: new AssignNode(@variable, new CodeNode([], new Expressions([ new CallNode(applied, [literal('this'), literal('arguments')]) ]))) else constructor: new AssignNode(@variable, new CodeNode()) construct: @idt() + constructor.compile(o) + ';\n' props: if props.empty() then '' else props.compile(o) + '\n' extension: if extension then @idt() + extension.compile(o) + ';\n' else '' returns: if ret then '\n' + @idt() + 'return ' + @variable.compile(o) + ';' else '' "$construct$extension$props$returns" statement ClassNode #### PushNode # A faux-node that is never created by the grammar, but is used during # code generation to generate a quick `array.push(value)` tree of nodes. # Helpful for recording the result arrays from comprehensions. PushNode: exports.PushNode: { wrap: (array, expressions) -> expr: expressions.unwrap() return expressions if expr.is_pure_statement() or expr.contains (n) -> n.is_pure_statement() Expressions.wrap([new CallNode( new ValueNode(literal(array), [new AccessorNode(literal('push'))]), [expr] )]) } #### ClosureNode # A faux-node used to wrap an expressions body in a closure. ClosureNode: exports.ClosureNode: { wrap: (expressions, statement) -> func: new ParentheticalNode(new CodeNode([], Expressions.wrap([expressions]))) call: new CallNode(new ValueNode(func, [new AccessorNode(literal('call'))]), [literal('this')]) if statement then Expressions.wrap([call]) else call } #### AssignNode # The **AssignNode** is used to assign a local variable to value, or to set the # property of an object -- including within object literals. exports.AssignNode: class AssignNode extends BaseNode type: 'Assign' # Matchers for detecting prototype assignments. PROTO_ASSIGN: /^(\S+)\.prototype/ LEADING_DOT: /^\.(prototype\.)?/ constructor: (variable, value, context) -> @children: [@variable: variable, @value: value] @context: context top_sensitive: -> true is_value: -> @variable instanceof ValueNode is_statement: -> @is_value() and (@variable.is_array() or @variable.is_object()) # Compile an assignment, delegating to `compile_pattern_match` or # `compile_splice` if appropriate. Keep track of the name of the base object # we've been assigned to, for correct internal references. If the variable # has not been seen yet within the current scope, declare it. compile_node: (o) -> top: del o, 'top' return @compile_pattern_match(o) if @is_statement() return @compile_splice(o) if @is_value() and @variable.is_splice() stmt: del o, 'as_statement' name: @variable.compile(o) last: if @is_value() then @variable.last.replace(@LEADING_DOT, '') else name match: name.match(@PROTO_ASSIGN) proto: match and match[1] if @value instanceof CodeNode @value.name: last if last.match(IDENTIFIER) @value.proto: proto if proto val: @value.compile o return "$name: $val" if @context is 'object' o.scope.find name unless @is_value() and @variable.has_properties() val: "$name = $val" return "$@tab$val;" if stmt val: "($val)" if not top or o.returns val: "${@tab}return $val" if o.returns val # Brief implementation of recursive pattern matching, when assigning array or # object literals to a value. Peeks at their properties to assign inner names. # See the [ECMAScript Harmony Wiki](http://wiki.ecmascript.org/doku.php?id=harmony:destructuring) # for details. compile_pattern_match: (o) -> val_var: o.scope.free_variable() value: if @value.is_statement() then ClosureNode.wrap(@value) else @value assigns: ["$@tab$val_var = ${ value.compile(o) };"] o.top: true o.as_statement: true for obj, i in @variable.base.objects idx: i [obj, idx]: [obj.value, obj.variable.base] if @variable.is_object() access_class: if @variable.is_array() then IndexNode else AccessorNode if obj instanceof SplatNode val: literal(obj.compile_value(o, val_var, @variable.base.objects.indexOf(obj))) else idx: literal(idx) unless typeof idx is 'object' val: new ValueNode(literal(val_var), [new access_class(idx)]) assigns.push(new AssignNode(obj, val).compile(o)) code: assigns.join("\n") code += "\n${@tab}return ${ @variable.compile(o) };" if o.returns code # Compile the assignment from an array splice literal, using JavaScript's # `Array#splice` method. compile_splice: (o) -> name: @variable.compile(merge(o, {only_first: true})) l: @variable.properties.length range: @variable.properties[l - 1].range plus: if range.exclusive then '' else ' + 1' from: range.from.compile(o) to: range.to.compile(o) + ' - ' + from + plus val: @value.compile(o) "${name}.splice.apply($name, [$from, $to].concat($val))" #### CodeNode # A function definition. This is the only node that creates a new Scope. # When for the purposes of walking the contents of a function body, the CodeNode # has no *children* -- they're within the inner scope. exports.CodeNode: class CodeNode extends BaseNode type: 'Code' constructor: (params, body, tag) -> @params: params or [] @body: body or new Expressions() @bound: tag is 'boundfunc' # Compilation creates a new scope unless explicitly asked to share with the # outer scope. Handles splat parameters in the parameter list by peeking at # the JavaScript `arguments` objects. If the function is bound with the `=>` # arrow, generates a wrapper that saves the current value of `this` through # a closure. compile_node: (o) -> shared_scope: del o, 'shared_scope' top: del o, 'top' o.scope: shared_scope or new Scope(o.scope, @body, this) o.returns: true o.top: true o.indent: @idt(if @bound then 2 else 1) del o, 'no_wrap' del o, 'globals' if @params[@params.length - 1] instanceof SplatNode splat: @params.pop() splat.index: @params.length @body.unshift(splat) params: (param.compile(o) for param in @params) (o.scope.parameter(param)) for param in params code: if @body.expressions.length then "\n${ @body.compile_with_declarations(o) }\n" else '' name_part: if @name then ' ' + @name else '' func: "function${ if @bound then '' else name_part }(${ params.join(', ') }) {$code${@idt(if @bound then 1 else 0)}}" func: "($func)" if top and not @bound return func unless @bound inner: "(function$name_part() {\n${@idt(2)}return __func.apply(__this, arguments);\n${@idt(1)}});" "(function(__this) {\n${@idt(1)}var __func = $func;\n${@idt(1)}return $inner\n$@tab})(this)" top_sensitive: -> true # When traversing (for printing or inspecting), return the real children of # the function -- the parameters and body of expressions. real_children: -> flatten [@params, @body.expressions] # Custom `traverse` implementation that uses the `real_children`. traverse: (block) -> block this block(child) for child in @real_children() toString: (idt) -> idt ||= '' children: (child.toString(idt + TAB) for child in @real_children()).join('') "\n$idt$children" #### SplatNode # A splat, either as a parameter to a function, an argument to a call, # or as part of a destructuring assignment. exports.SplatNode: class SplatNode extends BaseNode type: 'Splat' constructor: (name) -> name: literal(name) unless name.compile @children: [@name: name] compile_node: (o) -> if @index? then @compile_param(o) else @name.compile(o) # Compiling a parameter splat means recovering the parameters that succeed # the splat in the parameter list, by slicing the arguments object. compile_param: (o) -> name: @name.compile(o) o.scope.find name "$name = Array.prototype.slice.call(arguments, $@index)" # A compiling a splat as a destructuring assignment means slicing arguments # from the right-hand-side's corresponding array. compile_value: (o, name, index) -> "Array.prototype.slice.call($name, $index)" #### WhileNode # A while loop, the only sort of low-level loop exposed by CoffeeScript. From # it, all other loops can be manufactured. Useful in cases where you need more # flexibility or more speed than a comprehension can provide. exports.WhileNode: class WhileNode extends BaseNode type: 'While' constructor: (condition, opts) -> @children:[@condition: condition] @filter: opts and opts.filter add_body: (body) -> @children.push @body: body this top_sensitive: -> true # The main difference from a JavaScript *while* is that the CoffeeScript # *while* can be used as a part of a larger expression -- while loops may # return an array containing the computed result of each iteration. compile_node: (o) -> returns: del(o, 'returns') top: del(o, 'top') and not returns o.indent: @idt(1) o.top: true cond: @condition.compile(o) set: '' if not top rvar: o.scope.free_variable() set: "$@tab$rvar = [];\n" @body: PushNode.wrap(rvar, @body) if @body post: if returns then "\n${@tab}return $rvar;" else '' pre: "$set${@tab}while ($cond)" return "$pre null;$post" if not @body @body: Expressions.wrap([new IfNode(@filter, @body)]) if @filter "$pre {\n${ @body.compile(o) }\n$@tab}$post" statement WhileNode #### OpNode # Simple Arithmetic and logical operations. Performs some conversion from # CoffeeScript operations into their JavaScript equivalents. exports.OpNode: class OpNode extends BaseNode type: 'Op' # The map of conversions from CoffeeScript to JavaScript symbols. CONVERSIONS: { '==': '===' '!