From 57b3be2f6d34a20847ce4227be43be6a2b743cd5 Mon Sep 17 00:00:00 2001 From: Umut Date: Thu, 7 Oct 2021 13:31:58 +0300 Subject: [PATCH] fix(benchmarks): treat warnings as errors in benchmarks --- benchmarks/124_minus_x.py | 3 + benchmarks/124_minus_x_tensor.py | 15 +-- benchmarks/common.py | 8 ++ benchmarks/linear_regression.py | 8 +- benchmarks/logistic_regression.py | 32 +++++- benchmarks/single_table_lookup.py | 3 + benchmarks/x_minus_1_2_3.py | 15 +-- benchmarks/x_minus_1_2_3_broadcasted.py | 13 ++- benchmarks/x_minus_24.py | 5 +- benchmarks/x_minus_24_tensor.py | 15 +-- benchmarks/x_minus_y.py | 9 +- benchmarks/x_minus_y_broadcasted_tensors.py | 16 +-- benchmarks/x_minus_y_tensor_and_scalar.py | 17 +-- benchmarks/x_minus_y_tensors.py | 15 +-- benchmarks/x_plus_1_2_3.py | 15 +-- benchmarks/x_plus_1_2_3_broadcasted.py | 15 +-- benchmarks/x_plus_42.py | 5 +- benchmarks/x_plus_42_tensor.py | 15 +-- benchmarks/x_plus_y.py | 5 +- benchmarks/x_plus_y_broadcasted_tensors.py | 14 ++- benchmarks/x_plus_y_tensor_and_scalar.py | 15 +-- benchmarks/x_plus_y_tensors.py | 14 ++- benchmarks/x_times_1_2_3.py | 15 +-- benchmarks/x_times_1_2_3_broadcasted.py | 15 +-- benchmarks/x_times_7.py | 3 + benchmarks/x_times_7_tensor.py | 15 +-- benchmarks/x_times_y.py | 9 +- benchmarks/x_times_y_broadcasted_tensors.py | 14 ++- benchmarks/x_times_y_tensor_and_scalar.py | 15 +-- benchmarks/x_times_y_tensors.py | 14 ++- benchmarks/x_to_the_power_of_2.py | 5 +- .../QuantizedLinearRegression.ipynb | 18 ++-- .../QuantizedLogisticRegression.ipynb | 102 +++++++++++++----- script/progress_tracker_utils/measure.py | 3 +- 34 files changed, 330 insertions(+), 170 deletions(-) create mode 100644 benchmarks/common.py diff --git a/benchmarks/124_minus_x.py b/benchmarks/124_minus_x.py index 8a574e254..1b8e4f13f 100644 --- a/benchmarks/124_minus_x.py +++ b/benchmarks/124_minus_x.py @@ -2,6 +2,8 @@ import random +from common import BENCHMARK_CONFIGURATION + import concrete.numpy as hnp @@ -16,6 +18,7 @@ def main(): function_to_compile, {"x": x}, [(i,) for i in range(2 ** 3)], + compilation_configuration=BENCHMARK_CONFIGURATION, ) # Measure: End diff --git a/benchmarks/124_minus_x_tensor.py b/benchmarks/124_minus_x_tensor.py index 5b5d035f9..ed91bc310 100644 --- a/benchmarks/124_minus_x_tensor.py +++ b/benchmarks/124_minus_x_tensor.py @@ -1,6 +1,7 @@ # Target: 124 - x (Tensor) import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp @@ -11,15 +12,15 @@ def main(): x = hnp.EncryptedTensor(hnp.UnsignedInteger(6), shape=(3,)) - inputset = [ - (np.array([36, 50, 24]),), - (np.array([41, 60, 51]),), - (np.array([25, 31, 24]),), - (np.array([34, 47, 27]),), - ] + inputset = [(np.random.randint(0, 2 ** 6, size=(3,)),) for _ in range(32)] # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/common.py b/benchmarks/common.py new file mode 100644 index 000000000..35acb1934 --- /dev/null +++ b/benchmarks/common.py @@ -0,0 +1,8 @@ +import concrete.numpy as hnp + +BENCHMARK_CONFIGURATION = hnp.CompilationConfiguration( + dump_artifacts_on_unexpected_failures=True, + enable_topological_optimizations=True, + check_every_input_in_inputset=True, + treat_warnings_as_errors=True, +) diff --git a/benchmarks/linear_regression.py b/benchmarks/linear_regression.py index f94413e76..c74b2d0b6 100644 --- a/benchmarks/linear_regression.py +++ b/benchmarks/linear_regression.py @@ -5,13 +5,16 @@ # pylint: disable=C0301 import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp def main(): - x = np.array([[130], [110], [100], [145], [160], [185], [200], [80], [50]], dtype=np.float32) - y = np.array([325, 295, 268, 400, 420, 500, 520, 220, 120], dtype=np.float32) + x = np.array( + [[69], [130], [110], [100], [145], [160], [185], [200], [80], [50]], dtype=np.float32 + ) + y = np.array([181, 325, 295, 268, 400, 420, 500, 520, 220, 120], dtype=np.float32) class Model: w = None @@ -150,6 +153,7 @@ def main(): function_to_compile, {"x_0": hnp.EncryptedScalar(hnp.UnsignedInteger(input_bits))}, inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, ) # Measure: End diff --git a/benchmarks/logistic_regression.py b/benchmarks/logistic_regression.py index dc8bc9bb9..664ac700b 100644 --- a/benchmarks/logistic_regression.py +++ b/benchmarks/logistic_regression.py @@ -2,13 +2,40 @@ import numpy as np import torch +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp def main(): - x = torch.tensor([[1, 1], [1, 2], [2, 1], [4, 1], [3, 2], [4, 2]]).float() - y = torch.tensor([[0], [0], [0], [1], [1], [1]]).float() + x = torch.tensor( + [ + [1, 1], + [1, 1.5], + [1.5, 1.2], + [1, 2], + [2, 1], + [4, 1], + [4, 1.5], + [3.5, 1.8], + [3, 2], + [4, 2], + ] + ).float() + y = torch.tensor( + [ + [0], + [0], + [0], + [0], + [0], + [1], + [1], + [1], + [1], + [1], + ] + ).float() class Model(torch.nn.Module): def __init__(self, n): @@ -218,6 +245,7 @@ def main(): "x_1": hnp.EncryptedScalar(hnp.UnsignedInteger(input_bits)), }, inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, ) # Measure: End diff --git a/benchmarks/single_table_lookup.py b/benchmarks/single_table_lookup.py index d52523d67..98f3018a6 100644 --- a/benchmarks/single_table_lookup.py +++ b/benchmarks/single_table_lookup.py @@ -2,6 +2,8 @@ import random +from common import BENCHMARK_CONFIGURATION + import concrete.numpy as hnp @@ -21,6 +23,7 @@ def main(): function_to_compile, {"x": x}, [(i,) for i in range(2 ** input_bits)], + compilation_configuration=BENCHMARK_CONFIGURATION, ) # Measure: End diff --git a/benchmarks/x_minus_1_2_3.py b/benchmarks/x_minus_1_2_3.py index 7e692b735..746f69d39 100644 --- a/benchmarks/x_minus_1_2_3.py +++ b/benchmarks/x_minus_1_2_3.py @@ -1,6 +1,7 @@ # Target: x - [1, 2, 3] import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp @@ -11,15 +12,15 @@ def main(): x = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(3,)) - inputset = [ - (np.array([6, 2, 4]),), - (np.array([1, 3, 5]),), - (np.array([5, 7, 2]),), - (np.array([1, 7, 7]),), - ] + inputset = [(np.random.randint(0, 2 ** 2, size=(3,)) + np.array([1, 2, 3]),) for _ in range(32)] # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_minus_1_2_3_broadcasted.py b/benchmarks/x_minus_1_2_3_broadcasted.py index b67e1d138..b78e4a2f4 100644 --- a/benchmarks/x_minus_1_2_3_broadcasted.py +++ b/benchmarks/x_minus_1_2_3_broadcasted.py @@ -1,6 +1,7 @@ # Target: x - [1, 2, 3] (Broadcasted) import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp @@ -12,14 +13,16 @@ def main(): x = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(2, 3)) inputset = [ - (np.array([[4, 7, 7], [6, 2, 4]]),), - (np.array([[6, 2, 4], [1, 3, 1]]),), - (np.array([[6, 2, 4], [5, 7, 5]]),), - (np.array([[5, 7, 5], [4, 7, 7]]),), + (np.random.randint(0, 2 ** 2, size=(2, 3)) + np.array([1, 2, 3]),) for _ in range(32) ] # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_minus_24.py b/benchmarks/x_minus_24.py index 16e711f8a..9a39d0b22 100644 --- a/benchmarks/x_minus_24.py +++ b/benchmarks/x_minus_24.py @@ -2,6 +2,8 @@ import random +from common import BENCHMARK_CONFIGURATION + import concrete.numpy as hnp @@ -15,7 +17,8 @@ def main(): engine = hnp.compile_numpy_function( function_to_compile, {"x": x}, - [(i,) for i in range(2 ** 6)], + [(i,) for i in range(24, 2 ** 6)], + compilation_configuration=BENCHMARK_CONFIGURATION, ) # Measure: End diff --git a/benchmarks/x_minus_24_tensor.py b/benchmarks/x_minus_24_tensor.py index f7ec198cb..b88be1f8d 100644 --- a/benchmarks/x_minus_24_tensor.py +++ b/benchmarks/x_minus_24_tensor.py @@ -1,6 +1,7 @@ # Target: x - 24 (Tensor) import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp @@ -11,15 +12,15 @@ def main(): x = hnp.EncryptedTensor(hnp.UnsignedInteger(6), shape=(3,)) - inputset = [ - (np.array([36, 50, 24]),), - (np.array([41, 60, 51]),), - (np.array([25, 31, 24]),), - (np.array([34, 47, 27]),), - ] + inputset = [(np.random.randint(0, 2 ** 5, size=(3,)) + 24,) for _ in range(32)] # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_minus_y.py b/benchmarks/x_minus_y.py index ca04b3117..47c24a09e 100644 --- a/benchmarks/x_minus_y.py +++ b/benchmarks/x_minus_y.py @@ -3,6 +3,8 @@ import itertools import random +from common import BENCHMARK_CONFIGURATION + import concrete.numpy as hnp @@ -16,7 +18,12 @@ def main(): inputset = itertools.product(range(4, 8), range(0, 4)) # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x, "y": y}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x, "y": y}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_minus_y_broadcasted_tensors.py b/benchmarks/x_minus_y_broadcasted_tensors.py index ea6408350..d586a8ab2 100644 --- a/benchmarks/x_minus_y_broadcasted_tensors.py +++ b/benchmarks/x_minus_y_broadcasted_tensors.py @@ -1,6 +1,7 @@ # Target: x - y (Broadcasted Tensors) import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp @@ -10,17 +11,20 @@ def main(): return x - y x = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(3,)) - y = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(2, 3)) + y = hnp.EncryptedTensor(hnp.UnsignedInteger(2), shape=(2, 3)) inputset = [ - (np.array([6, 2, 4]), np.array([[5, 1, 3], [0, 0, 4]])), - (np.array([1, 3, 1]), np.array([[0, 3, 1], [1, 2, 1]])), - (np.array([5, 1, 2]), np.array([[5, 0, 2], [2, 1, 1]])), - (np.array([0, 7, 7]), np.array([[0, 5, 1], [0, 7, 2]])), + (np.random.randint(4, 8, size=(3,)), np.random.randint(0, 4, size=(2, 3))) + for _ in range(32) ] # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x, "y": y}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x, "y": y}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_minus_y_tensor_and_scalar.py b/benchmarks/x_minus_y_tensor_and_scalar.py index 3ab299c65..27e825ca4 100644 --- a/benchmarks/x_minus_y_tensor_and_scalar.py +++ b/benchmarks/x_minus_y_tensor_and_scalar.py @@ -3,6 +3,7 @@ import random import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp @@ -12,17 +13,17 @@ def main(): return x - y x = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(3,)) - y = hnp.EncryptedScalar(hnp.UnsignedInteger(3)) + y = hnp.EncryptedScalar(hnp.UnsignedInteger(2)) - inputset = [ - (np.array([6, 2, 4]), 2), - (np.array([1, 3, 1]), 1), - (np.array([5, 4, 7]), 4), - (np.array([5, 7, 6]), 5), - ] + inputset = [(np.random.randint(4, 8, size=(3,)), random.randint(0, 3)) for _ in range(32)] # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x, "y": y}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x, "y": y}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_minus_y_tensors.py b/benchmarks/x_minus_y_tensors.py index 6c681e0bc..5932e97c2 100644 --- a/benchmarks/x_minus_y_tensors.py +++ b/benchmarks/x_minus_y_tensors.py @@ -1,6 +1,7 @@ # Target: x - y (Tensors) import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp @@ -10,17 +11,19 @@ def main(): return x - y x = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(3,)) - y = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(3,)) + y = hnp.EncryptedTensor(hnp.UnsignedInteger(2), shape=(3,)) inputset = [ - (np.array([6, 2, 4]), np.array([4, 1, 2])), - (np.array([1, 3, 1]), np.array([1, 1, 0])), - (np.array([5, 1, 2]), np.array([4, 1, 1])), - (np.array([0, 7, 7]), np.array([0, 7, 0])), + (np.random.randint(4, 8, size=(3,)), np.random.randint(0, 4, size=(3,))) for _ in range(32) ] # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x, "y": y}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x, "y": y}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_plus_1_2_3.py b/benchmarks/x_plus_1_2_3.py index de73fda65..e9339d97f 100644 --- a/benchmarks/x_plus_1_2_3.py +++ b/benchmarks/x_plus_1_2_3.py @@ -1,6 +1,7 @@ # Target: x + [1, 2, 3] import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp @@ -11,15 +12,15 @@ def main(): x = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(3,)) - inputset = [ - (np.array([6, 2, 4]),), - (np.array([1, 3, 1]),), - (np.array([5, 1, 2]),), - (np.array([0, 7, 7]),), - ] + inputset = [(np.random.randint(0, 2 ** 3, size=(3,)),) for _ in range(32)] # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_plus_1_2_3_broadcasted.py b/benchmarks/x_plus_1_2_3_broadcasted.py index 9826714f4..0095cb8c1 100644 --- a/benchmarks/x_plus_1_2_3_broadcasted.py +++ b/benchmarks/x_plus_1_2_3_broadcasted.py @@ -1,6 +1,7 @@ # Target: x + [1, 2, 3] (Broadcasted) import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp @@ -11,15 +12,15 @@ def main(): x = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(2, 3)) - inputset = [ - (np.array([[0, 7, 7], [6, 2, 4]]),), - (np.array([[6, 2, 4], [1, 3, 1]]),), - (np.array([[6, 2, 4], [5, 1, 2]]),), - (np.array([[5, 1, 2], [0, 7, 7]]),), - ] + inputset = [(np.random.randint(0, 2 ** 3, size=(2, 3)),) for _ in range(32)] # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_plus_42.py b/benchmarks/x_plus_42.py index 98a5c1c0a..95f7be9ed 100644 --- a/benchmarks/x_plus_42.py +++ b/benchmarks/x_plus_42.py @@ -2,6 +2,8 @@ import random +from common import BENCHMARK_CONFIGURATION + import concrete.numpy as hnp @@ -15,7 +17,8 @@ def main(): engine = hnp.compile_numpy_function( function_to_compile, {"x": x}, - [(6,), (1,), (5,), (2,)], + [(i,) for i in range(2 ** 3)], + compilation_configuration=BENCHMARK_CONFIGURATION, ) # Measure: End diff --git a/benchmarks/x_plus_42_tensor.py b/benchmarks/x_plus_42_tensor.py index 1829304e8..6ca272380 100644 --- a/benchmarks/x_plus_42_tensor.py +++ b/benchmarks/x_plus_42_tensor.py @@ -1,6 +1,7 @@ # Target: x + 42 (Tensor) import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp @@ -11,15 +12,15 @@ def main(): x = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(3,)) - inputset = [ - (np.array([6, 2, 4]),), - (np.array([1, 3, 1]),), - (np.array([5, 1, 2]),), - (np.array([0, 7, 7]),), - ] + inputset = [(np.random.randint(0, 2 ** 3, size=(3,)),) for _ in range(32)] # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_plus_y.py b/benchmarks/x_plus_y.py index 829d1f9dc..a4c809b9c 100644 --- a/benchmarks/x_plus_y.py +++ b/benchmarks/x_plus_y.py @@ -2,6 +2,8 @@ import random +from common import BENCHMARK_CONFIGURATION + import concrete.numpy as hnp @@ -16,7 +18,8 @@ def main(): engine = hnp.compile_numpy_function( function_to_compile, {"x": x, "y": y}, - [(6, 1), (1, 4), (5, 3), (2, 0), (7, 7)], + [(random.randint(0, 7), random.randint(0, 7)) for _ in range(32)], + compilation_configuration=BENCHMARK_CONFIGURATION, ) # Measure: End diff --git a/benchmarks/x_plus_y_broadcasted_tensors.py b/benchmarks/x_plus_y_broadcasted_tensors.py index c13aea795..91756ec8b 100644 --- a/benchmarks/x_plus_y_broadcasted_tensors.py +++ b/benchmarks/x_plus_y_broadcasted_tensors.py @@ -1,6 +1,7 @@ # Target: x + y (Broadcasted Tensors) import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp @@ -13,14 +14,17 @@ def main(): y = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(2, 3)) inputset = [ - (np.array([6, 2, 4]), np.array([[5, 1, 2], [0, 7, 7]])), - (np.array([1, 3, 1]), np.array([[0, 7, 7], [6, 2, 4]])), - (np.array([5, 1, 2]), np.array([[6, 2, 4], [1, 3, 1]])), - (np.array([0, 7, 7]), np.array([[1, 3, 1], [5, 1, 2]])), + (np.random.randint(0, 2 ** 3, size=(3,)), np.random.randint(0, 2 ** 3, size=(2, 3))) + for _ in range(32) ] # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x, "y": y}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x, "y": y}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_plus_y_tensor_and_scalar.py b/benchmarks/x_plus_y_tensor_and_scalar.py index e314a99e9..c44dd9e81 100644 --- a/benchmarks/x_plus_y_tensor_and_scalar.py +++ b/benchmarks/x_plus_y_tensor_and_scalar.py @@ -3,6 +3,7 @@ import random import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp @@ -14,15 +15,15 @@ def main(): x = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(3,)) y = hnp.EncryptedScalar(hnp.UnsignedInteger(3)) - inputset = [ - (np.array([6, 2, 4]), 4), - (np.array([1, 3, 1]), 1), - (np.array([5, 1, 2]), 2), - (np.array([0, 7, 7]), 5), - ] + inputset = [(np.random.randint(0, 8, size=(3,)), random.randint(0, 7)) for _ in range(32)] # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x, "y": y}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x, "y": y}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_plus_y_tensors.py b/benchmarks/x_plus_y_tensors.py index 16718cc5e..4508d2ecc 100644 --- a/benchmarks/x_plus_y_tensors.py +++ b/benchmarks/x_plus_y_tensors.py @@ -1,6 +1,7 @@ # Target: x + y (Tensors) import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp @@ -13,14 +14,17 @@ def main(): y = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(3,)) inputset = [ - (np.array([6, 2, 4]), np.array([0, 7, 7])), - (np.array([1, 3, 1]), np.array([6, 2, 4])), - (np.array([5, 1, 2]), np.array([1, 3, 1])), - (np.array([0, 7, 7]), np.array([5, 1, 2])), + (np.random.randint(0, 2 ** 3, size=(3,)), np.random.randint(0, 2 ** 3, size=(3,))) + for _ in range(32) ] # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x, "y": y}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x, "y": y}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_times_1_2_3.py b/benchmarks/x_times_1_2_3.py index 90812272d..1f3b4bc85 100644 --- a/benchmarks/x_times_1_2_3.py +++ b/benchmarks/x_times_1_2_3.py @@ -1,6 +1,7 @@ # Target: x * [1, 2, 3] import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp @@ -11,15 +12,15 @@ def main(): x = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(3,)) - inputset = [ - (np.array([6, 2, 4]),), - (np.array([1, 3, 1]),), - (np.array([5, 1, 2]),), - (np.array([0, 7, 7]),), - ] + inputset = [(np.random.randint(0, 2 ** 3, size=(3,)),) for _ in range(32)] # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_times_1_2_3_broadcasted.py b/benchmarks/x_times_1_2_3_broadcasted.py index f6b8cb665..cefe9f8ec 100644 --- a/benchmarks/x_times_1_2_3_broadcasted.py +++ b/benchmarks/x_times_1_2_3_broadcasted.py @@ -1,6 +1,7 @@ # Target: x * [1, 2, 