Files
coffeescript/src/nodes.coffee

1620 lines
57 KiB
CoffeeScript

# `nodes.coffee` contains all of the node classes for the syntax tree. Most
# nodes are created as the result of actions in the [grammar](grammar.html),
# but some are created by other nodes as a method of code generation. To convert
# the syntax tree into a string of JavaScript code, call `compile()` on the root.
# Set up for both **Node.js** and the browser, by
# including the [Scope](scope.html) class and the [helper](helpers.html) functions.
if process?
Scope = require('./scope').Scope
helpers = require('./helpers').helpers
else
this.exports = this
helpers = this.helpers
Scope = this.Scope
# Import the helpers we plan to use.
{compact, flatten, merge, del, include, indexOf, starts, ends} = helpers
#### BaseNode
# The **BaseNode** is the abstract base class for all nodes in the syntax tree.
# Each subclass implements the `compileNode` method, which performs the
# code generation for that node. To compile a node to JavaScript,
# call `compile` on it, which wraps `compileNode` in some generic extra smarts,
# to know when the generated code needs to be wrapped up in a closure.
# An options hash is passed and cloned throughout, containing information about
# the environment from higher in the tree (such as if a returned value is
# being requested by the surrounding function), information about the current
# scope, and indentation level.
exports.BaseNode = class BaseNode
constructor: ->
@tags = {}
# Common logic for determining whether to wrap this node in a closure before
# compiling it, or to compile directly. We need to wrap if this node is a
# *statement*, and it's not a *pureStatement*, and we're not at
# the top level of a block (which would be unnecessary), and we haven't
# already been asked to return the result (because statements know how to
# return results).
#
# If a Node is *topSensitive*, that means that it needs to compile differently
# depending on whether it's being used as part of a larger expression, or is a
# top-level statement within the function body.
compile: (o) ->
@options = merge o or {}
@tab = o.indent
del @options, 'chainRoot' unless this instanceof AccessorNode or this instanceof IndexNode
top = if @topSensitive() then @options.top else del @options, 'top'
closure = @isStatement(o) and not @isPureStatement() and not top and
not @options.asStatement and not (this instanceof CommentNode) and
not @containsPureStatement()
if closure then @compileClosure(@options) else @compileNode(@options)
# Statements converted into expressions via closure-wrapping share a scope
# object with their parent closure, to preserve the expected lexical scope.
compileClosure: (o) ->
@tab = o.indent
o.sharedScope = o.scope
ClosureNode.wrap(this).compile o
# If the code generation wishes to use the result of a complex expression
# in multiple places, ensure that the expression is only ever evaluated once,
# by assigning it to a temporary variable.
compileReference: (o, options) ->
options or= {}
pair = if not ((this instanceof CallNode or @contains((n) -> n instanceof CallNode)) or
(this instanceof ValueNode and (not (@base instanceof LiteralNode) or @hasProperties())))
[this, this]
else if this instanceof ValueNode and options.assignment
this.cacheIndexes(o)
else
reference = literal o.scope.freeVariable()
compiled = new AssignNode reference, this
[compiled, reference]
return [pair[0].compile(o), pair[1].compile(o)] if options.precompile
pair
# Convenience method to grab the current indentation level, plus tabbing in.
idt: (tabs) ->
idt = @tab or ''
num = (tabs or 0) + 1
idt += TAB while num -= 1
idt
# Construct a node that returns the current node's result.
# Note that this is overridden for smarter behavior for
# many statement nodes (eg IfNode, ForNode)...
makeReturn: ->
new ReturnNode this
# Does this node, or any of its children, contain a node of a certain kind?
# Recursively traverses down the *children* of the nodes, yielding to a block
# and returning true when the block finds a match. `contains` does not cross
# scope boundaries.
contains: (block) ->
contains = false
@traverseChildren false, (node) ->
if block(node)
contains = true
return false
contains
# Is this node of a certain type, or does it contain the type?
containsType: (type) ->
this instanceof type or @contains (n) -> n instanceof type
# Convenience for the most common use of contains. Does the node contain
# a pure statement?
containsPureStatement: ->
@isPureStatement() or @contains (n) -> n.isPureStatement and n.isPureStatement()
# Perform an in-order traversal of the AST. Crosses scope boundaries.
traverse: (block) -> @traverseChildren true, block
# `toString` representation of the node, for inspecting the parse tree.
# This is what `coffee --nodes` prints out.
toString: (idt, override) ->
idt or= ''
children = (child.toString idt + TAB for child in @collectChildren()).join('')
'\n' + idt + (override or @class) + children
eachChild: (func) ->
return unless @children
for attr in @children when this[attr]
for child in flatten [this[attr]]
return if func(child) is false
collectChildren: ->
nodes = []
@eachChild (node) -> nodes.push node
nodes
traverseChildren: (crossScope, func) ->
@eachChild (child) ->
func.apply(this, arguments)
child.traverseChildren(crossScope, func) if child instanceof BaseNode
# Default implementations of the common node properties and methods. Nodes
# will override these with custom logic, if needed.
class: 'BaseNode'
children: []
unwrap : -> this
isStatement : -> no
isPureStatement : -> no
topSensitive : -> no
#### Expressions
# The expressions body is the list of expressions that forms the body of an
# indented block of code -- the implementation of a function, a clause in an
# `if`, `switch`, or `try`, and so on...
exports.Expressions = class Expressions extends BaseNode
class: 'Expressions'
children: ['expressions']
isStatement: -> yes
constructor: (nodes) ->
super()
@expressions = compact flatten nodes or []
# Tack an expression on to the end of this expression list.
push: (node) ->
@expressions.push(node)
this
# Add an expression at the beginning of this expression list.
unshift: (node) ->
@expressions.unshift(node)
this
# If this Expressions consists of just a single node, unwrap it by pulling
# it back out.
unwrap: ->
if @expressions.length is 1 then @expressions[0] else this
# Is this an empty block of code?
empty: ->
@expressions.length is 0
# An Expressions node does not return its entire body, rather it
# ensures that the final expression is returned.
makeReturn: ->
idx = @expressions.length - 1
last = @expressions[idx]
last = @expressions[idx -= 1] if last instanceof CommentNode
return this if not last or last instanceof ReturnNode
@expressions[idx] = last.makeReturn()
this
# An **Expressions** is the only node that can serve as the root.
compile: (o) ->
o or= {}
if o.scope then super(o) else @compileRoot(o)
compileNode: (o) ->
(@compileExpression(node, merge(o)) for node in @expressions).join("\n")
