Files
coffeescript/src/nodes.coffee

1712 lines
58 KiB
CoffeeScript

# `nodes.coffee` contains all of the node classes for the syntax tree. Most
# nodes are created as the result of actions in the [grammar](grammar.html),
# but some are created by other nodes as a method of code generation. To convert
# the syntax tree into a string of JavaScript code, call `compile()` on the root.
{Scope} = require './scope'
# Import the helpers we plan to use.
{compact, flatten, merge, del, starts, ends, last} = require './helpers'
# Constant functions for nodes that don't need customization.
YES = -> yes
NO = -> no
THIS = -> this
#### Base
# The **Base** is the abstract base class for all nodes in the syntax tree.
# Each subclass implements the `compileNode` method, which performs the
# code generation for that node. To compile a node to JavaScript,
# call `compile` on it, which wraps `compileNode` in some generic extra smarts,
# to know when the generated code needs to be wrapped up in a closure.
# An options hash is passed and cloned throughout, containing information about
# the environment from higher in the tree (such as if a returned value is
# being requested by the surrounding function), information about the current
# scope, and indentation level.
exports.Base = class Base
constructor: ->
@tags = {}
# Common logic for determining whether to wrap this node in a closure before
# compiling it, or to compile directly. We need to wrap if this node is a
# *statement*, and it's not a *pureStatement*, and we're not at
# the top level of a block (which would be unnecessary), and we haven't
# already been asked to return the result (because statements know how to
# return results).
#
# If a Node is *topSensitive*, that means that it needs to compile differently
# depending on whether it's being used as part of a larger expression, or is a
# top-level statement within the function body.
compile: (o) ->
@options = if o then merge o else {}
@tab = o.indent
top = if @topSensitive() then @options.top else del @options, 'top'
closure = @isStatement(o) and not @isPureStatement() and not top and
not @options.asStatement and this not instanceof Comment
code = if closure then @compileClosure(@options) else @compileNode(@options)
code
# Statements converted into expressions via closure-wrapping share a scope
# object with their parent closure, to preserve the expected lexical scope.
compileClosure: (o) ->
o.sharedScope = o.scope
throw SyntaxError 'cannot include a pure statement in an expression.' if @containsPureStatement()
Closure.wrap(this).compile o
# If the code generation wishes to use the result of a complex expression
# in multiple places, ensure that the expression is only ever evaluated once,
# by assigning it to a temporary variable.
compileReference: (o, options) ->
pair = unless @isComplex()
[this, this]
else
reference = new Literal o.scope.freeVariable 'ref'
compiled = new Assign reference, this
[compiled, reference]
(pair[i] = node.compile o) for node, i in pair if options?.precompile
pair
# Compile unparenthesized.
compileBare: (o) ->
@parenthetical = on
@compile o
# Convenience method to grab the current indentation level, plus tabbing in.
idt: (tabs) ->
(@tab or '') + Array((tabs or 0) + 1).join TAB
# Construct a node that returns the current node's result.
# Note that this is overridden for smarter behavior for
# many statement nodes (eg If, For)...
makeReturn: ->
new Return this
# Does this node, or any of its children, contain a node of a certain kind?
# Recursively traverses down the *children* of the nodes, yielding to a block
# and returning true when the block finds a match. `contains` does not cross
# scope boundaries.
contains: (block) ->
contains = false
@traverseChildren false, (node) ->
if block(node)
contains = true
return false
contains
# Is this node of a certain type, or does it contain the type?
containsType: (type) ->
this instanceof type or @contains (node) -> node instanceof type
# Convenience for the most common use of contains. Does the node contain
# a pure statement?
containsPureStatement: ->
@isPureStatement() or @contains (node) -> node.isPureStatement()
# Perform an in-order traversal of the AST. Crosses scope boundaries.
traverse: (block) -> @traverseChildren true, block
# `toString` representation of the node, for inspecting the parse tree.
# This is what `coffee --nodes` prints out.
toString: (idt, override) ->
idt or= ''
children = (child.toString idt + TAB for child in @collectChildren()).join('')
klass = override or @constructor.name + if @soakNode then '?' else ''
'\n' + idt + klass + children
eachChild: (func) ->
return unless @children
for attr in @children when this[attr]
for child in flatten [this[attr]]
return if func(child) is false
this
collectChildren: ->
nodes = []
@eachChild (node) -> nodes.push node
nodes
traverseChildren: (crossScope, func) ->
@eachChild (child) ->
return false if func(child) is false
if crossScope or child not instanceof Code
child.traverseChildren crossScope, func
invert: -> new Op '!', this
# Default implementations of the common node properties and methods. Nodes
# will override these with custom logic, if needed.
children: []
unwrap : THIS
isStatement : NO
isPureStatement : NO
isComplex : YES
isChainable : NO
topSensitive : NO
unfoldSoak : NO
# Is this node used to assign a certain variable?
assigns: NO
#### Expressions
# The expressions body is the list of expressions that forms the body of an
# indented block of code -- the implementation of a function, a clause in an
# `if`, `switch`, or `try`, and so on...
exports.Expressions = class Expressions extends Base
children: ['expressions']
isStatement: YES
constructor: (nodes) ->
super()
@expressions = compact flatten nodes or []
# Tack an expression on to the end of this expression list.
push: (node) ->
@expressions.push(node)
this
# Add an expression at the beginning of this expression list.
unshift: (node) ->
@expressions.unshift(node)
this
# If this Expressions consists of just a single node, unwrap it by pulling
# it back out.
unwrap: ->
if @expressions.length is 1 then @expressions[0] else this
# Is this an empty block of code?
empty: ->
@expressions.length is 0
# An Expressions node does not return its entire body, rather it
# ensures that the final expression is returned.
makeReturn: ->
end = @expressions[idx = @expressions.length - 1]
end = @expressions[idx -= 1] if end instanceof Comment
if end and end not instanceof Return
@expressions[idx] = end.makeReturn()
this
# An **Expressions** is the only node that can serve as the root.
compile: (o) ->
o or= {}
if o.scope then super(o) else @compileRoot(o)
compileNode: (o) ->
(@compileExpression node, merge o for node in @expressions).join '\n'
# If we happen to be the top-level **Expressions**, wrap everything in
# a safety closure, unless requested not to.
# It would be better not to generate them in the first place, but for now,
# clean up obvious double-parentheses.
compileRoot: (o) ->
o.indent = @tab = if o.bare then '' else TAB
o.scope = new Scope null, this, null
code = @compileWithDeclarations o
code = code.replace TRAILING_WHITESPACE, ''
if o.bare then code else "(function() {\n#{code}\n}).call(this);\n"
# Compile the expressions body for the contents of a function, with
# declarations of all inner variables pushed up to the top.
compileWithDeclarations: (o) ->
code = @compileNode(o)
if o.scope.hasAssignments this
code = "#{@tab}var #{ o.scope.compiledAssignments().replace /\n/g, '$&' + @tab };\n#{code}"
if not o.globals and o.scope.hasDeclarations this
code = "#{@tab}var #{ o.scope.compiledDeclarations() };\n#{code}"
code
# Compiles a single expression within the expressions body. If we need to
# return the result, and it's an expression, simply return it. If it's a
# statement, ask the statement to do so.
compileExpression: (node, o) ->
@tab = o.indent
node.tags.front = true
compiledNode = node.compile merge o, top: true
if node.isStatement(o) then compiledNode else "#{@idt()}#{compiledNode};"