3] (Broadcasted) import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp @@ -11,15 +12,15 @@ def main(): x = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(2, 3)) - inputset = [ - (np.array([[0, 7, 7], [6, 2, 4]]),), - (np.array([[6, 2, 4], [1, 3, 1]]),), - (np.array([[6, 2, 4], [5, 1, 2]]),), - (np.array([[5, 1, 2], [0, 7, 7]]),), - ] + inputset = [(np.random.randint(0, 2 ** 3, size=(2, 3)),) for _ in range(32)] # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_times_7.py b/benchmarks/x_times_7.py index 1faa58112..f5338bfb5 100644 --- a/benchmarks/x_times_7.py +++ b/benchmarks/x_times_7.py @@ -2,6 +2,8 @@ import random +from common import BENCHMARK_CONFIGURATION + import concrete.numpy as hnp @@ -16,6 +18,7 @@ def main(): function_to_compile, {"x": x}, [(i,) for i in range(2 ** 4)], + compilation_configuration=BENCHMARK_CONFIGURATION, ) # Measure: End diff --git a/benchmarks/x_times_7_tensor.py b/benchmarks/x_times_7_tensor.py index c1ad87b73..7798ad568 100644 --- a/benchmarks/x_times_7_tensor.py +++ b/benchmarks/x_times_7_tensor.py @@ -1,6 +1,7 @@ # Target: x * 7 (Tensor) import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp @@ -11,15 +12,15 @@ def main(): x = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(3,)) - inputset = [ - (np.array([6, 2, 4]),), - (np.array([1, 3, 1]),), - (np.array([5, 1, 2]),), - (np.array([0, 7, 7]),), - ] + inputset = [(np.random.randint(0, 2 ** 3, size=(3,)),) for _ in range(32)] # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_times_y.py b/benchmarks/x_times_y.py index b29c9440c..562289db3 100644 --- a/benchmarks/x_times_y.py +++ b/benchmarks/x_times_y.py @@ -3,6 +3,8 @@ import itertools import random +from common import BENCHMARK_CONFIGURATION + import concrete.numpy as hnp @@ -16,7 +18,12 @@ def main(): inputset = itertools.product(range(4, 8), range(0, 4)) # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x, "y": y}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x, "y": y}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_times_y_broadcasted_tensors.py b/benchmarks/x_times_y_broadcasted_tensors.py index 89a6bf8df..a804ad773 100644 --- a/benchmarks/x_times_y_broadcasted_tensors.py +++ b/benchmarks/x_times_y_broadcasted_tensors.py @@ -1,6 +1,7 @@ # Target: x * y (Broadcasted Tensors) import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp @@ -13,14 +14,17 @@ def main(): y = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(2, 3)) inputset = [ - (np.array([6, 2, 4]), np.array([[5, 1, 2], [0, 7, 7]])), - (np.array([1, 3, 1]), np.array([[0, 7, 7], [6, 2, 4]])), - (np.array([5, 1, 2]), np.array([[6, 2, 4], [1, 3, 1]])), - (np.array([0, 7, 7]), np.array([[1, 3, 1], [5, 1, 2]])), + (np.random.randint(0, 2 ** 3, size=(3,)), np.random.randint(0, 2 ** 3, size=(2, 3))) + for _ in range(32) ] # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x, "y": y}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x, "y": y}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_times_y_tensor_and_scalar.py b/benchmarks/x_times_y_tensor_and_scalar.py index 4a13b9947..906c31fa1 100644 --- a/benchmarks/x_times_y_tensor_and_scalar.py +++ b/benchmarks/x_times_y_tensor_and_scalar.py @@ -3,6 +3,7 @@ import random import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp @@ -14,15 +15,15 @@ def main(): x = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(3,)) y = hnp.EncryptedScalar(hnp.UnsignedInteger(3)) - inputset = [ - (np.array([6, 2, 4]), 4), - (np.array([1, 3, 1]), 1), - (np.array([5, 1, 2]), 2), - (np.array([0, 7, 7]), 5), - ] + inputset = [(np.random.randint(0, 8, size=(3,)), random.randint(0, 7)) for _ in range(32)] # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x, "y": y}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x, "y": y}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_times_y_tensors.py b/benchmarks/x_times_y_tensors.py index 118a5d3d9..e4e5976c0 100644 --- a/benchmarks/x_times_y_tensors.py +++ b/benchmarks/x_times_y_tensors.py @@ -1,6 +1,7 @@ # Target: x * y (Tensors) import numpy as np +from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp @@ -13,14 +14,17 @@ def main(): y = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(3,)) inputset = [ - (np.array([6, 2, 4]), np.array([0, 7, 7])), - (np.array([1, 3, 1]), np.array([6, 2, 4])), - (np.array([5, 1, 2]), np.array([1, 3, 1])), - (np.array([0, 7, 7]), np.array([5, 1, 2])), + (np.random.randint(0, 2 ** 3, size=(3,)), np.random.randint(0, 2 ** 3, size=(3,))) + for _ in range(32) ] # Measure: Compilation Time (ms) - engine = hnp.compile_numpy_function(function_to_compile, {"x": x, "y": y}, inputset) + engine = hnp.compile_numpy_function( + function_to_compile, + {"x": x, "y": y}, + inputset, + compilation_configuration=BENCHMARK_CONFIGURATION, + ) # Measure: End inputs = [] diff --git a/benchmarks/x_to_the_power_of_2.py b/benchmarks/x_to_the_power_of_2.py index 5e003304a..da3505f64 100644 --- a/benchmarks/x_to_the_power_of_2.py +++ b/benchmarks/x_to_the_power_of_2.py @@ -2,6 +2,8 @@ import random +from common import BENCHMARK_CONFIGURATION + import concrete.numpy as hnp @@ -15,7 +17,8 @@ def main(): engine = hnp.compile_numpy_function( function_to_compile, {"x": x}, - [(6,), (1,), (5,), (2,)], + [(i,) for i in range(2 ** 3)], + compilation_configuration=BENCHMARK_CONFIGURATION, ) # Measure: End diff --git a/docs/user/advanced_examples/QuantizedLinearRegression.ipynb b/docs/user/advanced_examples/QuantizedLinearRegression.ipynb index db1b74634..e31e9eb3d 100644 --- a/docs/user/advanced_examples/QuantizedLinearRegression.ipynb +++ b/docs/user/advanced_examples/QuantizedLinearRegression.ipynb @@ -64,8 +64,8 @@ "metadata": {}, "outputs": [], "source": [ - "x = np.array([[130], [110], [100], [145], [160], [185], [200], [80], [50]], dtype=np.float32)\n", - "y = np.array([325, 295, 268, 400, 420, 500, 520, 220, 120], dtype=np.float32)" + "x = np.array([[69], [130], [110], [100], [145], [160], [185], [200], [80], [50]], dtype=np.float32)\n", + "y = np.array([181, 325, 295, 268, 400, 420, 500, 520, 220, 120], dtype=np.float32)" ] }, { @@ -95,7 +95,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAW5ElEQVR4nO3dfZBddX3H8feHp4iKXCArjUnaoMY62BlDusY4WIuhKqBjcMY66ViJlE7UiZ3L6iigM3WdKTPi07pMW5xolKAUpIglw+BUhFDHPwi9gRASImUVMImBrMJGKdPUsN/+cX7bnF324d69T2fPfl4zd/ac3zl397s3uZ89+93zO0cRgZmZlctx3S7AzMxaz+FuZlZCDnczsxJyuJuZlZDD3cyshE7odgEACxcujGXLlnW7DDOzOWXHjh2/joieybYVItyXLVtGrVbrdhlmZnOKpCen2ua2jJlZCTnczcxKyOFuZlZCDnczsxJyuJuZdcPE63q1+DpfDnczs07r74e+vmOBHpGt9/e37Es43M3MOikCRkZgcPBYwPf1ZesjIy07gi/Eee5mZvOGBAMD2fLgYPYAqFazcak1X6YI13Pv7e0NT2Iys3klAo7LNU9GRxsOdkk7IqJ3sm1uy5iZddpYKyYv34NvAYe7mVkn5Xvs1Wp2xF6tju/Bt4B77mZmnSRBpTK+xz7Wg69U3HM3M5vTIsYH+cT1OrjnbmZWNBODvEVH7GMc7mY2f7V5lmg31RXukp6Q9LCknZJqaex0SXdJeix9PC2NS9K1koYk7ZK0sp3fgJnZrHRglmg3NXLk/vaIWJHr71wJ3B0Ry4G70zrAhcDy9NgAXNeqYs3MWqJDs0S7qZmzZdYC56XlLcC9wBVp/IbI/lJ7n6SKpEURcbCZQs3MWqZDs0S7qd4j9wB+JGmHpA1p7MxcYD8FnJmWFwP7cs/dn8bGkbRBUk1SbXh4eBalm5k1IR/wY0oS7FB/uL81IlaStVw2SnpbfmM6Sm/o95iI2BQRvRHR29Mz6f1dzczapwOzRLuprnCPiAPp4yHgB8Aq4GlJiwDSx0Np9wPA0tzTl6QxM7Ni6NAs0W6aMdwlvUzSKWPLwDuB3cBWYH3abT1we1reClySzppZDRx2v93MCmWqWaLVaktniXbTjDNUJb2a7Ggdsj/A/ktEXC3pDOAW4A+BJ4EPRMQzkgT8I3AB8DxwaURMO/3UM1TNrCtaMEu0m6aboTrj2TIR8QvgjZOM/wY4f5LxADbOok4zs85q8yzRbvIMVTOzEnK4m5mVkMPdzKyEHO5mZiXkcDczKyGHu5lZCTnczcxKyOFuZlZCDnczsxJyuJuZlZDD3cyshBzuZmYl5HA3Myshh7uZWQk53M3MSsjhbmZWQnWHu6TjJT0o6Y60fr2kxyXtTI8VaVySrpU0JGmXpJVtqt3MzKYw452YcqrAXuAVubFPRcStE/a7EFieHm8GrksfzcysQ+o6cpe0BHg38M06dl8L3BCZ+4CKpEVN1GhmZg2qty3zNeDTwOiE8atT62VA0oI0thjYl9tnfxobR9IGSTVJteHh4QbLNjOz6cwY7pLeAxyKiB0TNl0FvB54E3A6cEUjXzgiNkVEb0T09vT0NPJUMzObQT1H7ucC75X0BHAzsEbSdyPiYGq9HAG+DaxK+x8AluaevySNmZlZh8wY7hFxVUQsiYhlwDrgnoj467E+uiQBFwO701O2Apeks2ZWA4cj4mBbqjczs0k1crbMRDdK6gEE7AQ+msbvBC4ChoDngUubKdDMzBrXULhHxL3AvWl5zRT7BLCx2cLMzGz2PEPVzKyEHO5mZiXkcDczKyGHu5lZCTnczcxKyOFuZo2LmH7dus7hbmaN6e+Hvr5jgR6Rrff3d7Mqm8Dhbmb1i4CRERgcPBbwfX3Z+siIj+ALpJkZqmY230gwMJAtDw5mD4BqNRuXulebjaMowE/a3t7eqNVq3S7DzOoVAcflfvEfHXWwd4GkHRHRO9k2t2XMrDFjrZi8fA/eCsHhbmb1y/fYq9XsiL1aHd+Dt0Jwz93M6idBpTK+xz7Wg69U3JopEPfczaxxEeODfOK6dYR77mbWWhOD3MFeOHWHu6TjJT0o6Y60fpak7ZKGJH1P0klpfEFaH0rbl7WpdrP5zbNEbRqNHLlXgb259WuAgYh4LfAscFkavwx4No0PpP3MrJU8S9RmUFe4S1oCvBv4ZloXsAa4Ne2yhew+qgBr0zpp+/lpfzNrBc8StTrUe7bM14BPA6ek9TOAkYg4mtb3A4vT8mJgH0BEHJV0OO3/61YUbDbveZao1WHGI3dJ7wEORcSOVn5hSRsk1STVhoeHW/mpzcovH/BjHOyWU09b5lzgvZKeAG4ma8cMAhVJY0f+S4ADafkAsBQgbT8V+M3ETxoRmyKiNyJ6e3p6mvomzOYdzxK1GcwY7hFxVUQsiYhlwDrgnoj4ILANeH/abT1we1remtZJ2++JIpxMb1YWniVqdWhmhuoVwM2S/gF4ENicxjcD35E0BDxD9gPBzFrFs0StDp6hajZXeZbovOcZqmZl5FmiNg2Hu5lZCTnczcxKyOFuZlZCDnczsxJyuJuZlZDD3cyshBzuZmYl5HA3Myshh7uZWQk53M3MSsjhbmZWQg53M7MScribmZWQw93MrIQc7mZmJVTPDbJfIul+SQ9J2iPp82n8ekmPS9qZHivSuCRdK2lI0i5JK9v8PZiZ2QT13GbvCLAmIp6TdCLwU0k/TNs+FRG3Ttj/QmB5erwZuC59NDOzDqnnBtkREc+l1RPTY7p7860FbkjPuw+oSFrUfKlmZlavunruko6XtBM4BNwVEdvTpqtT62VA0oI0thjYl3v6/jQ28XNukFSTVBseHp79d2BmZi9SV7hHxAsRsQJYAqyS9CfAVcDrgTcBpwNXNPKFI2JTRPRGRG9PT09jVZuZ2bQaOlsmIkaAbcAFEXEwtV6OAN8GVqXdDgBLc09bksbMzKxD6jlbpkdSJS2fDLwD+NlYH12SgIuB3ekpW4FL0lkzq4HDEXGwDbWbmdkU6jlbZhGwRdLxZD8MbomIOyTdI6kHELAT+Gja/07gImAIeB64tOVVm5nZtGYM94jYBZwzyfiaKfYPYGPzpZmZ2Wx5hqqZWQk53M3MSsjhbmZWQg53s2ZFTL9u1gUOd7Nm9PdDX9+xQI/I1vv7u1mVmcPdbNYiYGQEBgePBXxfX7Y+MuIjeOuqes5zN7PJSDAwkC0PDmYPgGo1G5e6V5vNe4oCHF309vZGrVbrdhlmsxMBx+V+CR4ddbBbR0jaERG9k21zW8asGWOtmLx8D96sSxzuZrOV77FXq9kRe7U6vgdv1iXuuZvNlgSVyvge+1gPvlJxa8a6yj13s2ZFjA/yietmbeKeu1k7TQxyB7sVgMPdzKyEHO5mZiXkcDczK6F6brP3Ekn3S3pI0h5Jn0/jZ0naLmlI0vcknZTGF6T1obR9WZu/BzMzm6CeI/cjwJqIeCOwArgg3Rv1GmAgIl4LPAtclva/DHg2jQ+k/cxmx1dcNJuVGcM9Ms+l1RPTI4A1wK1pfAvZTbIB1qZ10vbz0020zRrjKy6azVpdPXdJx0vaCRwC7gJ+DoxExNG0y35gcVpeDOwDSNsPA2dM8jk3SKpJqg0PDzf1TVgJ+YqLZk2pa4ZqRLwArJBUAX4AvL7ZLxwRm4BNkE1iavbzWcn4iotmTWnobJmIGAG2AW8BKpLGfjgsAQ6k5QPAUoC0/VTgN60o1uaZfMCPcbCb1aWes2V60hE7kk4G3gHsJQv596fd1gO3p+WtaZ20/Z4owjUObO7xFRfNZq2eI/dFwDZJu4D/BO6KiDuAK4BPSBoi66lvTvtvBs5I458Armx92VZ6vuKiWVNm7LlHxC7gnEnGfwGsmmT8f4C/bEl1Nn/5iotmTfFVIa3YfMVFsyn5qpA2d/mKi2az4nA3Myshh7uZWQk53M3MSsjhbmZWQg53ay1fxdGsEBzu1jq+iqNZYTjcrTV8FUezQqnrqpBmM/JVHM0KxTNUrbUi4LjcL4Sjow52szbxDFXrDF/F0awwHO7WGr6Ko1mhuOdureGrOJoVinvu1lq+iqNZx7jnbp3jqziaFUI9t9lbKmmbpEck7ZFUTeP9kg5I2pkeF+Wec5WkIUmPSnpXO78BMzN7sXp67keBT0bEA5JOAXZIuittG4iIL+d3lnQ2sA54A/Aq4MeSXhcRL7SycDMzm9qMR+4RcTAiHkjLvyO7OfbiaZ6yFrg5Io5ExOPAEJPcjs/MzNqnoZ67pGVk91PdnoY+LmmXpG9JOi2NLQb25Z62n0l+GEjaIKkmqTY8PNx45WZmNqW6w13Sy4HvA5dHxG+B64DXACuAg8BXGvnCEbEpInojorenp6eRp5qZ2QzqCndJJ5IF+40RcRtARDwdES9ExCjwDY61Xg4AS3NPX5LGzMysQ+o5W0bAZmBvRHw1N74ot9v7gN1peSuwTtICSWcBy4H7W1eymZnNpJ6zZc4FPgQ8LGlnGvsM8FeSVgABPAF8BCAi9ki6BXiE7EybjT5Txsyss2YM94j4KTDZTJQ7p3nO1cDVTdRlZmZN8AxVM7MScribmZWQw93MrIQc7mZmJeRwn0smXp65AJdrNrNicrjPFf394+9oNHbno/7+blZlZgXlcJ8LImBkZPwt68ZuaTcy4iN4M3sR32ZvLsjfsm5wMHvA+FvamZnl+DZ7c0kEHJf7ZWt01MFuNo/5NntlMNaKycv34M3Mchzuc0G+x16tZkfs1er4HryZWY577nOBBJXK+B77WA++UnFrxsxexD33uSRifJBPXDezecU997KYGOQOdjObgsPdzKyE6rkT01JJ2yQ9ImmPpGoaP13SXZIeSx9PS+OSdK2koXTz7JXt/ibMzGy8eo7cjwKfjIizgdXARklnA1cCd0fEcuDutA5wIdmt9ZYDG8hupG1mZh00Y7hHxMGIeCAt/w7YCywG1gJb0m5bgIvT8lrghsjcB1Qm3G/VzMzarKGeu6RlwDnAduDMiDiYNj0FnJmWFwP7ck/bn8Ymfq4NkmqSasPDw43WbWZm06g73CW9HPg+cHlE/Da/LbLzKRs6pzIiNkVEb0T09vT0NPJUMzObQV3hLulEsmC/MSJuS8NPj7Vb0sdDafwAsDT39CVpzMzMOqSes2UEbAb2RsRXc5u2AuvT8nrg9tz4JemsmdXA4Vz7xszMOqCeyw+cC3wIeFjSzjT2GeALwC2SLgOeBD6Qtt0JXAQMAc8Dl7ayYDMzm9mM4R4RPwWmmgp5/iT7B7CxybrMzKwJnqFqZlZCDnczsxJyuJuZlZDD3cyshBzuZmYl5HA3Myshh7uZWQk53M3MSsjhbmZWQg53M7MScribmZWQw93MrIQc7mZmJeRwNzMrIYe7mVkJOdzNzEqontvsfUvSIUm7c2P9kg5I2pkeF+W2XSVpSNKjkt7VrsLNzGxq9Ry5Xw9cMMn4QESsSI87ASSdDawD3pCe88+Sjm9VsWZmVp8Zwz0ifgI8U+fnWwvcHBFHIuJxsvuormqiPjMzm4Vmeu4fl7QrtW1OS2OLgX25ffansReRtEFSTVJteHi4iTLMzGyi2Yb7dcBrgBXAQeArjX6CiNgUEb0R0dvT0zPLMszMbDKzCveIeDoiXoiIUeAbHGu9HACW5nZdksbMzKyDZhXukhblVt8HjJ1JsxVYJ2mBpLOA5cD9zZVoZmaNOmGmHSTdBJwHLJS0H/gccJ6kFUAATwAfAYiIPZJuAR4BjgIbI+KFtlRuZmZTUkR0uwZ6e3ujVqt1uwwzszlF0o6I6J1sm2eompmVkMPdzKyEHO5mZiXkcDczKyGHu5lZCc3dcJ94lk8BzvoxMyuKuRnu/f3Q13cs0COy9f7+blZlZlYYcy/cI2BkBAYHjwV8X1+2PjLiI3gzM+qYoVo4EgwMZMuDg9kDoFrNxqXu1WZmVhBzd4