# If we happen to be the top-level **Expressions**, wrap everything in
# a safety closure, unless requested not to.
# It would be better not to generate them in the first place, but for now,
# clean up obvious double-parentheses.
compileRoot: (o) ->
o.indent = @tab = if o.noWrap then '' else TAB
o.scope = new Scope(null, this, null)
code = @compileWithDeclarations(o)
code = code.replace(TRAILING_WHITESPACE, '')
if o.noWrap then code else "(function() {\n#{code}\n})();\n"
# Compile the expressions body for the contents of a function, with
# declarations of all inner variables pushed up to the top.
compileWithDeclarations: (o) ->
code = @compileNode(o)
code = "#{@tab}var #{o.scope.compiledAssignments()};\n#{code}" if o.scope.hasAssignments(this)
code = "#{@tab}var #{o.scope.compiledDeclarations()};\n#{code}" if not o.globals and o.scope.hasDeclarations(this)
code
# Compiles a single expression within the expressions body. If we need to
# return the result, and it's an expression, simply return it. If it's a
# statement, ask the statement to do so.
compileExpression: (node, o) ->
@tab = o.indent
compiledNode = node.compile merge o, top: true
if node.isStatement(o) then compiledNode else "#{@idt()}#{compiledNode};"
# Wrap up the given nodes as an **Expressions**, unless it already happens
# to be one.
Expressions.wrap = (nodes) ->
return nodes[0] if nodes.length is 1 and nodes[0] instanceof Expressions
new Expressions(nodes)
#### LiteralNode
# Literals are static values that can be passed through directly into
# JavaScript without translation, such as: strings, numbers,
# `true`, `false`, `null`...
exports.LiteralNode = class LiteralNode extends BaseNode
class: 'LiteralNode'
constructor: (@value) ->
super()
makeReturn: ->
if @isStatement() then this else super()
# Break and continue must be treated as pure statements -- they lose their
# meaning when wrapped in a closure.
isStatement: ->
@value is 'break' or @value is 'continue'
isPureStatement: LiteralNode::isStatement
compileNode: (o) ->
idt = if @isStatement(o) then @idt() else ''
end = if @isStatement(o) then ';' else ''
idt + @value + end
toString: (idt) ->
'"' + @value + '"'
#### ReturnNode
# A `return` is a *pureStatement* -- wrapping it in a closure wouldn't
# make sense.
exports.ReturnNode = class ReturnNode extends BaseNode
class: 'ReturnNode'
isStatement: -> yes
isPureStatement: -> yes
children: ['expression']
constructor: (@expression) ->
super()
makeReturn: ->
this
compile: (o) ->
expr = @expression.makeReturn()
return expr.compile o unless expr instanceof ReturnNode
super o
compileNode: (o) ->
o.asStatement = true if @expression.isStatement(o)
"#{@tab}return #{@expression.compile(o)};"
#### ValueNode
# A value, variable or literal or parenthesized, indexed or dotted into,
# or vanilla.
exports.ValueNode = class ValueNode extends BaseNode
class: 'ValueNode'
children: ['base', 'properties']
# A **ValueNode** has a base and a list of property accesses.
constructor: (@base, @properties) ->
super()
@properties or= []
# Add a property access to the list.
push: (prop) ->
@properties.push(prop)
this
hasProperties: ->
!!@properties.length
# Some boolean checks for the benefit of other nodes.
isArray: ->
@base instanceof ArrayNode and not @hasProperties()
isObject: ->
@base instanceof ObjectNode and not @hasProperties()
isSplice: ->
@hasProperties() and @properties[@properties.length - 1] instanceof SliceNode
makeReturn: ->
if @hasProperties() then super() else @base.makeReturn()
# The value can be unwrapped as its inner node, if there are no attached
# properties.
unwrap: ->
if @properties.length then this else @base
# Values are considered to be statements if their base is a statement.
isStatement: (o) ->
@base.isStatement and @base.isStatement(o) and not @hasProperties()
isNumber: ->
@base instanceof LiteralNode and @base.value.match NUMBER
# If the value node has indexes containing function calls, and the value node
# needs to be used twice, in compound assignment ... then we need to cache
# the value of the indexes.
cacheIndexes: (o) ->
copy = new ValueNode @base, @properties[0..]
for prop, i in copy.properties
if prop instanceof IndexNode and prop.contains((n) -> n instanceof CallNode)
[index, indexVar] = prop.index.compileReference o
this.properties[i] = new IndexNode index
copy.properties[i] = new IndexNode indexVar
[this, copy]
# Override compile to unwrap the value when possible.
compile: (o) ->
if not o.top or @properties.length then super(o) else @base.compile(o)
# We compile a value to JavaScript by compiling and joining each property.
# Things get much more insteresting if the chain of properties has *soak*
# operators `?.` interspersed. Then we have to take care not to accidentally
# evaluate a anything twice when building the soak chain.
compileNode: (o) ->
only = del o, 'onlyFirst'
op = @tags.operation
props = if only then @properties[0...@properties.length - 1] else @properties
o.chainRoot or= this
@base.parenthetical = yes if @parenthetical and not props.length
baseline = @base.compile o
baseline = "(#{baseline})" if @hasProperties() and (@base instanceof ObjectNode or @isNumber())
complete = @last = baseline
for prop, i in props
@source = baseline
if prop.soakNode
if @base instanceof CallNode or @base.contains((n) -> n instanceof CallNode) and i is 0
temp = o.scope.freeVariable()
complete = "(#{ baseline = temp } = (#{complete}))"
complete = if i is 0
"(typeof #{complete} === \"undefined\" || #{baseline} === null) ? undefined : "
else
"#{complete} == null ? undefined : "
complete += (baseline += prop.compile(o))
else
part = prop.compile(o)
baseline += part
complete += part
@last = part
if op and @wrapped then "(#{complete})" else complete
#### CommentNode
# CoffeeScript passes through block comments as JavaScript block comments
# at the same position.
exports.CommentNode = class CommentNode extends BaseNode
class: 'CommentNode'
isStatement: -> yes
constructor: (@lines) ->
super()
makeReturn: ->
this
compileNode: (o) ->
sep = '\n' + @tab
"#{@tab}/*#{sep + @lines.join(sep) }\n#{@tab}*/"
#### CallNode
# Node for a function invocation. Takes care of converting `super()` calls into
# calls against the prototype's function of the same name.
exports.CallNode = class CallNode extends BaseNode
class: 'CallNode'
children: ['variable', 'args']
constructor: (variable, @args) ->
super()
@isNew = false
@isSuper = variable is 'super'
@variable = if @isSuper then null else variable
@args or= []
@compileSplatArguments = (o) ->
SplatNode.compileSplattedArray.call(this, @args, o)
# Tag this invocation as creating a new instance.
newInstance: ->
@isNew = true
this
prefix: ->
if @isNew then 'new ' else ''
# Grab the reference to the superclass' implementation of the current method.
superReference: (o) ->
methname = o.scope.method.name
meth = if o.scope.method.proto
"#{o.scope.method.proto}.__superClass__.#{methname}"
else if methname
"#{methname}.__superClass__.constructor"
else throw new Error "cannot call super on an anonymous function."