# Wrap up the given nodes as an **Expressions**, unless it already happens
# to be one.
Expressions.wrap = (nodes) ->
return nodes[0] if nodes.length is 1 and nodes[0] instanceof Expressions
new Expressions(nodes)
#### Literal
# Literals are static values that can be passed through directly into
# JavaScript without translation, such as: strings, numbers,
# `true`, `false`, `null`...
exports.Literal = class Literal extends Base
constructor: (@value) ->
super()
makeReturn: ->
if @isStatement() then this else super()
# Break and continue must be treated as pure statements -- they lose their
# meaning when wrapped in a closure.
isStatement: ->
@value in ['break', 'continue', 'debugger']
isPureStatement: Literal::isStatement
isComplex: NO
isReserved: ->
!!@value.reserved
assigns: (name) -> name is @value
compileNode: (o) ->
idt = if @isStatement o then @idt() else ''
end = if @isStatement o then ';' else ''
val = if @isReserved() then "\"#{@value}\"" else @value
idt + val + end
toString: -> ' "' + @value + '"'
#### Return
# A `return` is a *pureStatement* -- wrapping it in a closure wouldn't
# make sense.
exports.Return = class Return extends Base
children: ['expression']
isStatement : YES
isPureStatement: YES
constructor: (@expression) ->
super()
makeReturn: THIS
compile: (o) ->
expr = @expression?.makeReturn()
return expr.compile o if expr and expr not instanceof Return
super o
compileNode: (o) ->
expr = ''
if @expression
o.asStatement = true if @expression.isStatement(o)
expr = ' ' + @expression.compileBare o
"#{@tab}return#{expr};"
#### Value
# A value, variable or literal or parenthesized, indexed or dotted into,
# or vanilla.
exports.Value = class Value extends Base
children: ['base', 'properties']
# A **Value** has a base and a list of property accesses.
constructor: (@base, props, tag) ->
super()
@properties = props or []
@tags[tag] = yes if tag
# Add a property access to the list.
push: (prop) ->
@properties.push(prop)
this
hasProperties: ->
!!@properties.length
# Some boolean checks for the benefit of other nodes.
isArray: ->
@base instanceof ArrayLiteral and not @properties.length
isObject: ->
@base instanceof ObjectLiteral and not @properties.length
isSplice: ->
last(@properties) instanceof Slice
isComplex: ->
@base.isComplex() or @hasProperties()
assigns: (name) ->
not @properties.length and @base.assigns name
makeReturn: ->
if @properties.length then super() else @base.makeReturn()
# The value can be unwrapped as its inner node, if there are no attached
# properties.
unwrap: ->
if @properties.length then this else @base
# Values are considered to be statements if their base is a statement.
isStatement: (o) ->
@base.isStatement(o) and not @properties.length
isSimpleNumber: ->
@base instanceof Literal and SIMPLENUM.test @base.value
# A reference has base part (`this` value) and name part.
# We cache them separately for compiling complex expressions.
# `a()[b()] ?= c` -> `(_base = a())[_name = b()] ? _base[_name] = c`
cacheReference: (o) ->
name = last @properties
if not @base.isComplex() and @properties.length < 2 and
not name?.isComplex()
return [this, this] # `a` `a.b`
base = new Value @base, @properties.slice 0, -1
if base.isComplex() # `a().b`
bref = new Literal o.scope.freeVariable 'base'
base = new Value new Parens new Assign bref, base
return [base, bref] unless name # `a()`
if name.isComplex() # `a[b()]`
nref = new Literal o.scope.freeVariable 'name'
name = new Index new Assign nref, name.index
nref = new Index nref
[base.push(name), new Value(bref or base.base, [nref or name])]
# Override compile to unwrap the value when possible.
compile: (o) ->
@base.tags.front = @tags.front
if not o.top or @properties.length then super(o) else @base.compile(o)
# We compile a value to JavaScript by compiling and joining each property.
# Things get much more insteresting if the chain of properties has *soak*
# operators `?.` interspersed. Then we have to take care not to accidentally
# evaluate a anything twice when building the soak chain.
compileNode: (o) ->
return ifn.compile o if ifn = @unfoldSoak o
props = @properties
@base.parenthetical = yes if @parenthetical and not props.length
code = @base.compile o
code = "(#{code})" if props[0] instanceof Accessor and @isSimpleNumber()
(code += prop.compile o) for prop in props
return code
# Unfold a soak into an `If`: `a?.b` -> `a.b if a?`
unfoldSoak: (o) ->
if ifn = @base.unfoldSoak o
Array::push.apply ifn.body.properties, @properties
return ifn
for prop, i in @properties when prop.soakNode
prop.soakNode = off
fst = new Value @base, @properties.slice 0, i
snd = new Value @base, @properties.slice i
if fst.isComplex()
ref = new Literal o.scope.freeVariable 'ref'
fst = new Parens new Assign ref, fst
snd.base = ref
return new If new Existence(fst), snd, soak: on, operation: @tags.operation
null
@wrap: (node) -> if node instanceof Value then node else new Value node
#### Comment
# CoffeeScript passes through block comments as JavaScript block comments
# at the same position.
exports.Comment = class Comment extends Base
isStatement: YES
constructor: (@comment) ->
super()
makeReturn: THIS
compileNode: (o) ->
@tab + '/*' + @comment.replace(/\n/g, '\n' + @tab) + '*/'
#### Call
# Node for a function invocation. Takes care of converting `super()` calls into
# calls against the prototype's function of the same name.
exports.Call = class Call extends Base
children: ['variable', 'args']
constructor: (variable, @args, @soakNode) ->
super()
@isNew = false
@isSuper = variable is 'super'
@variable = if @isSuper then null else variable
@args or= []
compileSplatArguments: (o) ->
Splat.compileSplattedArray @args, o
# Tag this invocation as creating a new instance.
newInstance: ->
@isNew = true
this
prefix: ->
if @isNew then 'new ' else ''
# Grab the reference to the superclass' implementation of the current method.
superReference: (o) ->
{method} = o.scope
throw SyntaxError 'cannot call super outside of a function.' unless method
{name} = method
throw SyntaxError 'cannot call super on an anonymous function.' unless name
if method.klass
"#{method.klass}.__super__.#{name}"
else
"#{name}.__super__.constructor"