=': '!==' 'and': '&&' 'or': '||' 'is': '===' 'isnt': '!==' 'not': '!' } # The list of operators for which we perform # [Python-style comparison chaining](http://docs.python.org/reference/expressions.html#notin). CHAINABLE: ['<', '>', '>=', '<=', '===', '!=='] # Our assignment operators that have no JavaScript equivalent. ASSIGNMENT: ['||=', '&&=', '?='] # Operators must come before their operands with a space. PREFIX_OPERATORS: ['typeof', 'delete'] constructor: (operator, first, second, flip) -> @type += ' ' + operator @children: compact [@first: first, @second: second] @operator: @CONVERSIONS[operator] or operator @flip: !!flip is_unary: -> not @second is_chainable: -> @CHAINABLE.indexOf(@operator) >= 0 compile_node: (o) -> o.operation: true return @compile_chain(o) if @is_chainable() and @first.unwrap() instanceof OpNode and @first.unwrap().is_chainable() return @compile_assignment(o) if @ASSIGNMENT.indexOf(@operator) >= 0 return @compile_unary(o) if @is_unary() return @compile_existence(o) if @operator is '?' [@first.compile(o), @operator, @second.compile(o)].join ' ' # Mimic Python's chained comparisons when multiple comparison operators are # used sequentially. For example: # # bin/coffee -e "puts 50 < 65 > 10" # true compile_chain: (o) -> shared: @first.unwrap().second [@first.second, shared]: shared.compile_reference(o) if shared instanceof CallNode [first, second, shared]: [@first.compile(o), @second.compile(o), shared.compile(o)] "($first) && ($shared $@operator $second)" # When compiling a conditional assignment, take care to ensure that the # operands are only evaluated once, even though we have to reference them # more than once. compile_assignment: (o) -> [first, second]: [@first.compile(o), @second.compile(o)] o.scope.find(first) if first.match(IDENTIFIER) return "$first = ${ ExistenceNode.compile_test(o, @first) } ? $first : $second" if @operator is '?=' "$first = $first ${ @operator.substr(0, 2) } $second" # If this is an existence operator, we delegate to `ExistenceNode.compile_test` # to give us the safe references for the variables. compile_existence: (o) -> [first, second]: [@first.compile(o), @second.compile(o)] test: ExistenceNode.compile_test(o, @first) "$test ? $first : $second" # Compile a unary **OpNode**. compile_unary: (o) -> space: if @PREFIX_OPERATORS.indexOf(@operator) >= 0 then ' ' else '' parts: [@operator, space, @first.compile(o)] parts: parts.reverse() if @flip parts.join('') #### TryNode # A classic *try/catch/finally* block. exports.TryNode: class TryNode extends BaseNode type: 'Try' constructor: (attempt, error, recovery, ensure) -> @children: compact [@attempt: attempt, @recovery: recovery, @ensure: ensure] @error: error this # Compilation is more or less as you would expect -- the *finally* clause # is optional, the *catch* is not. compile_node: (o) -> o.indent: @idt(1) o.top: true attempt_part: @attempt.compile(o) error_part: if @error then " (${ @error.compile(o) }) " else ' ' catch_part: "${ (@recovery or '') and ' catch' }$error_part{\n${ @recovery.compile(o) }\n$@tab}" finally_part: (@ensure or '') and ' finally {\n' + @ensure.compile(merge(o, {returns: null})) + "\n$@tab}" "${@tab}try {\n$attempt_part\n$@tab}$catch_part$finally_part" statement TryNode #### ThrowNode # Simple node to throw an exception. exports.ThrowNode: class ThrowNode extends BaseNode type: 'Throw' constructor: (expression) -> @children: [@expression: expression] compile_node: (o) -> "${@tab}throw ${@expression.compile(o)};" statement ThrowNode #### ExistenceNode # Checks a variable for existence -- not *null* and not *undefined*. This is # similar to `.nil?