# Compile a vanilla function call.
compileNode: (o) ->
o.chainRoot = this unless o.chainRoot
for arg in @args when arg instanceof SplatNode
compilation = @compileSplat(o)
if not compilation
args = for arg in @args
arg.parenthetical = true
arg.compile o
compilation = if @isSuper
@compileSuper(args.join(', '), o)
else
"#{@prefix()}#{@variable.compile(o)}(#{ args.join(', ') })"
compilation
# `super()` is converted into a call against the superclass's implementation
# of the current function.
compileSuper: (args, o) ->
"#{@superReference(o)}.call(this#{ if args.length then ', ' else '' }#{args})"
# If you call a function with a splat, it's converted into a JavaScript
# `.apply()` call to allow an array of arguments to be passed.
# If it's a constructor, then things get real tricky. We have to inject an
# inner constructor in order to be able to pass the varargs.
compileSplat: (o) ->
meth = if @variable then @variable.compile(o) else @superReference(o)
obj = @variable and @variable.source or 'this'
if obj.match(/\(/)
temp = o.scope.freeVariable()
obj = temp
meth = "(#{temp} = #{ @variable.source })#{ @variable.last }"
if @isNew
utility 'extends'
"""
(function() {
#{@idt(1)}var ctor = function(){};
#{@idt(1)}__extends(ctor, #{meth});
#{@idt(1)}return #{meth}.apply(new ctor, #{ @compileSplatArguments(o) });
#{@tab}}).call(this)
"""
else
"#{@prefix()}#{meth}.apply(#{obj}, #{ @compileSplatArguments(o) })"
#### ExtendsNode
# Node to extend an object's prototype with an ancestor object.
# After `goog.inherits` from the
# [Closure Library](http://closure-library.googlecode.com/svn/docs/closureGoogBase.js.html).
exports.ExtendsNode = class ExtendsNode extends BaseNode
class: 'ExtendsNode'
children: ['child', 'parent']
constructor: (@child, @parent) ->
super()
# Hooks one constructor into another's prototype chain.
compileNode: (o) ->
ref = new ValueNode literal utility 'extends'
(new CallNode ref, [@child, @parent]).compile o
#### AccessorNode
# A `.` accessor into a property of a value, or the `::` shorthand for
# an accessor into the object's prototype.
exports.AccessorNode = class AccessorNode extends BaseNode
class: 'AccessorNode'
children: ['name']
constructor: (@name, tag) ->
super()
@prototype = if tag is 'prototype' then '.prototype' else ''
@soakNode = tag is 'soak'
compileNode: (o) ->
name = @name.compile o
o.chainRoot.wrapped or= @soakNode
namePart = if name.match(IS_STRING) then "[#{name}]" else ".#{name}"
@prototype + namePart
#### IndexNode
# A `[ ... ]` indexed accessor into an array or object.
exports.IndexNode = class IndexNode extends BaseNode
class: 'IndexNode'
children: ['index']
constructor: (@index) ->
super()
compileNode: (o) ->
o.chainRoot.wrapped or= @soakNode
idx = @index.compile o
prefix = if @proto then '.prototype' else ''
"#{prefix}[#{idx}]"
#### RangeNode
# A range literal. Ranges can be used to extract portions (slices) of arrays,
# to specify a range for comprehensions, or as a value, to be expanded into the
# corresponding array of integers at runtime.
exports.RangeNode = class RangeNode extends BaseNode
class: 'RangeNode'
children: ['from', 'to']
constructor: (@from, @to, exclusive) ->
super()
@exclusive = !!exclusive
@equals = if @exclusive then '' else '='
# Compiles the range's source variables -- where it starts and where it ends.
# But only if they need to be cached to avoid double evaluation.
compileVariables: (o) ->
o = merge(o, top: true)
[@from, @fromVar] = @from.compileReference o, precompile: yes
[@to, @toVar] = @to.compileReference o, precompile: yes
[@fromNum, @toNum] = [@fromVar.match(SIMPLENUM), @toVar.match(SIMPLENUM)]
parts = []
parts.push @from if @from isnt @fromVar
parts.push @to if @to isnt @toVar
if parts.length then "#{parts.join('; ')}; " else ''
# When compiled normally, the range returns the contents of the *for loop*
# needed to iterate over the values in the range. Used by comprehensions.
compileNode: (o) ->
return @compileArray(o) unless o.index
return @compileSimple(o) if @fromNum and @toNum
idx = del o, 'index'
step = del o, 'step'
vars = "#{idx} = #{@fromVar}"
intro = "(#{@fromVar} <= #{@toVar} ? #{idx}"
compare = "#{intro} <#{@equals} #{@toVar} : #{idx} >#{@equals} #{@toVar})"
stepPart = if step then step.compile(o) else '1'
incr = if step then "#{idx} += #{stepPart}" else "#{intro} += #{stepPart} : #{idx} -= #{stepPart})"
"#{vars}; #{compare}; #{incr}"
# Compile a simple range comprehension, with integers.
compileSimple: (o) ->
[from, to] = [parseInt(@fromNum, 10), parseInt(@toNum, 10)]
idx = del o, 'index'
step = del o, 'step'
step and= "#{idx} += #{step.compile(o)}"
if from <= to
"#{idx} = #{from}; #{idx} <#{@equals} #{to}; #{step or "#{idx}++"}"
else
"#{idx} = #{from}; #{idx} >#{@equals} #{to}; #{step or "#{idx}--"}"
# When used as a value, expand the range into the equivalent array.
compileArray: (o) ->
idt = @idt 1
vars = @compileVariables merge o, indent: idt
if @fromNum and @toNum and Math.abs(+@fromNum - +@toNum) <= 20
range = [+@fromNum..+@toNum]
range.pop() if @exclusive
return "[#{ range.join(', ') }]"
i = o.scope.freeVariable()
result = o.scope.freeVariable()
pre = "\n#{idt}#{result} = []; #{vars}"
if @fromNum and @toNum
o.index = i
body = @compileSimple o
else
clause = "#{@fromVar} <= #{@toVar} ?"
body = "var #{i} = #{@fromVar}; #{clause} #{i} <#{@equals} #{@toVar} : #{i} >#{@equals} #{@toVar}; #{clause} #{i} += 1 : #{i} -= 1"
post = "{ #{result}.push(#{i}); }\n#{idt}return #{result};\n#{o.indent}"
"(function() {#{pre}\n#{idt}for (#{body})#{post}}).call(this)"
#### SliceNode
# An array slice literal. Unlike JavaScript's `Array#slice`, the second parameter
# specifies the index of the end of the slice, just as the first parameter
# is the index of the beginning.
exports.SliceNode = class SliceNode extends BaseNode
class: 'SliceNode'
children: ['range']
constructor: (@range) ->
super()
compileNode: (o) ->
from = if @range.from then @range.from.compile(o) else '0'
to = if @range.to then @range.to.compile(o) else ''
to += if not to or @range.exclusive then '' else ' + 1'
to = ', ' + to if to
".slice(#{from}#{to})"