# Soaked chained invocations unfold into if/else ternary structures.
unfoldSoak: (o) ->
if @soakNode
if @variable
return ifn if ifn = If.unfoldSoak o, this, 'variable'
[left, rite] = Value.wrap(@variable).cacheReference o
else
left = new Literal @superReference o
rite = new Value left
rite = new Call rite, @args
rite.isNew = @isNew
left = new Literal "typeof #{ left.compile o } === \"function\""
return new If left, new Value(rite), soak: yes, operation: @tags.operation
call = this
list = []
loop
if call.variable instanceof Call
list.push call
call = call.variable
continue
break unless call.variable instanceof Value
list.push call
break unless (call = call.variable.base) instanceof Call
for call in list.reverse()
if ifn
if call.variable instanceof Call
call.variable = ifn
else
call.variable.base = ifn
ifn = If.unfoldSoak o, call, 'variable'
ifn
# Compile a vanilla function call.
compileNode: (o) ->
return ifn.compile o if ifn = @unfoldSoak o
@variable?.tags.front = @tags.front
for arg in @args when arg instanceof Splat
return @compileSplat o
args = (arg.compileBare o for arg in @args).join ', '
if @isSuper
@compileSuper args, o
else
"#{@prefix()}#{@variable.compile o}(#{args})"
# `super()` is converted into a call against the superclass's implementation
# of the current function.
compileSuper: (args, o) ->
"#{@superReference(o)}.call(this#{ if args.length then ', ' else '' }#{args})"
# If you call a function with a splat, it's converted into a JavaScript
# `.apply()` call to allow an array of arguments to be passed.
# If it's a constructor, then things get real tricky. We have to inject an
# inner constructor in order to be able to pass the varargs.
compileSplat: (o) ->
splatargs = @compileSplatArguments o
return "#{ @superReference o }.apply(this, #{splatargs})" if @isSuper
unless @isNew
base = Value.wrap @variable
if (name = base.properties.pop()) and base.isComplex()
ref = o.scope.freeVariable 'this'
fun = "(#{ref} = #{ base.compile o })#{ name.compile o }"
else
fun = ref = base.compile o
fun += name.compile o if name
return "#{fun}.apply(#{ref}, #{splatargs})"
idt = @idt 1
"""
(function(func, args, ctor) {
#{idt}ctor.prototype = func.prototype;
#{idt}var child = new ctor, result = func.apply(child, args);
#{idt}return typeof result === "object" ? result : child;
#{@tab}})(#{ @variable.compile o }, #{splatargs}, function() {})
"""
#### Extends
# Node to extend an object's prototype with an ancestor object.
# After `goog.inherits` from the
# [Closure Library](http://closure-library.googlecode.com/svn/docs/closureGoogBase.js.html).
exports.Extends = class Extends extends Base
children: ['child', 'parent']
constructor: (@child, @parent) ->
super()
# Hooks one constructor into another's prototype chain.
compileNode: (o) ->
new Call(new Value(new Literal utility 'extends'), [@child, @parent]).compile o
#### Accessor
# A `.` accessor into a property of a value, or the `::` shorthand for
# an accessor into the object's prototype.
exports.Accessor = class Accessor extends Base
children: ['name']
constructor: (@name, tag) ->
super()
@prototype = if tag is 'prototype' then '.prototype' else ''
@soakNode = tag is 'soak'
compileNode: (o) ->
name = @name.compile o
@prototype + if IS_STRING.test(name) then "[#{name}]" else ".#{name}"
isComplex: NO
#### Index
# A `[ ... ]` indexed accessor into an array or object.
exports.Index = class Index extends Base
children: ['index']
constructor: (@index) ->
super()
compileNode: (o) ->
(if @proto then '.prototype' else '') + "[#{ @index.compileBare o }]"
isComplex: -> @index.isComplex()
#### Range
# A range literal. Ranges can be used to extract portions (slices) of arrays,
# to specify a range for comprehensions, or as a value, to be expanded into the
# corresponding array of integers at runtime.
exports.Range = class Range extends Base
children: ['from', 'to']
constructor: (@from, @to, tag) ->
super()
@exclusive = tag is 'exclusive'
@equals = if @exclusive then '' else '='
# Compiles the range's source variables -- where it starts and where it ends.
# But only if they need to be cached to avoid double evaluation.
compileVariables: (o) ->
o = merge(o, top: true)
[@from, @fromVar] = @from.compileReference o, precompile: yes
[@to, @toVar] = @to.compileReference o, precompile: yes
[@fromNum, @toNum] = [@fromVar.match(SIMPLENUM), @toVar.match(SIMPLENUM)]
parts = []
parts.push @from if @from isnt @fromVar
parts.push @to if @to isnt @toVar
# When compiled normally, the range returns the contents of the *for loop*
# needed to iterate over the values in the range. Used by comprehensions.
compileNode: (o) ->
@compileVariables o
return @compileArray(o) unless o.index
return @compileSimple(o) if @fromNum and @toNum
idx = del o, 'index'
step = del o, 'step'
vars = "#{idx} = #{@from}" + if @to isnt @toVar then ", #{@to}" else ''
intro = "(#{@fromVar} <= #{@toVar} ? #{idx}"
compare = "#{intro} <#{@equals} #{@toVar} : #{idx} >#{@equals} #{@toVar})"
stepPart = if step then step.compile(o) else '1'
incr = if step then "#{idx} += #{stepPart}" else "#{intro} += #{stepPart} : #{idx} -= #{stepPart})"
"#{vars}; #{compare}; #{incr}"
# Compile a simple range comprehension, with integers.
compileSimple: (o) ->
[from, to] = [+@fromNum, +@toNum]
idx = del o, 'index'
step = del o, 'step'
step and= "#{idx} += #{step.compile(o)}"
if from <= to
"#{idx} = #{from}; #{idx} <#{@equals} #{to}; #{step or "#{idx}++"}"
else
"#{idx} = #{from}; #{idx} >#{@equals} #{to}; #{step or "#{idx}--"}"
# When used as a value, expand the range into the equivalent array.
compileArray: (o) ->
if @fromNum and @toNum and Math.abs(@fromNum - @toNum) <= 20
range = [+@fromNum..+@toNum]
range.pop() if @exclusive
return "[#{ range.join(', ') }]"
idt = @idt 1
i = o.scope.freeVariable 'i'
result = o.scope.freeVariable 'result'
pre = "\n#{idt}#{result} = [];"
if @fromNum and @toNum
o.index = i
body = @compileSimple o
else
vars = "#{i} = #{@from}" + if @to isnt @toVar then ", #{@to}" else ''
clause = "#{@fromVar} <= #{@toVar} ?"