` in Ruby, and avoids having to consult a JavaScript truth # table. exports.ExistenceNode: class ExistenceNode extends BaseNode type: 'Existence' constructor: (expression) -> @children: [@expression: expression] compile_node: (o) -> ExistenceNode.compile_test(o, @expression) # The meat of the **ExistenceNode** is in this static `compile_test` method # because other nodes like to check the existence of their variables as well. # Be careful not to double-evaluate anything. ExistenceNode.compile_test: (o, variable) -> [first, second]: [variable, variable] if variable instanceof CallNode or (variable instanceof ValueNode and variable.has_properties()) [first, second]: variable.compile_reference(o) [first, second]: [first.compile(o), second.compile(o)] "(typeof $first !== \"undefined\" && $second !== null)" #### ParentheticalNode # An extra set of parentheses, specified explicitly in the source. At one time # we tried to clean up the results by detecting and removing redundant # parentheses, but no longer -- you can put in as many as you please. # # Parentheses are a good way to force any statement to become an expression. exports.ParentheticalNode: class ParentheticalNode extends BaseNode type: 'Paren' constructor: (expression) -> @children: [@expression: expression] is_statement: -> @expression.is_statement() compile_node: (o) -> code: @expression.compile(o) return code if @is_statement() l: code.length code: code.substr(o, l-1) if code.substr(l-1, 1) is ';' "($code)" #### ForNode # CoffeeScript's replacement for the *for* loop is our array and object # comprehensions, that compile into *for* loops here. They also act as an # expression, able to return the result of each filtered iteration. # # Unlike Python array comprehensions, they can be multi-line, and you can pass # the current index of the loop as a second parameter. Unlike Ruby blocks, # you can map and filter in a single pass. exports.ForNode: class ForNode extends BaseNode type: 'For' constructor: (body, source, name, index) -> @body: body @name: name @index: index or null @source: source.source @filter: source.filter @step: source.step @object: !!source.object [@name, @index]: [@index, @name] if @object @children: compact [@body, @source, @filter] top_sensitive: -> true # Welcome to the hairiest method in all of CoffeeScript. Handles the inner # loop, filtering, stepping, and result saving for array, object, and range # comprehensions. Some of the generated code can be shared in common, and # some cannot. compile_node: (o) -> top_level: del(o, 'top') and not o.returns range: @source instanceof ValueNode and @source.base instanceof RangeNode and not @source.properties.length source: if range then @source.base else @source scope: o.scope name: @name and @name.compile o index: @index and @index.compile o name_found: name and scope.find name index_found: index and scope.find index body_dent: @idt(1) rvar: scope.free_variable() unless top_level svar: scope.free_variable() ivar: if range then name else index or scope.free_variable() var_part: '' body: Expressions.wrap([@body]) if range index_var: scope.free_variable() source_part: source.compile_variables o for_part: source.compile merge o, {index: ivar, step: @step} for_part: "$index_var = 0, $for_part, $index_var++" else index_var: null source_part: "$svar = ${ @source.compile(o) };\n$@tab" var_part: "$body_dent$name = $svar[$ivar];\n" if name if not @object lvar: scope.free_variable() step_part: if @step then "$ivar += ${ @step.compile(o) }" else "$ivar++" for_part: "$ivar = 0, $lvar = ${svar}.length; $ivar < $lvar; $step_part" set_result: if rvar then @idt() + rvar + ' = []; ' else @idt() return_result: rvar or '' body: ClosureNode.wrap(body, true) if top_level and @contains (n) -> n instanceof CodeNode body: PushNode.wrap(rvar, body) unless top_level if o.returns return_result: 'return ' + return_result del o, 'returns' body: new IfNode(@filter, body, null, {statement: true}) if @filter else if @filter body: Expressions.wrap([new IfNode(@filter, body)]) if @object o.scope.assign('__hasProp', 'Object.prototype.hasOwnProperty', true) for_part: "$ivar in $svar) { if (__hasProp.call($svar, $ivar)" return_result: "\n$@tab$return_result;" unless top_level body: body.compile(merge(o, {indent: body_dent, top: true})) vars: if range then name else "$name, $ivar" close: if @object then '}}\n' else '}\n' "$set_result${source_part}for ($for_part) {\n$var_part$body\n$@tab$close$@tab$return_result" statement ForNode #### IfNode # *If/else* statements. Our *switch/when* will be compiled into this. Acts as an # expression by pushing down requested returns to the last line of each clause. # # Single-expression **IfNodes** are compiled into ternary operators if possible, # because ternaries are already proper expressions, and don't need conversion. exports.IfNode: class IfNode extends BaseNode type: 'If' constructor: (condition, body, else_body, tags) -> @condition: condition @body: body and body.unwrap() @else_body: else_body and else_body.unwrap() @children: compact [@condition, @body, @else_body] @tags: tags or {} @multiple: true if @condition instanceof Array @condition: new OpNode('!', new ParentheticalNode(@condition)) if @tags.invert # Add a new *else* clause to this **IfNode**, or push it down to the bottom # of the chain recursively. push: (else_body) -> eb: else_body.unwrap() if @else_body then @else_body.push(eb) else @else_body: eb this force_statement: -> @tags.statement: true this # Tag a chain of **IfNodes** with their object(s) to switch on for equality # tests. `rewrite_switch` will perform the actual change at compile time. rewrite_condition: (expression) -> @switcher: expression this # Rewrite a chain of **IfNodes** with their switch condition for equality. # Ensure that the switch expression isn't evaluated more than once. rewrite_switch: (o) -> assigner: @switcher if not (@switcher.unwrap() instanceof LiteralNode) variable: literal(o.scope.free_variable()) assigner: new AssignNode(variable, @switcher) @switcher: variable @condition: if @multiple for cond, i in @condition new OpNode('is', (if i is 0 then assigner else @switcher), cond) else new OpNode('is', assigner, @condition) @else_body.rewrite_condition(@switcher) if @is_chain() this # Rewrite a chain of **IfNodes** to add a default case as the final *else*. add_else: (exprs, statement) -> if @is_chain() @else_body.add_else exprs, statement else exprs: exprs.unwrap() unless statement @children.push @else_body: exprs this # If the `else_body` is an **IfNode** itself, then we've got an *if-else* chain. is_chain: -> @chain ||= @else_body and @else_body instanceof IfNode # The **IfNode** only compiles into a statement if either of its bodies needs # to be a statement. Otherwise a ternary is safe. is_statement: -> @statement ||= !!(@comment or @tags.statement or @body.is_statement() or (@else_body and @else_body.is_statement())) compile_condition: (o) -> (cond.compile(o) for cond in flatten([@condition])).join(' || ') compile_node: (o) -> if @is_statement() then @compile_statement(o) else @compile_ternary(o) # Compile the **IfNode** as a regular *if-else* statement. Flattened chains # force inner *else* bodies into statement form. compile_statement: (o) -> @rewrite_switch(o) if @switcher child: del o, 'chain_child' cond_o: merge o del cond_o, 'returns' o.indent: @idt(1) o.top: true if_dent: if child then '' else @idt() com_dent: if child then @idt() else '' prefix: if @comment then "${ @comment.compile(cond_o) }\n$com_dent" else '' body: Expressions.wrap([@body]).compile(o) if_part: "$prefix${if_dent}if (${ @compile_condition(cond_o) }) {\n$body\n$@tab}" return if_part unless @else_body else_part: if @is_chain() ' else ' + @else_body.compile(merge(o, {indent: @idt(), chain_child: true})) else " else {\n${ Expressions.wrap([@else_body]).compile(o) }\n$@tab}" "$if_part$else_part" # Compile the IfNode as a ternary operator. compile_ternary: (o) -> if_part: @condition.compile(o) + ' ? ' + @body.compile(o) else_part: if @else_body then @else_body.compile(o) else 'null' "$if_part : $else_part" # Constants # --------- # Tabs are two spaces for pretty printing. TAB: ' ' # Trim out all trailing whitespace, so that the generated code plays nice # with Git. TRAILING_WHITESPACE: /\s+$/gm # Keep this identifier regex in sync with the Lexer. IDENTIFIER: /^[a-zA-Z\$_](\w|\$)*$/ # Utility Functions # ----------------- # Handy helper for a generating LiteralNode. literal: (name) -> new LiteralNode(name)