#### ObjectNode
# An object literal, nothing fancy.
exports.ObjectNode = class ObjectNode extends BaseNode
class: 'ObjectNode'
children: ['properties']
topSensitive: -> true
constructor: (props) ->
super()
@objects = @properties = props or []
compileNode: (o) ->
top = del o, 'top'
o.indent = @idt 1
nonComments = prop for prop in @properties when not (prop instanceof CommentNode)
lastNoncom = nonComments[nonComments.length - 1]
props = for prop, i in @properties
join = ",\n"
join = "\n" if (prop is lastNoncom) or (prop instanceof CommentNode)
join = '' if i is @properties.length - 1
indent = if prop instanceof CommentNode then '' else @idt 1
prop = new AssignNode prop, prop, 'object' unless prop instanceof AssignNode or prop instanceof CommentNode
indent + prop.compile(o) + join
props = props.join('')
obj = '{' + (if props then '\n' + props + '\n' + @idt() else '') + '}'
if top then "(#{obj})" else obj
#### ArrayNode
# An array literal.
exports.ArrayNode = class ArrayNode extends BaseNode
class: 'ArrayNode'
children: ['objects']
constructor: (@objects) ->
super()
@objects or= []
@compileSplatLiteral = (o) ->
SplatNode.compileSplattedArray.call(this, @objects, o)
compileNode: (o) ->
o.indent = @idt 1
objects = []
for obj, i in @objects
code = obj.compile(o)
if obj instanceof SplatNode
return @compileSplatLiteral o
else if obj instanceof CommentNode
objects.push "\n#{code}\n#{o.indent}"
else if i is @objects.length - 1
objects.push code
else
objects.push "#{code}, "
objects = objects.join('')
if indexOf(objects, '\n') >= 0
"[\n#{@idt(1)}#{objects}\n#{@tab}]"
else
"[#{objects}]"
#### ClassNode
# The CoffeeScript class definition.
exports.ClassNode = class ClassNode extends BaseNode
class: 'ClassNode'
children: ['variable', 'parent', 'properties']
isStatement: -> yes
# Initialize a **ClassNode** with its name, an optional superclass, and a
# list of prototype property assignments.
constructor: (@variable, @parent, @properties) ->
super()
@properties or= []
@returns = false
makeReturn: ->
@returns = true
this
# Instead of generating the JavaScript string directly, we build up the
# equivalent syntax tree and compile that, in pieces. You can see the
# constructor, property assignments, and inheritance getting built out below.
compileNode: (o) ->
@variable = literal o.scope.freeVariable() if @variable is '__temp__'
extension = @parent and new ExtendsNode(@variable, @parent)
props = new Expressions
o.top = true
me = null
className = @variable.compile o
constScope = null
if @parent
applied = new ValueNode(@parent, [new AccessorNode(literal('apply'))])
constructor = new CodeNode([], new Expressions([
new CallNode(applied, [literal('this'), literal('arguments')])
]))
else
constructor = new CodeNode
for prop in @properties
[pvar, func] = [prop.variable, prop.value]
if pvar and pvar.base.value is 'constructor' and func instanceof CodeNode
throw new Error "cannot define a constructor as a bound function." if func.bound
func.name = className
func.body.push new ReturnNode literal 'this'
@variable = new ValueNode @variable
@variable.namespaced = include func.name, '.'
constructor = func
continue
if func instanceof CodeNode and func.bound
if prop.context is 'this'
func.context = className
else
func.bound = false
constScope or= new Scope(o.scope, constructor.body, constructor)
me or= constScope.freeVariable()
pname = pvar.compile(o)
constructor.body.push new ReturnNode literal 'this' if constructor.body.empty()
constructor.body.unshift literal "this.#{pname} = function(){ return #{className}.prototype.#{pname}.apply(#{me}, arguments); }"
if pvar
access = if prop.context is 'this' then pvar.base.properties[0] else new AccessorNode(pvar, 'prototype')
val = new ValueNode(@variable, [access])
prop = new AssignNode(val, func)
props.push prop
constructor.body.unshift literal "#{me} = this" if me
construct = @idt() + (new AssignNode(@variable, constructor)).compile(merge o, {sharedScope: constScope}) + ';'
props = if !props.empty() then '\n' + props.compile(o) else ''
extension = if extension then '\n' + @idt() + extension.compile(o) + ';' else ''
returns = if @returns then '\n' + new ReturnNode(@variable).compile(o) else ''
construct + extension + props + returns
#### AssignNode
# The **AssignNode** is used to assign a local variable to value, or to set the
# property of an object -- including within object literals.
exports.AssignNode = class AssignNode extends BaseNode
# Matchers for detecting prototype assignments.
PROTO_ASSIGN: /^(\S+)\.prototype/
LEADING_DOT: /^\.(prototype\.)?/
class: 'AssignNode'
children: ['variable', 'value']
constructor: (@variable, @value, @context) ->
super()
topSensitive: ->
true
isValue: ->
@variable instanceof ValueNode
makeReturn: ->
if @isStatement()
return new Expressions [this, new ReturnNode(@variable)]
else
super()
isStatement: ->
@isValue() and (@variable.isArray() or @variable.isObject())
# Compile an assignment, delegating to `compilePatternMatch` or
# `compileSplice` if appropriate. Keep track of the name of the base object
# we've been assigned to, for correct internal references. If the variable
# has not been seen yet within the current scope, declare it.
compileNode: (o) ->
top = del o, 'top'
return @compilePatternMatch(o) if @isStatement(o)
return @compileSplice(o) if @isValue() and @variable.isSplice()
stmt = del o, 'asStatement'
name = @variable.compile(o)
last = if @isValue() then @variable.last.replace(@LEADING_DOT, '') else name
match = name.match(@PROTO_ASSIGN)
proto = match and match[1]
if @value instanceof CodeNode
@value.name = last if last.match(IDENTIFIER)
@value.proto = proto if proto
val = @value.compile o
return "#{name}: #{val}" if @context is 'object'
o.scope.find name unless @isValue() and (@variable.hasProperties() or @variable.namespaced)
val = "#{name} = #{val}"
return "#{@tab}#{val};" if stmt
if top or @parenthetical then val else "(#{val})"
# Brief implementation of recursive pattern matching, when assigning array or
# object literals to a value. Peeks at their properties to assign inner names.
# See the [ECMAScript Harmony Wiki](http://wiki.ecmascript.org/doku.php?id=harmony:destructuring)
# for details.
compilePatternMatch: (o) ->
valVar = o.scope.freeVariable()
value = if @value.isStatement(o) then ClosureNode.wrap(@value) else @value
assigns = ["#{@tab}#{valVar} = #{ value.compile(o) };"]
o.top = true
o.asStatement = true
splat = false
for obj, i in @variable.base.objects
# A regular array pattern-match.
idx = i
if @variable.isObject()
if obj instanceof AssignNode
# A regular object pattern-match.
[obj, idx] = [obj.value, obj.variable.base]
else
# A shorthand `{a, b, c} = val` pattern-match.
idx = obj
if not (obj instanceof ValueNode or obj instanceof SplatNode)
throw new Error 'pattern matching must use only identifiers on the left-hand side.'