body = "var #{vars}; #{clause} #{i} <#{@equals} #{@toVar} : #{i} >#{@equals} #{@toVar}; #{clause} #{i} += 1 : #{i} -= 1"
post = "{ #{result}.push(#{i}); }\n#{idt}return #{result};\n#{o.indent}"
"(function() {#{pre}\n#{idt}for (#{body})#{post}}).call(this)"
#### Slice
# An array slice literal. Unlike JavaScript's `Array#slice`, the second parameter
# specifies the index of the end of the slice, just as the first parameter
# is the index of the beginning.
exports.Slice = class Slice extends Base
children: ['range']
constructor: (@range) ->
super()
compileNode: (o) ->
from = if @range.from then @range.from.compile(o) else '0'
to = if @range.to then @range.to.compile(o) else ''
to += if not to or @range.exclusive then '' else ' + 1'
to = ', ' + to if to
".slice(#{from}#{to})"
#### ObjectLiteral
# An object literal, nothing fancy.
exports.ObjectLiteral = class ObjectLiteral extends Base
children: ['properties']
constructor: (props) ->
super()
@objects = @properties = props or []
compileNode: (o) ->
top = del o, 'top'
o.indent = @idt 1
nonComments = prop for prop in @properties when prop not instanceof Comment
lastNoncom = last nonComments
props = for prop, i in @properties
join = if i is @properties.length - 1
''
else if prop is lastNoncom or prop instanceof Comment
'\n'
else
',\n'
indent = if prop instanceof Comment then '' else @idt 1
if prop instanceof Value and prop.tags.this
prop = new Assign prop.properties[0].name, prop, 'object'
else if prop not instanceof Assign and prop not instanceof Comment
prop = new Assign prop, prop, 'object'
indent + prop.compile(o) + join
props = props.join('')
obj = "{#{ if props then '\n' + props + '\n' + @idt() else '' }}"
if @tags.front then "(#{obj})" else obj
assigns: (name) ->
for prop in @properties when prop.assigns name then return yes
no
#### ArrayLiteral
# An array literal.
exports.ArrayLiteral = class ArrayLiteral extends Base
children: ['objects']
constructor: (objs) ->
super()
@objects = objs or []
compileSplatLiteral: (o) ->
Splat.compileSplattedArray @objects, o
compileNode: (o) ->
o.indent = @idt 1
for obj in @objects when obj instanceof Splat
return @compileSplatLiteral o
objects = []
for obj, i in @objects
code = obj.compileBare o
objects.push (if obj instanceof Comment
"\n#{code}\n#{o.indent}"
else if i is @objects.length - 1
code
else
code + ', '
)
objects = objects.join ''
if 0 < objects.indexOf '\n'
"[\n#{o.indent}#{objects}\n#{@tab}]"
else
"[#{objects}]"
assigns: (name) ->
for obj in @objects when obj.assigns name then return yes
no
#### Class
# The CoffeeScript class definition.
exports.Class = class Class extends Base
children: ['variable', 'parent', 'properties']
isStatement: YES
# Initialize a **Class** with its name, an optional superclass, and a
# list of prototype property assignments.
constructor: (variable, @parent, props) ->
super()
@variable = if variable is '__temp__' then new Literal variable else variable
@properties = props or []
@returns = false
makeReturn: ->
@returns = true
this
# Instead of generating the JavaScript string directly, we build up the
# equivalent syntax tree and compile that, in pieces. You can see the
# constructor, property assignments, and inheritance getting built out below.
compileNode: (o) ->
{variable} = this
variable = new Literal o.scope.freeVariable 'ctor' if variable.value is '__temp__'
extension = @parent and new Extends variable, @parent
props = new Expressions
o.top = true
me = null
className = variable.compile o
constScope = null
if @parent
applied = new Value @parent, [new Accessor new Literal 'apply']
constructor = new Code [], new Expressions [
new Call applied, [new Literal('this'), new Literal('arguments')]
]
else
constructor = new Code [], new Expressions [new Return new Literal 'this']
for prop in @properties
{variable: pvar, value: func} = prop
if pvar and pvar.base.value is 'constructor'
if func not instanceof Code
[func, ref] = func.compileReference o
props.push func if func isnt ref
apply = new Call new Value(ref, [new Accessor new Literal 'apply']),
[new Literal('this'), new Literal('arguments')]
func = new Code [], new Expressions([apply])
throw SyntaxError 'cannot define a constructor as a bound function.' if func.bound
func.name = className
func.body.push new Return new Literal 'this'
variable = new Value variable
variable.namespaced = 0 < className.indexOf '.'
constructor = func
constructor.comment = props.expressions.pop() if last(props.expressions) instanceof Comment
continue
if func instanceof Code and func.bound
if prop.context is 'this'
func.context = className
else
func.bound = false
constScope or= new Scope o.scope, constructor.body, constructor
me or= constScope.freeVariable 'this'
pname = pvar.compile o
constructor.body.push new Return new Literal 'this' if constructor.body.empty()
constructor.body.unshift new Literal "this.#{pname} = function(){ return #{className}.prototype.#{pname}.apply(#{me}, arguments); }"
if pvar
access = if prop.context is 'this' then pvar.base.properties[0] else new Accessor(pvar, 'prototype')
val = new Value variable, [access]
prop = new Assign val, func
props.push prop
constructor.className = className.match /[$\w]+$/
constructor.body.unshift new Literal "#{me} = this" if me
construct = @idt() + new Assign(variable, constructor).compile(merge o, sharedScope: constScope) + ';'
props = if !props.empty() then '\n' + props.compile(o) else ''
extension = if extension then '\n' + @idt() + extension.compile(o) + ';' else ''
returns = if @returns then '\n' + new Return(variable).compile(o) else ''
construct + extension + props + returns
#### Assign
# The **Assign** is used to assign a local variable to value, or to set the
# property of an object -- including within object literals.
exports.Assign = class Assign extends Base
# Matchers for detecting class/method names
METHOD_DEF: /^(?:(\S+)\.prototype\.)?([$A-Za-z_][$\w]*)$/
CONDITIONAL: ['||=', '&&=', '?=']
children: ['variable', 'value']
topSensitive: YES
constructor: (@variable, @value, @context) ->
super()
# Compile an assignment, delegating to `compilePatternMatch` or
# `compileSplice` if appropriate. Keep track of the name of the base object
# we've been assigned to, for correct internal references. If the variable
# has not been seen yet within the current scope, declare it.
compileNode: (o) ->
if isValue = @variable instanceof Value
return @compilePatternMatch(o) if @variable.isArray() or @variable.isObject()
return @compileSplice(o) if @variable.isSplice()
if ifn = If.unfoldSoak o, this, 'variable'
delete o.top
return ifn.compile o
return @compileConditional o if @context in @CONDITIONAL
top = del o, 'top'
stmt = del o, 'asStatement'
name = @variable.compile o
if @value instanceof Code and match = @METHOD_DEF.exec name
@value.name = match[2]
@value.klass = match[1]
val = @value.compileBare o
return "#{name}: #{val}" if @context is 'object'
o.scope.find name unless isValue and (@variable.hasProperties() or @variable.namespaced)
val = name + " #{ @context or '=' } " + val
return "#{@tab}#{val};" if stmt
if top or @parenthetical then val else "(#{val})"