ZqBByX+8VjdNTBbmbzSvlmqI61YvLyPXgzs3lu7oV7vsderWZH7NXq+B68mdk8Nzd77pXK+B77WA++UnFrxsyMud5zzwf5xHUzs5IrX88dXhzkDnYzs/83d8PdzMymNGO4S/qWpEOSdufGTpd0l6TH0sfT0rgkXStpSNIuSSvbWbyZmU2uniP364ELJoxdCdwdEcuBu9M6wIVk901dDmwArmtNmWZm1ogZwz0ifgI8M2F4LbAlLW8BLs6N3xCZ+4DKhJtpm5lZB8z2VMgzI+JgWn4KODMtLwb25fbbn8YOMoGkDWRH9wDPSXp0lrW0w0Lg190uYhpFrw+KX2PR6wPX2ApFrw+aq/GPptrQ9HnuERGSGj6fMiI2AZua/frtIKk21elFRVD0+qD4NRa9PnCNrVD0+qB9Nc72bJmnx9ot6eOhNH4AWJrbb0kaMzOzDpptuG8F1qfl9cDtufFL0lkzq4HDufaNmZl1yIxtGUk3AecBCyXtBz4HfAG4RdJlwJPAB9LudwIXAUPA88Clbai5EwrZLsopen1Q/BqLXh+4xlYoen3QphoLcfkBMzNrLc9QNTMrIYe7mVkJzftwl1SRdKukn0naK+ktU11eoYs19knaI2m3pJskvUTSWZK2p0s9fE/SSR2uqdCXpZiivi+lf+ddkn4gqZLbdlWq71FJ72p3fVPVmNv2SUkhaWFaL8RrmMb/Lr2OeyR9MTdeiNdQ0gpJ90naKakmaVUa78ZruFTSNkmPpNermsbb/16JiHn9IJth+7dp+SSgAnwRuDKNXQlc08X6FgOPAyen9VuAD6eP69LY14GPdbiutwErgd25sUlfN7I/sv8QELAa2N6l+t4JnJCWr8nVdzbwELAAOAv4OXB8N2pM40uBfyc7WWFhwV7DtwM/Bhak9VcW7TUEfgRcmHvd7u3ia7gIWJmWTwH+K71WbX+vzOsjd0mnkv3n2AwQEf8bESNMfXmFbjkBOFnSCcBLyWb8rgFuTds7XmMU/LIUk9UXET+KiKNp9T6yeRhj9d0cEUci4nGys71WtbO+qWpMBoBPA/mzHQrxGgIfA74QEUfSPmNzXIr0GgbwirR8KvCrXI2dfg0PRsQDafl3wF6yA7a2v1fmdbiTHWEMA9+W9KCkb0p6GVNfXqHjIuIA8GXgl2ShfhjYAYzkgmrsMg/d1uhlKbrpb8iOkKBA9UlaCxyIiIcmbCpKja8D/iy1BP9D0pvSeFHqA7gc+JKkfWTvnavSeFdrlLQMOAfYTgfeK/M93E8g+5Xuuog4B/hvjl3hEsgur8D4I6iOSr24tWQ/iF4FvIwXX6WzcLr9uk1H0meBo8CN3a4lT9JLgc8Af9/tWqZxAnA6WcvgU2TzXYp2p5yPAX0RsRToI/1m3k2SXg58H7g8In6b39au98p8D/f9wP6I2J7WbyUL+6kur9ANfwE8HhHDEfF74DbgXLJf18YmoRXlMg+FvyyFpA8D7wE+mN5UUJz6XkP2Q/whSU+kOh6Q9AcUp8b9wG2pbXA/MEp24aui1AfZrPnb0vK/cqw91JUaJZ1IFuw3RsRYXW1/r8zrcI+Ip4B9kv44DZ0PPMLUl1fohl8CqyW9NB0hjdW4DXh/2qfbNY4p9GUpJF1A1st+b0Q8n9u0FVgnaYGks8juR3B/p+uLiIcj4pURsSwilpEF6cr0/7QQryHwb2R/VEXS68hOQvg1BXkNk18Bf56W1wCPpeWOv4bpPbsZ2BsRX81tav97pd1/LS76A1gB1IBdZP9xTwPOILsJyWNkZwac3uUaPw/8DNgNfIfsjIRXk715hsiOThZ0uKabyP4G8HuyELpsqteN7C///0R2BsXDQG+X6hsi62fuTI+v5/b/bKrvUdKZFt2occL2Jzh2tkxRXsOTgO+m/4sPAGuK9hoCbyX7u9RDZP3tP+3ia/hWspbLrtz/u4s68V7x5QfMzEpoXrdlzMzKyuFuZlZCDnczsxJyuJuZlZDD3cyshBzuZmYl5HA3Myuh/wPi+D/An9GdTgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAW+klEQVR4nO3dfZBddX3H8feHp4iKXCArjUnaoMY62BlDusY4WIuhKqBjcMY66ViJlE7UiZ3L6ihEZ+o6U2bEp3WZtjiRKEEpSBFLhsGpCKGOfxC6gRASImUVMFkDWYSNUqapYb/94/y2Obvsw717n86e/bxm7txzfufc3e+e5H733O/+HhQRmJlZuRzX6QDMzKz5nNzNzErIyd3MrISc3M3MSsjJ3cyshE7odAAACxcujGXLlnU6DDOzOWXnzp3PRETXZMcKkdyXLVvGwMBAp8MwM5tTJD051TGXZczMSsjJ3cyshJzczcxKyMndzKyEnNzNzDph4rxeTZ7ny8ndzKzdenuhp+dYQo/I9nt7m/YtnNzNzNopAkZGoL//WILv6cn2R0aadgdfiH7uZmbzhgR9fdl2f3/2AKhWs3apOd+mCPO5d3d3hwcxmdm8EgHH5Yono6N1J3ZJOyOie7JjLsuYmbXbWCkmL1+DbwIndzOzdsrX2KvV7I69Wh1fg28C19zNzNpJgkplfI19rAZfqbjmbmY2p0WMT+QT92vgmruZWdFMTORNumMf4+RuZvNXi0eJdlJNyV3SE5IelrRL0kBqO13SXZIeS8+npXZJukbSoKTdkla28gcwM5uVNowS7aR67tzfGRErcvWdK4G7I2I5cHfaB7gQWJ4eG4BrmxWsmVlTtGmUaCc10ltmLXBe2t4K3AtckdpviOwvtfdJqkhaFBEHGwnUzKxp2jRKtJNqvXMP4MeSdkrakNrOzCXsp4Az0/ZiYH/utQdS2ziSNkgakDQwPDw8i9DNzBqQT/BjSpLYofbk/vaIWElWctko6R35g+kuva7PMRGxOSK6I6K7q2vS9V3NzFqnDaNEO6mm5B4RQ+n5EPBDYBXwtKRFAOn5UDp9CFiae/mS1GZmVgxtGiXaSTMmd0mvkHTK2DbwbmAPsA1Yn05bD9yetrcBl6ReM6uBw663m1mhTDVKtFpt6ijRTppxhKqk15LdrUP2B9h/iYirJJ0B3AL8IfAk8KGIeFaSgH8ELgBeAC6NiGmHn3qEqpl1RBNGiXbSdCNUZ+wtExG/BN48SftvgPMnaQ9g4yziNDNrrxaPEu0kj1A1MyshJ3czsxJycjczKyEndzOzEnJyNzMrISd3M7MScnI3MyshJ3czsxJycjczKyEndzOzEnJyNzMrISd3M7MScnI3MyshJ3czsxJycjczKyEndzOzEqo5uUs6XtKDku5I+9dLelzSrvRYkdol6RpJg5J2S1rZotjNzGwKM67ElFMF9gGvyrV9JiJunXDehcDy9HgrcG16NjOzNqnpzl3SEuC9wHU1nL4WuCEy9wEVSYsaiNHMzOpUa1nmG8BngdEJ7Vel0kufpAWpbTGwP3fOgdQ2jqQNkgYkDQwPD9cZtpmZTWfG5C7pfcChiNg54dAm4I3AW4DTgSvq+cYRsTkiuiOiu6urq56XmpnZDGq5cz8XeL+kJ4CbgTWSvhcRB1Pp5QjwHWBVOn8IWJp7/ZLUZmZmbTJjco+ITRGxJCKWAeuAeyLir8fq6JIEXAzsSS/ZBlySes2sBg5HxMGWRG9mZpOqp7fMRDdK6gIE7AI+ntrvBC4CBoEXgEsbCdDMzOpXV3KPiHuBe9P2minOCWBjo4GZmdnseYSqmVkJObmbmZWQk7uZWQk5uZuZlZCTu5lZCTm5m1n9Iqbft45zcjez+vT2Qk/PsYQeke339nYyKpvAyd3MahcBIyPQ338swff0ZPsjI76DL5BGRqia2XwjQV9ftt3fnz0AqtWsXepcbDaOogC/abu7u2NgYKDTYZhZrSLguNwH/9FRJ/YOkLQzIronO+ayjJnVZ6wUk5evwVshOLmbWe3yNfZqNbtjr1bH1+CtEFxzN7PaSVCpjK+xj9XgKxWXZgrENXczq1/E+EQ+cd/awjV3M2uuiYncib1wak7uko6X9KCkO9L+WZJ2SBqU9H1JJ6X2BWl/MB1f1qLYzeY3jxK1adRz514F9uX2rwb6IuL1wHPAZan9MuC51N6XzjOzZvIoUZtBTcld0hLgvcB1aV/AGuDWdMpWsnVUAdamfdLx89P5ZtYMHiVqNai1t8w3gM8Cp6T9M4CRiDia9g8Ai9P2YmA/QEQclXQ4nf9MMwI2m/c8StRqMOOdu6T3AYciYmczv7GkDZIGJA0MDw8380ublV8+wY9xYrecWsoy5wLvl/QEcDNZOaYfqEgau/NfAgyl7SFgKUA6firwm4lfNCI2R0R3RHR3dXU19EOYzTseJWozmDG5R8SmiFgSEcuAdcA9EfFhYDvwwXTaeuD2tL0t7ZOO3xNF6ExvVhYeJWo1aGSE6hXAzZL+AXgQ2JLatwDflTQIPEv2C8HMmsWjRK0GHqFqNld5lOi85xGqZmXkUaI2DSd3M7MScnI3MyshJ3czsxJycjczKyEndzOzEnJyNzMrISd3M7MScnI3MyshJ3czsxJycjczKyEndzOzEnJyNzMrISd3M7MScnI3MyshJ3czsxKqZYHsl0m6X9JDkvZK+mJqv17S45J2pceK1C5J10galLRb0soW/wxmZjZBLcvsHQHWRMTzkk4EfibpR+nYZyLi1gnnXwgsT4+3AtemZzMza5NaFsiOiHg+7Z6YHtOtzbcWuCG97j6gImlR46GamVmtaqq5Szpe0i7gEHBXROxIh65KpZc+SQtS22Jgf+7lB1LbxK+5QdKApIHh4eHZ/wRmZvYSNSX3iHgxIlYAS4BVkv4E2AS8EXgLcDpwRT3fOCI2R0R3RHR3dXXVF7WZmU2rrt4yETECbAcuiIiDqfRyBPgOsCqdNgQszb1sSWozM7M2qaW3TJekSto+GXgX8POxOrokARcDe9JLtgGXpF4zq4HDEXGwBbGbmdkUauktswjYKul4sl8Gt0TEHZLukdQFCNgFfDydfydwETAIvABc2vSozcxsWjMm94jYDZwzSfuaKc4PYGPjoZmZ2Wx5hKqZWQk5uZuZlZCTu5lZCTm5mzUqYvp9sw5wcjdrRG8v9PQcS+gR2X5vbyejMnNyN5u1CBgZgf7+Ywm+pyfbHxnxHbx1VC393M1sMhL09WXb/f3ZA6BazdqlzsVm856iAHcX3d3dMTAw0OkwzGYnAo7LfQgeHXVit7aQtDMiuic75rKMWSPGSjF5+Rq8WYc4uZvNVr7GXq1md+zV6vgavFmHuOZuNlsSVCrja+xjNfhKxaUZ6yjX3M0aFTE+kU/cN2sR19zNWmliInditwJwcjczKyEndzOzEnJyNzMroVqW2XuZpPslPSRpr6QvpvazJO2QNCjp+5JOSu0L0v5gOr6sxT+DmZlNUMud+xFgTUS8GVgBXJDWRr0a6IuI1wPPAZel8y8Dnkvtfek8s9nxjItmszJjco/M82n3xPQIYA1wa2rfSrZINsDatE86fn5aRNusPp5x0WzWaqq5Szpe0i7gEHAX8AtgJCKOplMOAIvT9mJgP0A6fhg4Y5KvuUHSgKSB4eHhhn4IKyHPuGjWkJpGqEbEi8AKSRXgh8AbG/3GEbEZ2AzZIKZGv56VjGdcNGtIXb1lImIE2A68DahIGvvlsAQYSttDwFKAdPxU4DfNCNbmmXyCH+PEblaTWnrLdKU7diSdDLwL2EeW5D+YTlsP3J62t6V90vF7oghzHNjc4xkXzWatljv3RcB2SbuB/wTuiog7gCuAT0kaJKupb0nnbwHOSO2fAq5sfthWep5x0awhM9bcI2I3cM4k7b8EVk3S/j/AXzYlOpu/POOiWUM8K6QVm2dcNJuSZ4W0ucszLprNipO7mVkJObmbmZWQk7uZWQk5uZuZlZCTuzWXZ3E0KwQnd2sez+JoVhhO7tYcnsXRrFBqmhXSbEaexdGsUDxC1ZorAo7LfSAcHXViN