isString = idx.value and idx.value.match IS_STRING
accessClass = if isString or @variable.isArray() then IndexNode else AccessorNode
if obj instanceof SplatNode and not splat
val = literal obj.compileValue o, valVar,
(oindex = indexOf(@variable.base.objects, obj)),
(olength = @variable.base.objects.length) - oindex - 1
splat = true
else
idx = literal(if splat then "#{valVar}.length - #{olength - idx}" else idx) if typeof idx isnt 'object'
val = new ValueNode(literal(valVar), [new accessClass(idx)])
assigns.push(new AssignNode(obj, val).compile(o))
code = assigns.join("\n")
code
# Compile the assignment from an array splice literal, using JavaScript's
# `Array#splice` method.
compileSplice: (o) ->
name = @variable.compile merge o, onlyFirst: true
l = @variable.properties.length
range = @variable.properties[l - 1].range
plus = if range.exclusive then '' else ' + 1'
from = if range.from then range.from.compile(o) else '0'
to = if range.to then range.to.compile(o) + ' - ' + from + plus else "#{name}.length"
val = @value.compile(o)
"#{name}.splice.apply(#{name}, [#{from}, #{to}].concat(#{val}))"
#### CodeNode
# A function definition. This is the only node that creates a new Scope.
# When for the purposes of walking the contents of a function body, the CodeNode
# has no *children* -- they're within the inner scope.
exports.CodeNode = class CodeNode extends BaseNode
class: 'CodeNode'
children: ['params', 'body']
constructor: (@params, @body, tag) ->
super()
@params or= []
@body or= new Expressions
@bound = tag is 'boundfunc'
@context = 'this' if @bound
# Compilation creates a new scope unless explicitly asked to share with the
# outer scope. Handles splat parameters in the parameter list by peeking at
# the JavaScript `arguments` objects. If the function is bound with the `=>`
# arrow, generates a wrapper that saves the current value of `this` through
# a closure.
compileNode: (o) ->
sharedScope = del o, 'sharedScope'
top = del o, 'top'
o.scope = sharedScope or new Scope(o.scope, @body, this)
o.top = true
o.indent = @idt(1)
empty = @body.expressions.length is 0
del o, 'noWrap'
del o, 'globals'
splat = undefined
params = []
for param, i in @params
if splat
if param.attach
param.assign = new AssignNode new ValueNode literal('this'), [new AccessorNode param.value]
@body.expressions.splice splat.index + 1, 0, param.assign
splat.trailings.push param
else
if param.attach
{value} = param
[param, param.splat] = [literal(o.scope.freeVariable()), param.splat]
@body.unshift new AssignNode new ValueNode(literal('this'), [new AccessorNode value]), param
if param.splat
splat = new SplatNode param.value
splat.index = i
splat.trailings = []
splat.arglength = @params.length
@body.unshift(splat)
else
params.push param
params = (param.compile(o) for param in params)
@body.makeReturn() unless empty
(o.scope.parameter(param)) for param in params
code = if @body.expressions.length then "\n#{ @body.compileWithDeclarations(o) }\n" else ''
func = "function(#{ params.join(', ') }) {#{code}#{ code and @tab }}"
return "#{utility('bind')}(#{func}, #{@context})" if @bound
if top then "(#{func})" else func
topSensitive: ->
true
# Short-circuit traverseChildren method to prevent it from crossing scope boundaries
# unless crossScope is true
traverseChildren: (crossScope, func) -> super(crossScope, func) if crossScope
toString: (idt) ->
idt or= ''
children = (child.toString(idt + TAB) for child in @collectChildren()).join('')
'\n' + idt + children
#### ParamNode
# A parameter in a function definition. Beyond a typical Javascript parameter,
# these parameters can also attach themselves to the context of the function,
# as well as be a splat, gathering up a group of parameters into an array.
exports.ParamNode = class ParamNode extends BaseNode
class: 'ParamNode'
children: ['name']
constructor: (@name, @attach, @splat) ->
super()
@value = literal @name
compileNode: (o) ->
@value.compile o
toString: (idt) ->
if @attach then (literal '@' + @name).toString idt else @value.toString idt
#### SplatNode
# A splat, either as a parameter to a function, an argument to a call,
# or as part of a destructuring assignment.
exports.SplatNode = class SplatNode extends BaseNode
class: 'SplatNode'
children: ['name']
constructor: (name) ->
super()
name = literal(name) unless name.compile
@name = name
compileNode: (o) ->
if @index? then @compileParam(o) else @name.compile(o)
# Compiling a parameter splat means recovering the parameters that succeed
# the splat in the parameter list, by slicing the arguments object.
compileParam: (o) ->
name = @name.compile(o)
o.scope.find name
end = ''
if @trailings.length
len = o.scope.freeVariable()
o.scope.assign len, "arguments.length"
variadic = o.scope.freeVariable()
o.scope.assign variadic, len + ' >= ' + @arglength
end = if @trailings.length then ", #{len} - #{@trailings.length}"
for trailing, idx in @trailings
if trailing.attach
assign = trailing.assign
trailing = literal o.scope.freeVariable()
assign.value = trailing
pos = @trailings.length - idx
o.scope.assign(trailing.compile(o), "arguments[#{variadic} ? #{len} - #{pos} : #{@index + idx}]")
"#{name} = #{utility('slice')}.call(arguments, #{@index}#{end})"
# A compiling a splat as a destructuring assignment means slicing arguments
# from the right-hand-side's corresponding array.
compileValue: (o, name, index, trailings) ->
trail = if trailings then ", #{name}.length - #{trailings}" else ''
"#{utility 'slice'}.call(#{name}, #{index}#{trail})"
# Utility function that converts arbitrary number of elements, mixed with
# splats, to a proper array
@compileSplattedArray: (list, o) ->
args = []
for arg, i in list
code = arg.compile o
prev = args[last = args.length - 1]
if not (arg instanceof SplatNode)
if prev and starts(prev, '[') and ends(prev, ']')
args[last] = "#{prev.substr(0, prev.length - 1)}, #{code}]"
continue
else if prev and starts(prev, '.concat([') and ends(prev, '])')
args[last] = "#{prev.substr(0, prev.length - 2)}, #{code}])"
continue
else
code = "[#{code}]"
args.push(if i is 0 then code else ".concat(#{code})")
args.join('')