# Brief implementation of recursive pattern matching, when assigning array or
# object literals to a value. Peeks at their properties to assign inner names.
# See the [ECMAScript Harmony Wiki](http://wiki.ecmascript.org/doku.php?id=harmony:destructuring)
# for details.
compilePatternMatch: (o) ->
top = del o, 'top'
otop = merge o, top: yes
if (value = @value).isStatement o then value = Closure.wrap value
{objects} = @variable.base
return value.compile o unless olength = objects.length
isObject = @variable.isObject()
if top and olength is 1 and (obj = objects[0]) not instanceof Splat
# Unroll simplest cases: `{v} = x` -> `v = x.v`
if obj instanceof Assign
{variable: {base: idx}, value: obj} = obj
else
idx = if isObject
if obj.tags.this then obj.properties[0].name else obj
else new Literal 0
accessClass = if IDENTIFIER.test idx.value then Accessor else Index
(value = Value.wrap value).properties.push new accessClass idx
return new Assign(obj, value).compile otop
valVar = value.compile o
assigns = []
splat = false
if not IDENTIFIER.test(valVar) or @variable.assigns(valVar)
assigns.push "#{ ref = o.scope.freeVariable 'ref' } = #{valVar}"
valVar = ref
for obj, i in objects
# A regular array pattern-match.
idx = i
if isObject
if obj instanceof Assign
# A regular object pattern-match.
{variable: {base: idx}, value: obj} = obj
else
# A shorthand `{a, b, @c} = val` pattern-match.
idx = if obj.tags.this then obj.properties[0].name else obj
unless obj instanceof Value or obj instanceof Splat
throw SyntaxError 'pattern matching must use only identifiers on the left-hand side.'
accessClass = if isObject and IDENTIFIER.test(idx.value) then Accessor else Index
if not splat and obj instanceof Splat
val = new Literal obj.compileValue o, valVar, i, olength - i - 1
splat = true
else
idx = new Literal(if splat then "#{valVar}.length - #{olength - idx}" else idx) if typeof idx isnt 'object'
val = new Value new Literal(valVar), [new accessClass idx]
assigns.push new Assign(obj, val).compile otop
assigns.push valVar unless top
code = assigns.join ', '
if top or @parenthetical then code else "(#{code})"
# Compile the assignment from an array splice literal, using JavaScript's
# `Array#splice` method.
compileSplice: (o) ->
{range} = @variable.properties.pop()
name = @variable.compile o
plus = if range.exclusive then '' else ' + 1'
from = if range.from then range.from.compile(o) else '0'
to = if range.to then range.to.compile(o) + ' - ' + from + plus else "#{name}.length"
ref = o.scope.freeVariable 'ref'
val = @value.compile(o)
"([].splice.apply(#{name}, [#{from}, #{to}].concat(#{ref} = #{val})), #{ref})"
# When compiling a conditional assignment, take care to ensure that the
# operands are only evaluated once, even though we have to reference them
# more than once.
compileConditional: (o) ->
[left, rite] = @variable.cacheReference o
return new Op(@context.slice(0, -1), left, new Assign(rite, @value)).compile o
assigns: (name) ->
@[if @context is 'object' then 'value' else 'variable'].assigns name
#### Code
# A function definition. This is the only node that creates a new Scope.
# When for the purposes of walking the contents of a function body, the Code
# has no *children* -- they're within the inner scope.
exports.Code = class Code extends Base
children: ['params', 'body']
constructor: (@params, @body, tag) ->
super()
@params or= []
@body or= new Expressions
@bound = tag is 'boundfunc'
@context = 'this' if @bound
# Compilation creates a new scope unless explicitly asked to share with the
# outer scope. Handles splat parameters in the parameter list by peeking at
# the JavaScript `arguments` objects. If the function is bound with the `=>`
# arrow, generates a wrapper that saves the current value of `this` through
# a closure.
compileNode: (o) ->
sharedScope = del o, 'sharedScope'
top = del o, 'top'
o.scope = sharedScope or new Scope(o.scope, @body, this)
o.top = true
o.indent = @idt 1
empty = @body.expressions.length is 0
delete o.bare
delete o.globals
splat = undefined
params = []
for param, i in @params
if splat
if param.attach
param.assign = new Assign new Value new Literal('this'), [new Accessor param.value]
@body.expressions.splice splat.index + 1, 0, param.assign
splat.trailings.push param
else
if param.attach
{value} = param
[param, param.splat] = [new Literal(o.scope.freeVariable 'arg'), param.splat]
@body.unshift new Assign new Value(new Literal('this'), [new Accessor value]), param
if param.splat
splat = new Splat param.value
splat.index = i
splat.trailings = []
splat.arglength = @params.length
@body.unshift(splat)
else
params.push param
o.scope.startLevel()
params = param.compile(o) for param in params
@body.makeReturn() unless empty or @noReturn
o.scope.parameter param for param in params
comm = if @comment then @comment.compile(o) + '\n' else ''
o.indent = @idt 2 if @className
code = if @body.expressions.length then "\n#{ @body.compileWithDeclarations(o) }\n" else ''
open = if @className then "(function() {\n#{comm}#{@idt(1)}function #{@className}(" else "function("
close = if @className then "#{code and @idt(1)}};\n#{@idt(1)}return #{@className};\n#{@tab}})()" else "#{code and @tab}}"
func = "#{open}#{ params.join(', ') }) {#{code}#{close}"
o.scope.endLevel()
return "#{utility 'bind'}(#{func}, #{@context})" if @bound
if @tags.front then "(#{func})" else func
# Short-circuit traverseChildren method to prevent it from crossing scope boundaries
# unless crossScope is true
traverseChildren: (crossScope, func) -> super(crossScope, func) if crossScope
#### Param
# A parameter in a function definition. Beyond a typical Javascript parameter,
# these parameters can also attach themselves to the context of the function,
# as well as be a splat, gathering up a group of parameters into an array.
exports.Param = class Param extends Base
children: ['name']
constructor: (@name, @attach, @splat) ->
super()
@value = new Literal @name
compileNode: (o) ->
@value.compile o
toString: ->
{name} = @
name = '@' + name if @attach
name += '...' if @splat
new Literal(name).toString()
#### Splat
# A splat, either as a parameter to a function, an argument to a call,
# or as part of a destructuring assignment.
exports.Splat = class Splat extends Base
children: ['name']
constructor: (name) ->
super()
