class Parser # Declare tokens produced by the lexer token IF ELSE THEN UNLESS token NUMBER STRING REGEX token TRUE FALSE YES NO ON OFF token IDENTIFIER PROPERTY_ACCESS token CODE PARAM NEW RETURN token TRY CATCH FINALLY THROW token BREAK CONTINUE token FOR IN WHILE token SWITCH WHEN token DELETE INSTANCEOF TYPEOF token SUPER EXTENDS token NEWLINE token COMMENT token JS token INDENT OUTDENT # Declare order of operations. prechigh nonassoc UMINUS NOT '!' '!!' '~' '++' '--' left '*' '/' '%' left '+' '-' left '<<' '>>' '>>>' left '&' '|' '^' left '<=' '<' '>' '>=' right '==' '!=' IS ISNT left '&&' '||' AND OR right '-=' '+=' '/=' '*=' '%=' right DELETE INSTANCEOF TYPEOF left '.' right THROW FOR IN WHILE NEW SUPER left UNLESS IF ELSE EXTENDS left ASSIGN '||=' '&&=' right RETURN INDENT left OUTDENT preclow # We expect 3 shift/reduce errors for optional syntax. # There used to be 252 -- greatly improved. expect 3 rule # All parsing will end in this rule, being the trunk of the AST. Root: /* nothing */ { result = Expressions.new([]) } | Terminator { result = Expressions.new([]) } | Expressions { result = val[0] } ; # Any list of expressions or method body, seperated by line breaks or semis. Expressions: Expression { result = Expressions.new(val) } | Expressions Terminator Expression { result = val[0] << val[2] } | Expressions Terminator { result = val[0] } | Terminator Expressions { result = val[1] } ; # All types of expressions in our language. Expression: PureExpression | Statement ; # The parts that are natural JavaScript expressions. PureExpression: Value | Call | Code | Operation | Range ; # We have to take extra care to convert these statements into expressions. Statement: Assign | If | Try | Throw | Return | While | For | Switch | Extends | Comment ; Block: Then Expression { result = Expressions.new([val[1]]) } | INDENT Expressions OUTDENT { result = val[1] } ; # All tokens that can terminate an expression. Terminator: "\n" | ";" ; # All tokens that can serve to begin the second block of a multi-part expression. Then: THEN | Terminator ; # All hard-coded values. Literal: NUMBER { result = LiteralNode.new(val[0]) } | STRING { result = LiteralNode.new(val[0]) } | JS { result = LiteralNode.new(val[0]) } | REGEX { result = LiteralNode.new(val[0]) } | BREAK { result = LiteralNode.new(val[0]) } | CONTINUE { result = LiteralNode.new(val[0]) } | TRUE { result = LiteralNode.new(true) } | FALSE { result = LiteralNode.new(false) } | YES { result = LiteralNode.new(true) } | NO { result = LiteralNode.new(false) } | ON { result = LiteralNode.new(true) } | OFF { result = LiteralNode.new(false) } ; # Assignment to a variable. Assign: Value ASSIGN Expression { result = AssignNode.new(val[0], val[2]) } ; # Assignment within an object literal. AssignObj: IDENTIFIER ASSIGN Expression { result = AssignNode.new(ValueNode.new(val[0]), val[2], :object) } | STRING ASSIGN Expression { result = AssignNode.new(ValueNode.new(LiteralNode.new(val[0])), val[2], :object) } | Comment { result = val[0] } ; # A return statement. Return: RETURN Expression { result = ReturnNode.new(val[1]) } ; # A comment. Comment: COMMENT { result = CommentNode.new(val[0]) } ; # Arithmetic and logical operators # For Ruby's Operator precedence, see: # https://www.cs.auckland.ac.nz/references/ruby/ProgrammingRuby/language.html Operation: '!' Expression { result = OpNode.new(val[0], val[1]) } | '!!' Expression { result = OpNode.new(val[0], val[1]) } | '-' Expression = UMINUS { result = OpNode.new(val[0], val[1]) } | NOT Expression { result = OpNode.new(val[0], val[1]) } | '~' Expression { result = OpNode.new(val[0], val[1]) } | '--' Expression { result = OpNode.new(val[0], val[1]) } | '++' Expression { result = OpNode.new(val[0], val[1]) } | Expression '--' { result = OpNode.new(val[1], val[0], nil, true) } | Expression '++' { result = OpNode.new(val[1], val[0], nil, true) } | Expression '*' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '/' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '%' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '+' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '-' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '<<' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '>>' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '>>>' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '&' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '|' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '^' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '<=' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '<' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '>' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '>=' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '==' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '!=' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression IS Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression ISNT Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '&&' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '||' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression AND Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression OR Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '-=' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '+=' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '/=' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '*=' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '%=' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '||=' Expression { result = OpNode.new(val[1], val[0], val[2]) } | Expression '&&=' Expression { result = OpNode.new(val[1], val[0], val[2]) } | DELETE Expression { result = OpNode.new(val[0], val[1]) } | TYPEOF Expression { result = OpNode.new(val[0], val[1]) } | Expression INSTANCEOF Expression { result = OpNode.new(val[1], val[0], val[2]) } ; # Function definition. Code: ParamList "=>" CodeBody { result = CodeNode.new(val[0], val[2]) } | "=>" CodeBody { result = CodeNode.new([], val[1]) } ; # The body of a function. CodeBody: /* nothing */ { result = Expressions.new([]) } | Block { result = val[0] } ; # The parameters to a function definition. ParamList: PARAM { result = val } | ParamList "," PARAM { result = val[0] << val[2] } ; # Expressions that can be treated as values. Value: IDENTIFIER { result = ValueNode.new(val[0]) } | Literal { result = ValueNode.new(val[0]) } | Array { result = ValueNode.new(val[0]) } | Object { result = ValueNode.new(val[0]) } | Parenthetical { result = ValueNode.new(val[0]) } | Value Accessor { result = val[0] << val[1] } | Invocation Accessor { result = ValueNode.new(val[0], [val[1]]) } ; # Accessing into an object or array, through dot or index notation. Accessor: PROPERTY_ACCESS IDENTIFIER { result = AccessorNode.new(val[1]) } | Index { result = val[0] } | Range { result = SliceNode.new(val[0]) } ; # Indexing into an object or array. Index: "[" Expression "]" { result = IndexNode.new(val[1]) } ; # An object literal. Object: "{" AssignList "}" { result = ObjectNode.new(val[1]) } ; # Assignment within an object literal (comma or newline separated). AssignList: /* nothing */ { result = []} | AssignObj { result = val } | AssignList "," AssignObj { result = val[0] << val[2] } | AssignList Terminator AssignObj { result = val[0] << val[2] } ; # All flavors of function call (instantiation, super, and regular). Call: Invocation { result = val[0] } | NEW Invocation { result = val[1].new_instance } | Super { result = val[0] } ; # Extending an object's prototype. Extends: Value EXTENDS Value { result = ExtendsNode.new(val[0], val[2]) } ; # A generic function invocation. Invocation: Value "(" ArgList ")" { result = CallNode.new(val[0], val[2]) } | Invocation "(" ArgList ")" { result = CallNode.new(val[0], val[2]) } ; # Calling super. Super: SUPER "(" ArgList ")" { result = CallNode.new(:super, val[2]) } ; # The range literal. Range: "[" Value "." "." Value "]" { result = RangeNode.new(val[1], val[4]) } | "[" Value "." "." "." Value "]" { result = RangeNode.new(val[1], val[5], true) } ; # The array literal. Array: "[" ArgList "]" { result = ArrayNode.new(val[1]) } ; # A list of arguments to a method call, or as the contents of an array. ArgList: /* nothing */ { result = [] } | Expression { result = val } | ArgList "," Expression { result = val[0] << val[2] } | ArgList Terminator Expression { result = val[0] << val[2] } ; # Try/catch/finally exception handling blocks. Try: TRY Block Catch { result = TryNode.new(val[1], val[2][0], val[2][1]) } | TRY Block Catch FINALLY Block { result = TryNode.new(val[1], val[2][0], val[2][1], val[4]) } ; # A catch clause. Catch: /* nothing */ { result = [nil, nil] } | CATCH IDENTIFIER Block { result = [val[1], val[2]] } ; # Throw an exception. Throw: THROW Expression { result = ThrowNode.new(val[1]) } ; # Parenthetical expressions. Parenthetical: "(" Expression ")" { result = ParentheticalNode.new(val[1]) } ; # The while loop. (there is no do..while). While: WHILE Expression Block { result = WhileNode.new(val[1], val[3]) } ; # Array comprehensions, including guard and current index. # Looks a little confusing, check nodes.rb for the arguments to ForNode. For: Expression FOR ForVariables ForSource { result = ForNode.new(val[0], val[3][0], val[2][0], val[3][1], val[2][1]) } ; # An array comprehension has variables for the current element and index. ForVariables: IDENTIFIER { result = val } | IDENTIFIER "," IDENTIFIER { result = [val[0], val[2]] } ; # The source of the array comprehension can optionally be filtered. ForSource: IN PureExpression "." { result = [val[1]] } | IN PureExpression IF Expression "." { result = [val[1], val[3]] } ; # Switch/When blocks. Switch: SWITCH Expression Then Whens { result = val[3].rewrite_condition(val[1]) } | SWITCH Expression Then Whens ELSE Block { result = val[3].rewrite_condition(val[1]).add_else(val[5]) } ; # The inner list of whens. Whens: When { result = val[0] } | Whens When { result = val[0] << val[1] } ; # An individual when. When: WHEN Expression Then Block { result = IfNode.new(val[1], val[3]) } ; # All of the following nutso if-else destructuring is to make the # grammar expand unambiguously. # An elsif portion of an if-else block. ElsIf: ELSE IF Expression Block { result = IfNode.new(val[2], val[4]) } ; # Multiple elsifs can be chained together. ElsIfs: ElsIf { result = val[0] } | ElsIfs ElsIf { result = val[0].add_else(val[1]) } ; # Terminating else bodies are strictly optional. ElseBody /* nothing */ { result = nil } | ELSE Block { result = val[1] } ; # All the alternatives for ending an if-else block. IfEnd: ElseBody { result = val[0] } | ElsIfs ElseBody { result = val[0].add_else(val[1]) } ; # The full complement of if blocks, including postfix one-liner ifs and unlesses. If: IF Expression Block IfEnd { result = IfNode.new(val[1], val[3], val[4]) } | Expression IF Expression { result = IfNode.new(val[2], Expressions.new([val[0]]), nil, {:statement => true}) } | Expression UNLESS Expression { result = IfNode.new(val[2], Expressions.new([val[0]]), nil, {:statement => true, :invert => true}) } ; end ---- header module CoffeeScript ---- inner # Lex and parse a CoffeeScript. def parse(code) # Uncomment the following line to enable grammar debugging, in combination # with the -g flag in the Rake build task. # @yydebug = true @tokens = Lexer.new.tokenize(code) do_parse end # Retrieve the next token from the list. def next_token @tokens.shift end # Raise a custom error class that knows about line numbers. def on_error(error_token_id, error_value, value_stack) raise ParseError.new(token_to_str(error_token_id), error_value, value_stack) end ---- footer end