#### WhileNode
# A while loop, the only sort of low-level loop exposed by CoffeeScript. From
# it, all other loops can be manufactured. Useful in cases where you need more
# flexibility or more speed than a comprehension can provide.
exports.WhileNode = class WhileNode extends BaseNode
class: 'WhileNode'
children: ['condition', 'guard', 'body']
isStatement: -> yes
constructor: (condition, opts) ->
super()
if opts and opts.invert
condition = new ParentheticalNode condition if condition instanceof OpNode
condition = new OpNode('!', condition)
@condition = condition
@guard = opts and opts.guard
addBody: (body) ->
@body = body
this
makeReturn: ->
@returns = true
this
topSensitive: ->
true
# The main difference from a JavaScript *while* is that the CoffeeScript
# *while* can be used as a part of a larger expression -- while loops may
# return an array containing the computed result of each iteration.
compileNode: (o) ->
top = del(o, 'top') and not @returns
o.indent = @idt 1
o.top = true
@condition.parenthetical = yes
cond = @condition.compile(o)
set = ''
unless top
rvar = o.scope.freeVariable()
set = "#{@tab}#{rvar} = [];\n"
@body = PushNode.wrap(rvar, @body) if @body
pre = "#{set}#{@tab}while (#{cond})"
@body = Expressions.wrap([new IfNode(@guard, @body)]) if @guard
if @returns
post = '\n' + new ReturnNode(literal(rvar)).compile(merge(o, indent: @idt()))
else
post = ''
"#{pre} {\n#{ @body.compile(o) }\n#{@tab}}#{post}"
#### OpNode
# Simple Arithmetic and logical operations. Performs some conversion from
# CoffeeScript operations into their JavaScript equivalents.
exports.OpNode = class OpNode extends BaseNode
# The map of conversions from CoffeeScript to JavaScript symbols.
CONVERSIONS:
'==': '==='
'!=': '!=='
# The map of invertible operators.
INVERSIONS:
'!==': '==='
'===': '!=='
# The list of operators for which we perform
# [Python-style comparison chaining](http://docs.python.org/reference/expressions.html#notin).
CHAINABLE: ['<', '>', '>=', '<=', '===', '!==']
# Our assignment operators that have no JavaScript equivalent.
ASSIGNMENT: ['||=', '&&=', '?=']
# Operators must come before their operands with a space.
PREFIX_OPERATORS: ['typeof', 'delete']
class: 'OpNode'
children: ['first', 'second']
constructor: (@operator, @first, @second, flip) ->
super()
@operator = @CONVERSIONS[@operator] or @operator
@flip = !!flip
if @first instanceof ValueNode and @first.base instanceof ObjectNode
@first = new ParentheticalNode @first
@first.tags.operation = yes
@second.tags.operation = yes if @second
isUnary: ->
not @second
isInvertible: ->
(@operator in ['===', '!==']) and
not (@first instanceof OpNode) and not (@second instanceof OpNode)
isMutator: ->
ends(@operator, '=') and not (@operator in ['===', '!=='])
isChainable: ->
include(@CHAINABLE, @operator)
invert: ->
@operator = @INVERSIONS[@operator]
toString: (idt) ->
super(idt, @class + ' ' + @operator)
compileNode: (o) ->
return @compileChain(o) if @isChainable() and @first.unwrap() instanceof OpNode and @first.unwrap().isChainable()
return @compileAssignment(o) if indexOf(@ASSIGNMENT, @operator) >= 0
return @compileUnary(o) if @isUnary()
return @compileExistence(o) if @operator is '?'
@first = new ParentheticalNode(@first) if @first instanceof OpNode and @first.isMutator()
@second = new ParentheticalNode(@second) if @second instanceof OpNode and @second.isMutator()
[@first.compile(o), @operator, @second.compile(o)].join ' '
# Mimic Python's chained comparisons when multiple comparison operators are
# used sequentially. For example:
#
# bin/coffee -e "puts 50 < 65 > 10"
# true
compileChain: (o) ->
shared = @first.unwrap().second
[@first.second, shared] = shared.compileReference(o) if shared.containsType CallNode
[first, second, shared] = [@first.compile(o), @second.compile(o), shared.compile(o)]
"(#{first}) && (#{shared} #{@operator} #{second})"
# When compiling a conditional assignment, take care to ensure that the
# operands are only evaluated once, even though we have to reference them
# more than once.
compileAssignment: (o) ->
[first, firstVar] = @first.compileReference o, precompile: yes, assignment: yes
second = @second.compile o
second = "(#{second})" if @second instanceof OpNode
o.scope.find(first) if first.match(IDENTIFIER)
return "#{first} = #{ ExistenceNode.compileTest(o, literal(firstVar))[0] } ? #{firstVar} : #{second}" if @operator is '?='
"#{first} #{ @operator.substr(0, 2) } (#{firstVar} = #{second})"
# If this is an existence operator, we delegate to `ExistenceNode.compileTest`
# to give us the safe references for the variables.
compileExistence: (o) ->
[test, ref] = ExistenceNode.compileTest(o, @first)
"#{test} ? #{ref} : #{ @second.compile(o) }"
# Compile a unary **OpNode**.
compileUnary: (o) ->
space = if indexOf(@PREFIX_OPERATORS, @operator) >= 0 then ' ' else ''
parts = [@operator, space, @first.compile(o)]
parts = parts.reverse() if @flip
parts.join('')
#### InNode
exports.InNode = class InNode extends BaseNode
class: 'InNode'
children: ['object', 'array']
constructor: (@object, @array) ->
super()
isArray: ->
@array instanceof ValueNode and @array.isArray()
compileNode: (o) ->
[@obj1, @obj2] = @object.compileReference o, precompile: yes
if @isArray() then @compileOrTest(o) else @compileLoopTest(o)
compileOrTest: (o) ->
tests = for item, i in @array.base.objects
"#{item.compile(o)} === #{if i then @obj2 else @obj1}"
"(#{tests.join(' || ')})"
compileLoopTest: (o) ->
[@arr1, @arr2] = @array.compileReference o, precompile: yes
[i, l] = [o.scope.freeVariable(), o.scope.freeVariable()]
prefix = if @obj1 isnt @obj2 then @obj1 + '; ' else ''
"(function(){ #{prefix}for (var #{i}=0, #{l}=#{@arr1}.length; #{i}<#{l}; #{i}++) { if (#{@arr2}[#{i}] === #{@obj2}) return true; } return false; }).call(this)"
#### TryNode
# A classic *try/catch/finally* block.
exports.TryNode = class TryNode extends BaseNode
class: 'TryNode'
children: ['attempt', 'recovery', 'ensure']
isStatement: -> yes
constructor: (@attempt, @error, @recovery, @ensure) ->
super()
makeReturn: ->
@attempt = @attempt.makeReturn() if @attempt
@recovery = @recovery.makeReturn() if @recovery
this
# Compilation is more or less as you would expect -- the *finally* clause
# is optional, the *catch* is not.
compileNode: (o) ->
o.indent = @idt 1
o.top = true
attemptPart = @attempt.compile(o)
errorPart = if @error then " (#{ @error.compile(o) }) " else ' '
catchPart = if @recovery then " catch#{errorPart}{\n#{ @recovery.compile(o) }\n#{@tab}}" else ''
finallyPart = (@ensure or '') and ' finally {\n' + @ensure.compile(merge(o)) + "\n#{@tab}}"
"#{@tab}try {\n#{attemptPart}\n#{@tab}}#{catchPart}#{finallyPart}"