@name = if name.compile then name else new Literal name
assigns: (name) -> @name.assigns name
compileNode: (o) ->
if @index? then @compileParam o else @name.compile o
# Compiling a parameter splat means recovering the parameters that succeed
# the splat in the parameter list, by slicing the arguments object.
compileParam: (o) ->
name = @name.compile o
o.scope.find name
end = ''
if @trailings.length
len = o.scope.freeVariable 'len'
o.scope.assign len, "arguments.length"
variadic = o.scope.freeVariable 'result'
o.scope.assign variadic, len + ' >= ' + @arglength
end = if @trailings.length then ", #{len} - #{@trailings.length}"
for trailing, idx in @trailings
if trailing.attach
assign = trailing.assign
trailing = new Literal o.scope.freeVariable 'arg'
assign.value = trailing
pos = @trailings.length - idx
o.scope.assign(trailing.compile(o), "arguments[#{variadic} ? #{len} - #{pos} : #{@index + idx}]")
"#{name} = #{utility('slice')}.call(arguments, #{@index}#{end})"
# A compiling a splat as a destructuring assignment means slicing arguments
# from the right-hand-side's corresponding array.
compileValue: (o, name, index, trailings) ->
trail = if trailings then ", #{name}.length - #{trailings}" else ''
"#{utility 'slice'}.call(#{name}, #{index}#{trail})"
# Utility function that converts arbitrary number of elements, mixed with
# splats, to a proper array
@compileSplattedArray: (list, o) ->
args = []
end = -1
for arg, i in list
code = arg.compile o
prev = args[end]
if arg not instanceof Splat
if prev and starts(prev, '[') and ends(prev, ']')
args[end] = "#{prev.slice 0, -1}, #{code}]"
continue
if prev and starts(prev, '.concat([') and ends(prev, '])')
args[end] = "#{prev.slice 0, -2}, #{code}])"
continue
code = "[#{code}]"
args[++end] = if i is 0 then code else ".concat(#{code})"
args.join ''
#### While
# A while loop, the only sort of low-level loop exposed by CoffeeScript. From
# it, all other loops can be manufactured. Useful in cases where you need more
# flexibility or more speed than a comprehension can provide.
exports.While = class While extends Base
children: ['condition', 'guard', 'body']
topSensitive: YES
isStatement : YES
constructor: (condition, opts) ->
super()
@condition = if opts?.invert then condition.invert() else condition
@guard = opts?.guard
addBody: (body) ->
@body = body
this
makeReturn: ->
@returns = true
this
# The main difference from a JavaScript *while* is that the CoffeeScript
# *while* can be used as a part of a larger expression -- while loops may
# return an array containing the computed result of each iteration.
compileNode: (o) ->
top = del(o, 'top') and not @returns
o.indent = @idt 1
cond = @condition.compileBare o
o.top = true
set = ''
unless top
rvar = o.scope.freeVariable 'result'
set = "#{@tab}#{rvar} = [];\n"
@body = Push.wrap(rvar, @body) if @body
pre = "#{set}#{@tab}while (#{cond})"
@body = Expressions.wrap [new If @guard, @body] if @guard
if @returns
post = '\n' + new Return(new Literal rvar).compile merge o, indent: @idt()
else
post = ''
"#{pre} {\n#{ @body.compile(o) }\n#{@tab}}#{post}"
#### Op
# Simple Arithmetic and logical operations. Performs some conversion from
# CoffeeScript operations into their JavaScript equivalents.
exports.Op = class Op extends Base
# The map of conversions from CoffeeScript to JavaScript symbols.
CONVERSIONS:
'==': '==='
'!=': '!=='
'of': 'in'
# The map of invertible operators.
INVERSIONS:
'!==': '==='
'===': '!=='
# The list of operators for which we perform
# [Python-style comparison chaining](http://docs.python.org/reference/expressions.html#notin).
CHAINABLE: ['<', '>', '>=', '<=', '===', '!==']
# Operators must come before their operands with a space.
PREFIX_OPERATORS: ['new', 'typeof', 'delete']
# Operators that modify a reference.
MUTATORS: ['++', '--', 'delete']
children: ['first', 'second']
constructor: (op, first, second, flip) ->
return new In first, second if op is 'in'
if op is 'new'
return first.newInstance() if first instanceof Call
first = new Parens first if first instanceof Code and first.bound
super()
@operator = @CONVERSIONS[op] or op
(@first = first ).tags.operation = yes
(@second = second).tags.operation = yes if second
@flip = !!flip
isUnary: ->
not @second
isComplex: ->
@operator isnt '!' or @first.isComplex()
isChainable: ->
@operator in @CHAINABLE
invert: ->
if op = @INVERSIONS[@operator]
@operator = op
this
else if @second
new Parens(this).invert()
else
super()
toString: (idt) ->
super idt, @constructor.name + ' ' + @operator
compileNode: (o) ->
if @isUnary()
return ifn.compile o if @operator in @MUTATORS and ifn = If.unfoldSoak o, this, 'first'
return @compileUnary o
return @compileChain o if @isChainable() and @first.unwrap().isChainable()
return @compileExistence o if @operator is '?'
@first.tags.front = @tags.front
"#{ @first.compile o } #{@operator} #{ @second.compile o }"
# Mimic Python's chained comparisons when multiple comparison operators are
# used sequentially. For example:
#
# bin/coffee -e "puts 50 < 65 > 10"
# true
compileChain: (o) ->
[@first.second, shared] = @first.unwrap().second.compileReference o
"#{ @first.compile o } && #{ shared.compile o } #{@operator} #{ @second.compile o }"
compileExistence: (o) ->
if @first.isComplex()
ref = o.scope.freeVariable 'ref'
fst = new Parens new Assign new Literal(ref), @first
else
fst = @first
ref = fst.compile o
@second.tags.operation = no
new Existence(fst).compile(o) + " ? #{ref} : #{ @second.compileBare o }"
# Compile a unary **Op**.
compileUnary: (o) ->
space = if @operator in @PREFIX_OPERATORS then ' ' else ''
parts = [@operator, space, @first.compile(o)]
(if @flip then parts.reverse() else parts).join ''
#### In
exports.In = class In extends Base
children: ['object', 'array']
constructor: (@object, @array) ->
super()
invert: ->
@negated = not @negated
this
compileNode: (o) ->
if @array instanceof Value and @array.isArray()
@compileOrTest o
else
@compileLoopTest o
compileOrTest: (o) ->
[sub, ref] = @object.compileReference o, precompile: yes
[cmp, cnj] = if @negated then [' !== ', ' && '] else [' === ', ' || ']
tests = for item, i in @array.base.objects
(if i then ref else sub) + cmp + item.compile o
tests = tests.join cnj
if @parenthetical then tests else "(#{tests})"
compileLoopTest: (o) ->
[sub, ref] = @object.compileReference merge(o, top: yes), precompile: yes
code = utility('indexOf') + ".call(#{ @array.compile o }, #{ref}) " +
if @negated then '< 0' else '>= 0'
if sub is ref then code else "(#{sub}, #{code})"
toString: (idt) ->
super idt, @constructor.name + if @negated then '!' else ''
#### Try
# A classic *try/catch/finally* block.
exports.Try = class Try extends Base
children: ['attempt', 'recovery', 'ensure']
isStatement: YES
constructor: (@attempt, @error, @recovery, @ensure) ->
super()