#### ThrowNode
# Simple node to throw an exception.
exports.ThrowNode = class ThrowNode extends BaseNode
class: 'ThrowNode'
children: ['expression']
isStatement: -> yes
constructor: (@expression) ->
super()
# A **ThrowNode** is already a return, of sorts...
makeReturn: ->
return this
compileNode: (o) ->
"#{@tab}throw #{@expression.compile(o)};"
#### ExistenceNode
# Checks a variable for existence -- not *null* and not *undefined*. This is
# similar to `.nil?` in Ruby, and avoids having to consult a JavaScript truth
# table.
exports.ExistenceNode = class ExistenceNode extends BaseNode
class: 'ExistenceNode'
children: ['expression']
constructor: (@expression) ->
super()
compileNode: (o) ->
test = ExistenceNode.compileTest(o, @expression)[0]
if @parenthetical then test.substring(1, test.length - 1) else test
# The meat of the **ExistenceNode** is in this static `compileTest` method
# because other nodes like to check the existence of their variables as well.
# Be careful not to double-evaluate anything.
@compileTest: (o, variable) ->
[first, second] = variable.compileReference o, precompile: yes
["(typeof #{first} !== \"undefined\" && #{second} !== null)", second]
#### ParentheticalNode
# An extra set of parentheses, specified explicitly in the source. At one time
# we tried to clean up the results by detecting and removing redundant
# parentheses, but no longer -- you can put in as many as you please.
#
# Parentheses are a good way to force any statement to become an expression.
exports.ParentheticalNode = class ParentheticalNode extends BaseNode
class: 'ParentheticalNode'
children: ['expression']
constructor: (@expression) ->
super()
isStatement: (o) ->
@expression.isStatement(o)
makeReturn: ->
@expression.makeReturn()
topSensitive: ->
yes
compileNode: (o) ->
top = del o, 'top'
@expression.parenthetical = true
code = @expression.compile(o)
return code if top and @expression.isPureStatement o
if @parenthetical or @isStatement o
return if top then @tab + code + ';' else code
"(#{code})"
#### ForNode
# CoffeeScript's replacement for the *for* loop is our array and object
# comprehensions, that compile into *for* loops here. They also act as an
# expression, able to return the result of each filtered iteration.
#
# Unlike Python array comprehensions, they can be multi-line, and you can pass
# the current index of the loop as a second parameter. Unlike Ruby blocks,
# you can map and filter in a single pass.
exports.ForNode = class ForNode extends BaseNode
class: 'ForNode'
children: ['body', 'source', 'guard']
isStatement: -> yes
constructor: (@body, source, @name, @index) ->
super()
@index or= null
@source = source.source
@guard = source.guard
@step = source.step
@raw = !!source.raw
@object = !!source.object
[@name, @index] = [@index, @name] if @object
@pattern = @name instanceof ValueNode
throw new Error('index cannot be a pattern matching expression') if @index instanceof ValueNode
@returns = false
topSensitive: ->
true
makeReturn: ->
@returns = true
this
compileReturnValue: (val, o) ->
return '\n' + new ReturnNode(literal(val)).compile(o) if @returns
return '\n' + val if val
''
# Welcome to the hairiest method in all of CoffeeScript. Handles the inner
# loop, filtering, stepping, and result saving for array, object, and range
# comprehensions. Some of the generated code can be shared in common, and
# some cannot.
compileNode: (o) ->
topLevel = del(o, 'top') and not @returns
range = @source instanceof ValueNode and @source.base instanceof RangeNode and not @source.properties.length
source = if range then @source.base else @source
codeInBody = @body.contains (n) -> n instanceof CodeNode
scope = o.scope
name = (@name and @name.compile(o)) or scope.freeVariable()
index = @index and @index.compile o
scope.find name if name and not @pattern and (range or not codeInBody)
scope.find index if index
rvar = scope.freeVariable() unless topLevel
ivar = if codeInBody then scope.freeVariable() else if range then name else index or scope.freeVariable()
varPart = ''
guardPart = ''
body = Expressions.wrap([@body])
if range
sourcePart = source.compileVariables(o)
forPart = source.compile merge o, index: ivar, step: @step
else
svar = scope.freeVariable()
sourcePart = "#{svar} = #{ @source.compile(o) };"
if @pattern
namePart = new AssignNode(@name, literal("#{svar}[#{ivar}]")).compile(merge o, {indent: @idt(1), top: true}) + '\n'
else
namePart = "#{name} = #{svar}[#{ivar}]" if name
unless @object
lvar = scope.freeVariable()
stepPart = if @step then "#{ivar} += #{ @step.compile(o) }" else "#{ivar}++"
forPart = "#{ivar} = 0, #{lvar} = #{svar}.length; #{ivar} < #{lvar}; #{stepPart}"
sourcePart = (if rvar then "#{rvar} = []; " else '') + sourcePart
sourcePart = if sourcePart then "#{@tab}#{sourcePart}\n#{@tab}" else @tab
returnResult = @compileReturnValue(rvar, o)
body = PushNode.wrap(rvar, body) unless topLevel
if @guard
body = Expressions.wrap([new IfNode(@guard, body)])
if codeInBody
body.unshift literal "var #{name} = #{ivar}" if range
body.unshift literal "var #{namePart}" if namePart
body.unshift literal "var #{index} = #{ivar}" if index
body = ClosureNode.wrap(body, true)
else
varPart = (namePart or '') and (if @pattern then namePart else "#{@idt(1)}#{namePart};\n")
if @object
forPart = "#{ivar} in #{svar}"
guardPart = "\n#{@idt(1)}if (!#{utility('hasProp')}.call(#{svar}, #{ivar})) continue;" unless @raw
body = body.compile(merge(o, {indent: @idt(1), top: true}))
vars = if range then name else "#{name}, #{ivar}"
"#{sourcePart}for (#{forPart}) {#{guardPart}\n#{varPart}#{body}\n#{@tab}}#{returnResult}"
#### IfNode
# *If/else* statements. Our *switch/when* will be compiled into this. Acts as an
# expression by pushing down requested returns to the last line of each clause.
#
# Single-expression **IfNodes** are compiled into ternary operators if possible,
# because ternaries are already proper expressions, and don't need conversion.
exports.IfNode = class IfNode extends BaseNode
class: 'IfNode'
children: ['condition', 'switchSubject', 'body', 'elseBody', 'assigner']
topSensitive: -> true
constructor: (@condition, @body, @tags) ->
@tags or= {}
if @tags.invert
if @condition instanceof OpNode and @condition.isInvertible()
@condition.invert()
else
@condition = new OpNode '!', new ParentheticalNode @condition
@elseBody = null
@isChain = false
bodyNode: -> @body?.unwrap()
elseBodyNode: -> @elseBody?.unwrap()