makeReturn: ->
@attempt = @attempt .makeReturn() if @attempt
@recovery = @recovery.makeReturn() if @recovery
this
# Compilation is more or less as you would expect -- the *finally* clause
# is optional, the *catch* is not.
compileNode: (o) ->
o.indent = @idt 1
o.top = true
attemptPart = @attempt.compile(o)
errorPart = if @error then " (#{ @error.compile o }) " else ' '
catchPart = if @recovery
" catch#{errorPart}{\n#{ @recovery.compile o }\n#{@tab}}"
else unless @ensure or @recovery then ' catch (_e) {}' else ''
finallyPart = (@ensure or '') and ' finally {\n' + @ensure.compile(merge o) + "\n#{@tab}}"
"#{@tab}try {\n#{attemptPart}\n#{@tab}}#{catchPart}#{finallyPart}"
#### Throw
# Simple node to throw an exception.
exports.Throw = class Throw extends Base
children: ['expression']
isStatement: YES
constructor: (@expression) ->
super()
# A **Throw** is already a return, of sorts...
makeReturn: THIS
compileNode: (o) ->
"#{@tab}throw #{ @expression.compile o };"
#### Existence
# Checks a variable for existence -- not *null* and not *undefined*. This is
# similar to `.nil?` in Ruby, and avoids having to consult a JavaScript truth
# table.
exports.Existence = class Existence extends Base
children: ['expression']
constructor: (@expression) ->
super()
compileNode: (o) ->
code = @expression.compile o
code = if IDENTIFIER.test(code) and not o.scope.check code
"typeof #{code} !== \"undefined\" && #{code} !== null"
else
"#{code} != null"
if @parenthetical then code else "(#{code})"
#### Parens
# An extra set of parentheses, specified explicitly in the source. At one time
# we tried to clean up the results by detecting and removing redundant
# parentheses, but no longer -- you can put in as many as you please.
#
# Parentheses are a good way to force any statement to become an expression.
exports.Parens = class Parens extends Base
children: ['expression']
topSensitive: YES
constructor: (@expression) ->
super()
isStatement: (o) ->
@expression.isStatement o
isComplex: ->
@expression.isComplex()
makeReturn: ->
@expression.makeReturn()
compileNode: (o) ->
top = del o, 'top'
code = @expression.compileBare o
return code if top and @expression.isPureStatement o
if @parenthetical or @isStatement o
return if top then @tab + code + ';' else code
"(#{code})"
#### For
# CoffeeScript's replacement for the *for* loop is our array and object
# comprehensions, that compile into *for* loops here. They also act as an
# expression, able to return the result of each filtered iteration.
#
# Unlike Python array comprehensions, they can be multi-line, and you can pass
# the current index of the loop as a second parameter. Unlike Ruby blocks,
# you can map and filter in a single pass.
exports.For = class For extends Base
children: ['body', 'source', 'guard']
topSensitive: YES
isStatement : YES
constructor: (@body, source, @name, @index) ->
super()
{@source, @guard, @step} = source
@raw = !!source.raw
@object = !!source.object
[@name, @index] = [@index, @name] if @object
throw SyntaxError 'index cannot be a pattern matching expression' if @index instanceof Value
@range = @source instanceof Value and @source.base instanceof Range and not @source.properties.length
@pattern = @name instanceof Value
throw SyntaxError 'cannot pattern match a range loop' if @range and @pattern
@returns = false
makeReturn: ->
@returns = true
this
compileReturnValue: (val, o) ->
return '\n' + new Return(new Literal val).compile o if @returns
return '\n' + val if val
''
# Welcome to the hairiest method in all of CoffeeScript. Handles the inner
# loop, filtering, stepping, and result saving for array, object, and range
# comprehensions. Some of the generated code can be shared in common, and
# some cannot.
compileNode: (o) ->
topLevel = del(o, 'top') and not @returns
source = if @range then @source.base else @source
codeInBody = not @body.containsPureStatement() and @body.contains (node) -> node instanceof Code
scope = o.scope
name = @name and @name.compile o
index = @index and @index.compile o
scope.find(name, immediate: yes) if name and not @pattern and (@range or not codeInBody)
scope.find(index, immediate: yes) if index
rvar = scope.freeVariable 'result' unless topLevel
ivar = if @range then name else index
ivar = scope.freeVariable 'i' if not ivar or codeInBody
nvar = scope.freeVariable 'i' if name and not @range and codeInBody
varPart = ''
guardPart = ''
unstepPart = ''
body = Expressions.wrap [@body]
idt1 = @idt 1
if @range
forPart = source.compile merge o, {index: ivar, @step}
else
svar = sourcePart = @source.compile o
if (name or not @raw) and
not (IDENTIFIER.test(svar) and scope.check svar, immediate: on)
sourcePart = "#{ref = scope.freeVariable 'ref'} = #{svar}"
sourcePart = "(#{sourcePart})" unless @object
svar = ref
namePart = if @pattern
new Assign(@name, new Literal "#{svar}[#{ivar}]").compile merge o, top: on
else if name
"#{name} = #{svar}[#{ivar}]"
unless @object
lvar = scope.freeVariable 'len'
stepPart = if @step then "#{ivar} += #{ @step.compile(o) }" else "#{ivar}++"
forPart = "#{ivar} = 0, #{lvar} = #{sourcePart}.length; #{ivar} < #{lvar}; #{stepPart}"
resultPart = if rvar then "#{@tab}#{rvar} = [];\n" else ''
returnResult = @compileReturnValue rvar, o
body = Push.wrap rvar, body unless topLevel
if @guard
body = Expressions.wrap [new If @guard, body]
if codeInBody
body.unshift new Literal "var #{name} = #{ivar}" if @range
body.unshift new Literal "var #{namePart}" if namePart
body.unshift new Literal "var #{index} = #{ivar}" if index
lastLine = body.expressions.pop()
body.push new Assign new Literal(ivar), new Literal index if index
body.push new Assign new Literal(nvar), new Literal name if nvar
body.push lastLine
o.indent = @idt 1
body = Expressions.wrap [new Literal body.compile o]
body.push new Assign @index, new Literal ivar if index
body.push new Assign @name, new Literal nvar or ivar if name
else
varPart = "#{idt1}#{namePart};\n" if namePart
if forPart and name is ivar
unstepPart = if @step then "#{name} -= #{ @step.compile(o) };" else "#{name}--;"
unstepPart = "\n#{@tab}" + unstepPart
if @object
forPart = "#{ivar} in #{sourcePart}"
guardPart = "\n#{idt1}if (!#{utility('hasProp')}.call(#{svar}, #{ivar})) continue;" unless @raw
body = body.compile merge o, indent: idt1, top: true
vars = if @range then name else "#{name}, #{ivar}"
"""
#{resultPart}#{@tab}for (#{forPart}) {#{guardPart}
#{varPart}#{body}
#{@tab}}#{unstepPart}#{returnResult}
"""
#### Switch
# A JavaScript *switch* statement. Converts into a returnable expression on-demand.
exports.Switch = class Switch extends Base
children: ['subject', 'cases', 'otherwise']
isStatement: YES
constructor: (@subject, @cases, @otherwise) ->
super()
makeReturn: ->
pair[1].makeReturn() for pair in @cases
@otherwise.makeReturn() if @otherwise
this
compileNode: (o) ->
idt1 = @idt 1
idt2 = o.indent = @idt 2
o.top = yes
code = "#{ @tab }switch (#{ @subject?.compile(o) or true }) {"
for [conditions, block] in @cases
for condition in flatten [conditions]
condition = condition.invert().invert() unless @subject
code += "\n#{ idt1 }case #{ condition.compile o }:"
code += "\n#{ block.compile o }"
code += "\n#{ idt2 }break;" unless last(block.expressions) instanceof Return
if @otherwise
code += "\n#{ idt1 }default:\n#{ @otherwise.compile o }"
code += "\n#{ @tab }}"