forceStatement: ->
@tags.statement = true
this
# Tag a chain of **IfNodes** with their object(s) to switch on for equality
# tests. `rewriteSwitch` will perform the actual change at compile time.
switchesOver: (expression) ->
@switchSubject = expression
this
# Rewrite a chain of **IfNodes** with their switch condition for equality.
# Ensure that the switch expression isn't evaluated more than once.
rewriteSwitch: (o) ->
@assigner = @switchSubject
unless (@switchSubject.unwrap() instanceof LiteralNode)
variable = literal(o.scope.freeVariable())
@assigner = new AssignNode(variable, @switchSubject)
@switchSubject = variable
@condition = for cond, i in flatten [@condition]
cond = new ParentheticalNode(cond) if cond instanceof OpNode
new OpNode('==', (if i is 0 then @assigner else @switchSubject), cond)
@elseBodyNode().switchesOver(@switchSubject) if @isChain
# prevent this rewrite from happening again
@switchSubject = undefined
this
# Rewrite a chain of **IfNodes** to add a default case as the final *else*.
addElse: (elseBody, statement) ->
if @isChain
@elseBodyNode().addElse elseBody, statement
else
@isChain = elseBody instanceof IfNode
@elseBody = @ensureExpressions elseBody
this
# The **IfNode** only compiles into a statement if either of its bodies needs
# to be a statement. Otherwise a ternary is safe.
isStatement: (o) ->
@statement or= !!((o and o.top) or @tags.statement or @bodyNode().isStatement(o) or (@elseBody and @elseBodyNode().isStatement(o)))
compileCondition: (o) ->
conditions = flatten [@condition]
conditions[0].parenthetical = yes if conditions.length is 1
(cond.compile(o) for cond in conditions).join(' || ')
compileNode: (o) ->
if @isStatement(o) then @compileStatement(o) else @compileTernary(o)
makeReturn: ->
if @isStatement()
@body and= @ensureExpressions(@body.makeReturn())
@elseBody and= @ensureExpressions(@elseBody.makeReturn())
this
else
new ReturnNode this
ensureExpressions: (node) ->
if node instanceof Expressions then node else new Expressions [node]
# Compile the **IfNode** as a regular *if-else* statement. Flattened chains
# force inner *else* bodies into statement form.
compileStatement: (o) ->
@rewriteSwitch(o) if @switchSubject
top = del o, 'top'
child = del o, 'chainChild'
condO = merge o
o.indent = @idt 1
o.top = true
ifDent = if child or (top and not @isStatement(o)) then '' else @idt()
comDent = if child then @idt() else ''
body = @body.compile(o)
ifPart = "#{ifDent}if (#{ @compileCondition(condO) }) {\n#{body}\n#{@tab}}"
return ifPart unless @elseBody
elsePart = if @isChain
' else ' + @elseBodyNode().compile(merge(o, {indent: @idt(), chainChild: true}))
else
" else {\n#{ @elseBody.compile(o) }\n#{@tab}}"
"#{ifPart}#{elsePart}"
# Compile the IfNode as a ternary operator.
compileTernary: (o) ->
@bodyNode().tags.operation = @condition.tags.operation = yes
@elseBodyNode().tags.operation = yes if @elseBody
ifPart = @condition.compile(o) + ' ? ' + @bodyNode().compile(o)
elsePart = if @elseBody then @elseBodyNode().compile(o) else 'null'
code = "#{ifPart} : #{elsePart}"
if @tags.operation then "(#{code})" else code
# Faux-Nodes
# ----------
#### PushNode
# Faux-nodes are never created by the grammar, but are used during code
# generation to generate other combinations of nodes. The **PushNode** creates
# the tree for `array.push(value)`, which is helpful for recording the result
# arrays from comprehensions.
PushNode = exports.PushNode =
wrap: (array, expressions) ->
expr = expressions.unwrap()
return expressions if expr.isPureStatement() or expr.containsPureStatement()
Expressions.wrap([new CallNode(
new ValueNode(literal(array), [new AccessorNode(literal('push'))]), [expr]
)])
#### ClosureNode
# A faux-node used to wrap an expressions body in a closure.
ClosureNode = exports.ClosureNode =
# Wrap the expressions body, unless it contains a pure statement,
# in which case, no dice. If the body mentions `this` or `arguments`,
# then make sure that the closure wrapper preserves the original values.
wrap: (expressions, statement) ->
return expressions if expressions.containsPureStatement()
func = new ParentheticalNode(new CodeNode([], Expressions.wrap([expressions])))
args = []
mentionsArgs = expressions.contains (n) ->
n instanceof LiteralNode and (n.value is 'arguments')
mentionsThis = expressions.contains (n) ->
(n instanceof LiteralNode and (n.value is 'this')) or
(n instanceof CodeNode and n.bound)
if mentionsArgs or mentionsThis
meth = literal(if mentionsArgs then 'apply' else 'call')
args = [literal('this')]
args.push literal 'arguments' if mentionsArgs
func = new ValueNode func, [new AccessorNode(meth)]
call = new CallNode(func, args)
if statement then Expressions.wrap([call]) else call
# Utility Functions
# -----------------
UTILITIES =
# Correctly set up a prototype chain for inheritance, including a reference
# to the superclass for `super()` calls. See:
# [goog.inherits](http://closure-library.googlecode.com/svn/docs/closureGoogBase.js.source.html#line1206).
extends: """
function(child, parent) {
var ctor = function(){};
ctor.prototype = parent.prototype;
child.prototype = new ctor();
child.prototype.constructor = child;
if (typeof parent.extended === "function") parent.extended(child);
child.__superClass__ = parent.prototype;
}
"""
# Create a function bound to the current value of "this".
bind: """
function(func, context) {
return function(){ return func.apply(context, arguments); };
}
"""
# Shortcuts to speed up the lookup time for native functions.
hasProp: 'Object.prototype.hasOwnProperty'
slice: 'Array.prototype.slice'
# Constants
# ---------
# Tabs are two spaces for pretty printing.
TAB = ' '
# Trim out all trailing whitespace, so that the generated code plays nice
# with Git.
TRAILING_WHITESPACE = /[ \t]+$/gm
# Keep these identifier regexes in sync with the Lexer.
IDENTIFIER = /^[a-zA-Z\$_](\w|\$)*$/
NUMBER = /^(((\b0(x|X)[0-9a-fA-F]+)|((\b[0-9]+(\.[0-9]+)?|\.[0-9]+)(e[+\-]?[0-9]+)?)))\b$/i
SIMPLENUM = /^-?\d+/
# Is a literal value a string?
IS_STRING = /^['"]/
# Utility Functions
# -----------------
# Handy helper for a generating LiteralNode.
literal = (name) ->
new LiteralNode(name)
# Helper for ensuring that utility functions are assigned at the top level.
utility = (name) ->
ref = "__#{name}"
Scope.root.assign ref, UTILITIES[name]
ref