code
#### If
# *If/else* statements. Acts as an expression by pushing down requested returns
# to the last line of each clause.
#
# Single-expression **Ifs** are compiled into conditional operators if possible,
# because ternaries are already proper expressions, and don't need conversion.
exports.If = class If extends Base
children: ['condition', 'body', 'elseBody']
topSensitive: YES
constructor: (condition, @body, tags) ->
@tags = tags or= {}
@condition = if tags.invert then condition.invert() else condition
@soakNode = tags.soak
@elseBody = null
@isChain = false
bodyNode: -> @body?.unwrap()
elseBodyNode: -> @elseBody?.unwrap()
# Rewrite a chain of **Ifs** to add a default case as the final *else*.
addElse: (elseBody) ->
if @isChain
@elseBodyNode().addElse elseBody
else
@isChain = elseBody instanceof If
@elseBody = @ensureExpressions elseBody
this
# The **If** only compiles into a statement if either of its bodies needs
# to be a statement. Otherwise a conditional operator is safe.
isStatement: (o) ->
@statement or= o?.top or @bodyNode().isStatement(o) or @elseBodyNode()?.isStatement(o)
compileNode: (o) ->
if @isStatement o then @compileStatement o else @compileExpression o
makeReturn: ->
if @isStatement()
@body and= @ensureExpressions @body.makeReturn()
@elseBody and= @ensureExpressions @elseBody.makeReturn()
this
else
new Return this
ensureExpressions: (node) ->
if node instanceof Expressions then node else new Expressions [node]
# Compile the **If** as a regular *if-else* statement. Flattened chains
# force inner *else* bodies into statement form.
compileStatement: (o) ->
top = del o, 'top'
child = del o, 'chainChild'
condO = merge o
o.indent = @idt 1
o.top = true
ifPart = "if (#{ @condition.compileBare condO }) {\n#{ @body.compile o }\n#{@tab}}"
ifPart = @tab + ifPart unless child
return ifPart unless @elseBody
ifPart + ' else ' + if @isChain
@elseBodyNode().compile merge o, indent: @tab, chainChild: true
else
"{\n#{ @elseBody.compile o }\n#{@tab}}"
# Compile the If as a conditional operator.
compileExpression: (o) ->
@condition.tags.operation = on
code = @condition.compile(o) + ' ? ' +
@bodyNode().compileBare(o) + ' : ' +
@elseBodyNode()?.compileBare o
if @tags.operation then "(#{code})" else code
unfoldSoak: -> @soakNode and this
# Unfold a node's child if soak, then tuck the node under created `If`
@unfoldSoak: (o, parent, name) ->
return unless ifn = parent[name].unfoldSoak o
parent[name] = ifn.body
ifn.body = new Value parent
ifn.tags.operation = on if parent.tags.operation
ifn
# Faux-Nodes
# ----------
# Faux-nodes are never created by the grammar, but are used during code
# generation to generate other combinations of nodes.
#### Push
# The **Push** creates the tree for `array.push(value)`,
# which is helpful for recording the result arrays from comprehensions.
Push =
wrap: (name, expressions) ->
return expressions if expressions.empty() or expressions.containsPureStatement()
Expressions.wrap [new Call(
new Value new Literal(name), [new Accessor new Literal 'push']
[expressions.unwrap()]
)]
#### Closure
# A faux-node used to wrap an expressions body in a closure.
Closure =
# Wrap the expressions body, unless it contains a pure statement,
# in which case, no dice. If the body mentions `this` or `arguments`,
# then make sure that the closure wrapper preserves the original values.
wrap: (expressions, statement, noReturn) ->
return expressions if expressions.containsPureStatement()
func = new Parens new Code [], Expressions.wrap [expressions]
args = []
if (mentionsArgs = expressions.contains @literalArgs) or
( expressions.contains @literalThis)
meth = new Literal if mentionsArgs then 'apply' else 'call'
args = [new Literal 'this']
args.push new Literal 'arguments' if mentionsArgs
func = new Value func, [new Accessor meth]
func.noReturn = noReturn
call = new Call func, args
if statement then Expressions.wrap [call] else call
literalArgs: (node) -> node instanceof Literal and node.value is 'arguments'
literalThis: (node) -> node instanceof Literal and node.value is 'this' or
node instanceof Code and node.bound
# Constants
# ---------
UTILITIES =
# Correctly set up a prototype chain for inheritance, including a reference
# to the superclass for `super()` calls. See:
# [goog.inherits](http://closure-library.googlecode.com/svn/docs/closureGoogBase.js.source.html#line1206).
extends: '''
function(child, parent) {
function ctor() { this.constructor = child; }
ctor.prototype = parent.prototype;
child.prototype = new ctor;
if (typeof parent.extended === "function") parent.extended(child);
child.__super__ = parent.prototype;
}
'''
# Create a function bound to the current value of "this".
bind: '''
function(func, context) {
return function() { return func.apply(context, arguments); };
}
'''
# Discover if an item is in an array.
indexOf: '''
Array.prototype.indexOf || function(item) {
for (var i = 0, l = this.length; i < l; i++) if (this[i] === item) return i;
return -1;
}
'''
# Shortcuts to speed up the lookup time for native functions.
hasProp: 'Object.prototype.hasOwnProperty'
slice: 'Array.prototype.slice'
# Tabs are two spaces for pretty printing.
TAB = ' '
# Trim out all trailing whitespace, so that the generated code plays nice
# with Git.
TRAILING_WHITESPACE = /[ \t]+$/gm
IDENTIFIER = /^[$A-Za-z_][$\w]*$/
NUMBER = /^0x[\da-f]+$|^(?:\d+(\.\d+)?|\.\d+)(?:e[+-]?\d+)?$/i
SIMPLENUM = /^[+-]?\d+$/
# Is a literal value a string?
IS_STRING = /^['"]/
# Utility Functions
# -----------------
# Helper for ensuring that utility functions are assigned at the top level.
utility = (name) ->
ref = "__#{name}"
Scope.root.assign ref, UTILITIES[name]
ref