2sRj1C19vAsjmaF4eRuzeFZHM0KxTV3aw7P4mhWKK65W3N5FkeztnHN3drHsziaFUIty+wtlbRd0iOS9kqqpvZeSUOSdqXHRbnXbJI0KOlRSe9p5Q9gZmYvVUvN/Sjw6Yh4QNIpwE5Jd6VjfRHx1fzJks4G1gFvAl4D/ETSGyLixWYGbmZmU5vxzj0iDkbEA2n7d2SLYy+e5iVrgZsj4khEPA4MMslyfGZm1jp11dwlLSNbT3VHavqkpN2Svi3ptNS2GNife9kBJvllIGmDpAFJA8PDw/VHbmZmU6o5uUt6JfAD4PKI+C1wLfA6YAVwEPhaPd84IjZHRHdEdHd1ddXzUjMzm0FNyV3SiWSJ/caIuA0gIp6OiBcjYhT4FsdKL0PA0tzLl6Q2MzNrk1p6ywjYAuyLiK/n2hflTvsAsCdtbwPWSVog6SxgOXB/80I2M7OZ1NJb5lzgI8DDknalts8BfyVpBRDAE8DHACJir6RbgEfIetpsdE8ZM7P2mjG5R8TPgMlGotw5zWuuAq5qIC4zM2uAR6iamZWQk7uZWQk5uZuZlZCTu5lZCTm5zyUTp2cuwHTNZlZMTu5zRW/v+BWNxlY+6u3tZFRmVlBO7nNBBIyMjF+ybmxJu5ER38Gb2Ut4mb25IL9kXX9/9oDxS9qZmeV4mb25JAKOy33YGh11Yjebx7zMXhmMlWLy8jV4M7McJ/e5IF9jr1azO/ZqdXwN3swsxzX3uUCCSmV8jX2sBl+puDRjZi/hmvtcEjE+kU/cN7N5xTX3spiYyJ3YzWwKTu5mZiVUy0pMSyVtl/SIpL2Sqqn9dEl3SXosPZ+W2iXpGkmDafHsla3+IczMbLxa7tyPAp+OiLOB1cBGSWcDVwJ3R8Ry4O60D3Ah2dJ6y4ENZAtpm5lZG82Y3CPiYEQ8kLZ/B+wDFgNrga3ptK3AxWl7LXBDZO4DKhPWWzUzsxarq+YuaRlwDrADODMiDqZDTwFnpu3FwP7cyw6ktolfa4OkAUkDw8PD9cZtZmbTqDm5S3ol8APg8oj4bf5YZP0p6+pTGRGbI6I7Irq7urrqeamZmc2gpuQu6USyxH5jRNyWmp8eK7ek50OpfQhYmnv5ktRmZmZtUktvGQFbgH0R8fXcoW3A+rS9Hrg9135J6jWzGjicK9+YmVkb1DL9wLnAR4CHJe1KbZ8DvgTcIuky4EngQ+nYncBFwCDwAnBpMwM2M7OZzZjcI+JnwFRDIc+f5PwANjYYl5mZNcAjVFvBa52aWYc5uTeb1zo1swJwcm8mr3VqZgXh+dybyWudmllBeD73VvBap2bWBp7PvZ281qmZFYCTezN5rVMzKwjX3JvJa52aWUG45t4KXuvUzNrANfd281qnZtZhTu5mZiXk5G5mVkJO7mZmJeTkbmZWQk7uZmYl5ORuZlZCtSyz921JhyTtybX1ShqStCs9Lsod2yRpUNKjkt7TqsDNzGxqtdy5Xw9cMEl7X0SsSI87ASSdDawD3pRe88+Sjm9WsGZmVpsZk3tE/BR4tsavtxa4OSKORMTjZOuormogPjMzm4VGau6flLQ7lW1OS22Lgf25cw6ktpeQtEHSgKSB4eHhBsIwM7OJZpvcrwVeB6wADgJfq/cLRMTmiOiOiO6urq5ZhmFmZpOZVXKPiKcj4sWIGAW+xbHSyxCwNHfqktRmZmZtNKvkLmlRbvcDwFhPmm3AOkkLJJ0FLAfubyxEMzOr14zzuUu6CTgPWCjpAPAF4DxJK4AAngA+BhAReyXdAjwCHAU2RsSLLYnczMym5PnczczmKM/nbmY2zzi5m5mVkJO7mVkJObmbmZWQk7uZWQnN3eQ+sZdPAXr9mJkVxdxM7r290NNzLKFHZPu9vZ2MysysMOZeco+AkRHo7z+W4Ht6sv2REd/Bm5lRwwjVwpGgry/b7u/PHgDVatYudS42M7OCmLsjVCPguNwHj9FRJ3Yzm1fKN0J1rBSTl6/Bm5nNc3Mvuedr7NVqdsderY6vwZuZzXNzs+ZeqYyvsY/V4CsVl2bMzJjrNfd8Ip+4b2ZWcuWrucNLE7kTu5nZ/5u7yd3MzKY0Y3KX9G1JhyTtybWdLukuSY+l59NSuyRdI2lQ0m5JK1sZvJmZTa6WO/frgQsmtF0J3B0Ry4G70z7AhWTrpi4HNgDXNidMMzOrx4zJPSJ+Cjw7oXktsDVtbwUuzrXfEJn7gMqExbTNzKwNZtsV8syIOJi2nwLOTNuLgf258w6ktoNMIGkD2d09wPOSHp1lLK2wEHim00FMo+jxQfFjLHp84BiboejxQWMx/tFUBxru5x4RIanu/pQRsRnY3Oj3bwVJA1N1LyqCoscHxY+x6PGBY2yGoscHrYtxtr1lnh4rt6TnQ6l9CFiaO29JajMzszaabXLfBqxP2+uB23Ptl6ReM6uBw7nyjZmZtcmMZRlJNwHnAQslHQC+AHwJuEXSZcCTwIfS6XcCFwGDwAvApS2IuR0KWS7KKXp8UPwYix4fOMZmKHp80KIYCzH9gJmZNZdHqJqZlZCTu5lZCc375C6pIulWST+XtE/S26aaXqGDMfZI2itpj6SbJL1M0lmSdqSpHr4v6aQ2x1ToaSmmiO8r6d95t6QfSqrkjm1K8T0q6T2tjm+qGHPHPi0pJC1M+4W4hqn979J13Cvpy7n2QlxDSSsk3Sdpl6QBSatSeyeu4VJJ2yU9kq5XNbW3/r0SEfP6QTbC9m/T9klABfgycGVquxK4uoPxLQYeB05O+7cAH03P61LbN4FPtDmudwArgT25tkmvG9kf2X8ECFgN7OhQfO8GTkjbV+fiOxt4CFgAnAX8Aji+EzGm9qXAv5N1VlhYsGv4TuAnwIK0/+qiXUPgx8CFuet2bwev4SJgZdo+BfivdK1a/l6Z13fukk4l+8+xBSAi/jciRph6eoVOOQE4WdIJwMvJRvyuAW5Nx9seYxR8WorJ4ouIH0fE0bR7H9k4jLH4bo6IIxHxOFlvr1WtjG+qGJM+4LNAvrdDIa4h8AngSxFxJJ0zNsalSNcwgFel7VOBX+dibPc1PBgRD6Tt3wH7yG7YWv5emdfJnewOYxj4jqQHJV0n6RVMPb1C20XEEPBV4FdkSf0wsBMYySWqsWkeOq3eaSk66W/I7pCgQPFJWgsMRcRDEw4VJcY3AH+WSoL/Iektqb0o8QFcDnxF0n6y986m1N7RGCUtA84BdtCG98p8T+4nkH2kuzYizgH+m2MzXALZ9AqMv4Nqq1SLW0v2i+g1wCt46SydhdPp6zYdSZ8HjgI3djqWPEkvBz4H/H2nY5nGCcDpZCWDz5CNdynaSjmfAHoiYinQQ/pk3kmSXgn8ALg8In6bP9aq98p8T+4HgAMRsSPt30qW7KeaXqET/gJ4PCKGI+L3wG3AuWQf18YGoRVlmofCT0sh6aPA+4APpzcVFCe+15H9En9I0hMpjgck/QHFifEAcFsqG9wPjJJNfFWU+CAbNX9b2v5XjpWHOhKjpBPJEvuNETEWV8vfK/M6uUfEU8B+SX+cms4HHmHq6RU64VfAakkvT3dIYzFuBz6Yzul0jGMKPS2FpAvIatnvj4gXcoe2AeskLZB0Ftl6BPe3O76IeDgiXh0RyyJiGVkiXZn+nxbiGgL/RvZHVSS9gawTwjMU5Bomvwb+PG2vAR5L222/huk9uwXYFxFfzx1q/Xul1X8tLvoDWAEMALvJ/uOeBpxBtgjJY2Q9A07vcIxfBH4O7AG+S9Yj4bVkb55BsruTBW2O6SayvwH8niwJXTbVdSP7y/8/kfWgeBjo7lB8g2T1zF3p8c3c+Z9P8T1K6mnRiRgnHH+CY71linINTwK+l/4vPgCsKdo1BN5O9neph8jq23/awWv4drKSy+7c/7uL2vFe8fQDZmYlNK/LMmZmZeXkbmZWQk7uZmYl5ORuZlZCTu5mZiXk5G5mVkJO7mZmJfR/VJCRfOQ+aeAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -201,7 +201,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhW0lEQVR4nO3de5xV8/7H8deHcOTSuMRJIY4cSkoNco1yK5c4l06cc4SSSGcat8o5P8ZduUzDSUQdxRFCuqiUVITKdL9JlxPKpdAFkab5/v74rs2eaaaZaWbPWnvv9/Px2I9Z+7vXzHzaj+3jM5/1Xd+vOecQEZHUskvYAYiISNVTchcRSUFK7iIiKUjJXUQkBSm5i4ikoBphBwBw4IEHuvr164cdhohIUpk1a9bXzrnaJb0WieRev3598vPzww5DRCSpmNknpb2mtoyISApSchcRSUFK7iIiKUjJXUQkBSm5i4ikICV3EZEUpOQuIpKClNxFREKweTP07AmflDpTvXKU3EVEqtnkydC4MfTtC2PHJuZ3KLmLiFSTDRugSxdo1Qp22QWmTIHrr0/M71JyFxGpBqNGQaNGMGgQ3HYbzJ8PLVsm7vcpuYuIJNDatdChA7RrBwceCDNmQJ8+sOeeif29Su4iIgngHDz/PBx7LIwYAffcA/n5kJlZPb8/EqtCioikks8+g65d/cXSFi18K6Zhw+qNQZW7iEgVKSyEAQN8b33KFOjXD6ZNq/7EDqrcRUSqxLJl0LkzvPMOnHMODBwIRxwRXjyq3EVEKqGgwM9XP/54mDfPt2AmTAg3sYMqdxGRnTZvHnTqBLNmwaWXQv/+cMghYUflqXIXEamgLVvg//7Pz3z57DN4+WV47bXoJHZQ5S4iUiEffOCr9SVL4Mor4dFH4YADwo5qe6rcRUTK4fvvoUcPOO00fzx2LAwZEs3EDqrcRUTKNHGiXxNm1SrodoPjgQeNffYJXnQOzMIMr0Sq3EVESrF+PVxzDZx3Huy+O7xz1WD+vVs2++zt/AnOQXY25OSEGmdJlNxFREowYoS/+WjoUL/u+tw5jjNqzYe8PJ/QY4k9L88v9+hc2CEXobaMiEicL7+E7t3hlVegaVN44w1o1gzAIDfXn5SX5x8AWVl+PGKtGVXuIiL4wnvoUF+tjx4N998PM2fGEnvA4hJ8TAQTOyi5i4jw6afQti107OhXcZw7F3r3ht12K3ZirBUTL9aiiRgldxFJW4WF/q7SRo3g3Xfh8cf912OOKeHk+B57Vpb/5qysoj34CFHPXUTS0tKlfqGvadPg/PPhqafg8MN38A1mkJFRtMcea9FkZESuNWMuAv+3yczMdPn5+WGHISLJqvhc8x3MPd+6FR55xM9erFnT32HasWMFcnMFfleimdks51yJ23+Uqy1jZqvMbIGZzTWz/GBsfzObaGbLgq/7BeNmZo+Z2XIzm29mzXb800VEKiEnp2hbZAdzz+fMgZNP9v30iy+GxYvhqqsqmJuLnxyxij2mIj33s51zTeP+L9ELmOScawBMCp4DtAEaBI8uwICqClZEpAjn/BzzMuae//QT3H47nHgifP45vPoqDB8Ov/1tqNEnVGV67u2As4LjIcAUoGcwPtT5fs90M8swszrOuS8qE6iIyHas7Lnn773nF/pauhSuvtq3ZPbbL7yQq0t5K3cHTDCzWWbWJRg7OC5hfwkcHBzXBT6L+97VwVgRZtbFzPLNLH/dunU7EbqICKXOPf/ue6N7dzjjDL9E74QJMHhweiR2KH9yP9051wzfculmZmfGvxhU6RW6MuucG+icy3TOZdauXbsi3yoi8qsS5p6/+YenOO44R//+/m7TBQvg3HNDii8k5Uruzrk1wde1wAjgJOArM6sDEHxdG5y+Bjg07tvrBWMiIlWr2Nzzb78u5KpjZ3DB612p+d1apr3ryMuDvfcOO9DqV2ZyN7O9zGyf2DFwHrAQGAV0DE7rCIwMjkcBVwazZloAG9VvF5GEiJt7/urpuTRsZDz/8Yn888QJzLnhaU49LZozWapDeS6oHgyMMD/dpwbwgnNuvJl9CLxsZp2AT4D2wfljgbbAcmAzcHWVRy0iEviyaw7dujle+7PRrBmMH280bXIu2HlhhxaqMpO7c24l0KSE8W+A1iWMO6BblUQnIlIK5/xOSNnZ8OOPxoMPws03Q40aAOlbscdo+QERSTqrVvmdkSZO9LNhnnkGjj467KiiRQuHiUjS2LYNHnsMjjvOb1Tdvz9MmaLEXhJV7iKSFJYs8Qt9vf8+tGkDTz4Jhx0WdlTRpcpdRCJt61a47z6/K9JHH8Fzz/ndkZTYd0yVu4hE1qxZfumAefOgfXu/3vpBB4UdVXJQ5S4ikfPjj9Crl1/Bce1av1n1Sy8psVeEKncRiZR33vG99WXL/NeHHvL3KUnFqHIXkUjYtAluuAFatoSCAnjrLXj6aSX2naXkLiKhGzfOT2988kl/U9KCBdB6u1skpSLUlhGR0HzzDfToAc8/Dw0b+mmOLVqEHVVqUOUuItXOOXj5ZTj2WHjxRbjjDpg9W4m9KqlyF5Fq9fnnvrc+ciRkZvre+vHHhx1V6lHlLiLVwjkYNMi3X958E/r29UsIKLEnhip3EUm4lSv9Ql+TJvnZMM88A0cdFXZUqU2Vu4gkzLZt0K8fNG4MM2f62TBvv63EXh1UuYtIQixa5JcOmDEDLrzQJ/Z69cKOKn2ocheRKvXzz3D33XDCCbBiBbzwAowercRe3VS5i0iV+fBDX60vWAAdOvi112vXDjuq9KTKXUQqbfNmuPVWP0/9229h1CgYNkyJPUyq3EWkUqZM8Qt8rVgB117rF/qqVSvsqESVu4jslI0b4brr4Oyz/fO334aBA5XYo0LJXUQqbMwYaNTIz1e/+WaYP//XJC/RoOQuIuW2bh1ccQVcfDHst5+/w/Thh6FmzbAjk+KU3EWkTM75C6QNG8Irr0BOjt8C76STwo5MSqMLqiKyQ6tX+4W+Ro/2yXzQIL/2ukSbKncRKco5AAoL/QXSRo0cb70Fjzzi11tXYk8OSu4i8qucHMjOZvkyR+vWfjZM832XsaBzHjfdBLvuGnaAUl5K7iLiOUfBt5t4OK8GjY/dyuzZjoGtX2TS6t/zu13+90tFL8lBPXcRAWDBQqPT9Ef4EOOSbSN5YtMN1J30OWRlQW4umIUdolSAKneRNLdlC9x5JzRrBqtWGS8Oc7zOpdTlc3+CEntSUnIXSWMzZvikfvfdfqGvJYsdf5meTZFUnp2tlkwSUnIXSUM//AA33QSnnAKbNsEbb8BzQx0H3JsNeXm+FVNY6L/m5SnBJyH13EXSzKRJfoGv//3Pz19/4AHYd18Ag4yMoj323Fz/TRkZas0kGSV3kTSxYQPccou/CalBA5g6Fc48s9hJOTm+Qo8l8liCV2JPOmrLiCSD4i2RCrZIRo70Swc8+yz07Anz5pWQ2GOKJ3Il9qRU7uRuZrua2RwzGxM8P8LMZpjZcjN7ycx2D8b3CJ4vD16vn6DYRdJDcGPRLwndOf88J6fMb127Fv7yF7j0Ur9xxowZ8OCDsOeeiQxYoqAilXsWsCTueR8g1zl3FLAe6BSMdwLWB+O5wXkisjOc8/2U+Iua2cFFzw0bSq3gnYP//tdX66+/DvfeC/n50Lx5dQYvoXLOlfkA6gGTgFbAGMCAr4EaweunAG8Gx28CpwTHNYLzbEc/v3nz5k5ESlFY6FxWlnM+Z/tHVpYfL8GnnzrXtq0/rUUL5xYtqtZopRoB+a6UvFreyr0fcBtQGDw/ANjgnCsInq8G6gbHdYHPgv9xFAAbg/OLMLMuZpZvZvnr1q0rZxgiaSh+1kpMCRc5CwthwAC/icaUKb64nzbNV++SfspM7mZ2EbDWOTerKn+xc26gcy7TOZdZW7voipQu1oqJV2ze+ccfw1ln+amNJ58MCxfCP/6hhb7SWXkq99OAS8xsFfAivjWTB2SYWWwqZT1gTXC8BjgUIHi9FvBNFcYskj7ie+wl3FhUsNXRty80aQILFsDgwTBhAhxxRNiBS9jKnOfunOsN9AYws7OAW5xzfzWz4cCf8Am/IzAy+JZRwfMPgtffDnpDIlJRVvqNRfN++j3XtDBmz4bLLoP+/aFOnXDDleiozE1MPYEXzexeYA4wKBgfBDxnZsuBb4EOlQtRJM0Vu7Foy8/GvXvn8mB/44AD/LZ3f/xjuCFK9FQouTvnpgBTguOVwHY7KDrnfgL+XAWxiUhMkNjffx86dYKPPjKuvNIX8fvvH3JsEkm6Q1UkCXz/ve/MnH46bN4M48fDkCFK7FI6rS0jEnETJkCXLvDpp78u9LXPPmFHJVGnyl0kotavh2uugfPPh9/8Bt55B/79byV2KR8ld5EIeu01f/PR0KHQuzfMnetbMiLlpbaMSIR8+SXceCO8+io0bQpjx8IJJ4QdlSQjVe4iEeCcv0DasCGMGQP33QczZyqxy85T5S4Ssk8+ga5d/QyYU0/1m2kcc0zYUUmyU+UuEpLCQn9X6XHHwbvvwmOP+a9K7FIVVLmLhGDpUujc2a/aeP758NRTcPjhYUclqUSVu0g12rrVz1Nv0gQWLfLb3o0bp8QuVU+Vu0g1mTPHLx0wZw786U/w+OPw29+GHZWkKlXuIgn2009w++1w4onwxRd+muPw4Urskliq3EUSaNo031tfuhSuvhoeeQT22y/sqCQdqHIXSYDvvvM3I51xhq/cJ0zwG2kosUt1UXIXqWJvvumnNz7xhF/JceFCOPfcsKOSdKPkLlJFvvkGOnaECy6AmjV9S6ZfP9h777Ajk3Sk5C5SSc753ZAaNoQXXoB//csv9HXqqWFHJulMF1RFKuGLL6BbNxgxApo18731Jk3CjkpElbvITnEO/vMfX62PGwd9+sCMGUrsEh2q3EUqaNUqvzPSxIl+Nswzz8DRR4cdlUhRqtxFymnbNr+413HHwQcf+NkwU6YosUs0qXIXKYclS/zSAR98AG3awJNPwmGHhR2VSOlUuYvswNatfuOMpk39XabPPQdvvBEkdueKnlz8uUiIlNxFSjFrFmRm+qmNl17qq/e//Q3MgJwcyM7+NaE755/n5IQXsEgcJXeRYn78EXr2hJNPhnXr/DTHl16Cgw4KTnAONmyAvLxfE3x2tn++YYMqeIkE9dxF4kydCtdeC8uW+R77ww9DRkaxk8wgN9cf5+X5B/i1BnJzg9JeJFyq3EWATZvg+uvhrLOgoADeestPcdwuscfEJ/gYJXaJECV3SXtjx0KjRn6rux49YMECaN26jG+KtWLixffgRUKm5C5p6+uv/QXSCy+Efff10xxzc2Gvvcr4xvgee1aW3+k6K6toD14kZOq5S9pxzl8g7d7dX/+84w6/U9Iee5TzB5j5fk18jz3WosnIUGtGIsFcBKqMzMxMl5+fH3YYkgbWrIEbboBRo/w0x8GDoXHjnfxhzhVN5MWfiySYmc1yzmWW9JraMpIWnIOnn/YLfU2YAH37+jbMTid22D6RK7FLhKgtIylv5Uo/vfHtt6FlSz8L5qijwo5KJLFUuUvK2rbNt8KPOw7y8/16MG+/rcQu6aHM5G5mvzGzmWY2z8wWmdldwfgRZjbDzJab2UtmtnswvkfwfHnwev0E/xtEtrNwIZx2Gtx0k5/WuGgRXHcd7KJyRtJEeT7qW4BWzrkmQFPgAjNrAfQBcp1zRwHrgU7B+Z2A9cF4bnCeSLX4+We46y6/K9KKFX7bu1GjoF69sCMTqV5lJnfnfR883S14OKAV8EowPgS4NDhuFzwneL21ma40SRXZwUqMH34IzZv7tbv+/GdYvBguv1zXOSU9leuCqpntCswCjgL6AyuADc65guCU1UDd4Lgu8BmAc67AzDYCBwBfF/uZXYAuAIdpYWwpj5wcPzE9Nrc8uJlo8161uWPLP8nNhTp1YPRouOiisIMVCVe5krtzbhvQ1MwygBHAMZX9xc65gcBA8PPcK/vzJMXFr8QIPsFnZzM5bx7X1nqZFRt9T71PH6hVK9RIRSKhQlMhnXMbzGwycAqQYWY1guq9HrAmOG0NcCiw2sxqALWAb6owZklHxVZi3Jj3H26jLwPpx+8OdEx+3S/6JSJeeWbL1A4qdsxsT+BcYAkwGfhTcFpHYGRwPCp4TvD62y4Kt8FK8gsS/BgupBGLeIbO3HKzY/58U2IXKaY8s2XqAJPNbD7wITDROTcG6AncZGbL8T31QcH5g4ADgvGbgF5VH7ako3VrHVccM5uLGcP+fMt0WvBQQTY191TtIFJcmW0Z59x84IQSxlcCJ5Uw/hPw5yqJTgTfbn9xmOMfnX9g44+NuavFOHpNuYDde55WtAevaTEiv9DyAxJpq1f7TTTGjDFOrruBQWc/T6OhPbUSo0gZlNwlkgoL/Rowt94KW7fCo4/CP/5Rj1136flrIo8leCV2ke0ouUvkLF/uF/qaMgVatfKrOR55ZOxVrcQoUh5aaUMio6DAb0jduDHMmeMr97feik/sIlJeqtylepSxscWCBdCpk19CoF07eOIJOOSQEOIUSRGq3CXxcnKK7i0a24M0J4ctW+DOO/1CX6tW+e3vRoxQYhepLCV3Saz4ZQNiCT7YXHr6klo0a+a4+27o0AGWLIH27dVGF6kKastIYhVbNoC8PH6gJv9qOpm84S2pW9d44w1o2zbcMEVSjSp3Sby4BD+JVjRmAf3mnkXXrsaiRUrsIomg5C6J5xwbbridzjzNOUyiBgVM/dNjPNHfse++YQcnkprUlpHEco6Rlwzi+jHdWWsH0/NWx50/PM2e/R+G7JW6CUkkQZTcJWHWroXu3Y2Xx3Tm+APXMHrcLjTPNHB9ocZWLRsgkkBK7lLlnIPnn4cePeD77+Hee+G2Ww9ht921bIBIdVFylyr16afQtSuMGwennAKDBsGxx4KWDRCpXrqgKlWisNDfVdqoEUyd6mc9vvtuLLGLSHVT5S6V9vHH0LmzT+bnnAMDB8IRR4QdlUh6U+UuO62gwG9Iffzxfm2YwYNhwgQldpEoUOUuO2XePLjmGpg9Gy67DPr3hzp1wo5KRGJUuUuFbNkC//oXZGb6XZKGD4fXXlNiF4kaVe5Sbu+/75fl/egj6NjR7460//5hRyUiJVHlLmX6/nvIyoLTT4fNm2H8eHj2WSV2kShT5S47NGECdOni56936wb33w/77BN2VCJSFlXuUqL16+Hqq+H88+E3v/HTHB9/XIldJFkouct2RoyAhg3hueegd2+YOxdOOy3sqESkItSWkV98+SV07w6vvAInnABjx/qvIpJ8VLmnqth+paU9L/bSkCG+Wh89Gh54AGbMUGIXSWZK7qloBxtSF/fJJ9CmDVx1lV8XZt486NULdtutOgMWkaqm5J5qdrAhNRs2/JLwCwvh3//2Cf299/zx1Knw+9+HGr2IVBH13FNNCRtSA36ierCG+tKl/mak996D887zC30dfnh4IYtI1VPlnoriE3xMbi5bC4wHHoAmTWDxYt9nHz9eiV0kFSm5p6JYKybOnL8+zEknOW6/HS6+GJYsgSuv1J4ZIqlKyT3VxPfYs7L48YdCemdO5MRh2Xz58SZefcUxfDgcfHDYgYpIIim5pxozv/F0VhbT/phL0xOMB/PP4cqGs1h84wD+8EeV6iLpQBdUU9B3N+fQu5ej/5lG/fp+fZhzzzkJ7OSwQxORaqLKPcWMG+enNz4xwMjK8jsknXsuaq6LpJkyk7uZHWpmk81ssZktMrOsYHx/M5toZsuCr/sF42Zmj5nZcjObb2bNEv2PEPjmG3+BtG1b2HtvP82xXz9/LCLppzyVewFws3OuIdAC6GZmDYFewCTnXANgUvAcoA3QIHh0AQZUedTyC+f8bkgNG8KwYX6XpDlz4JRTwo5MRMJUZnJ3zn3hnJsdHH8HLAHqAu2AIcFpQ4BLg+N2wFDnTQcyzEybsCXA55/DH/4A7dvDoYdCfj7ccw/ssUfYkYlI2CrUczez+sAJwAzgYOfcF8FLXwKxyXV1gc/ivm11MFb8Z3Uxs3wzy1+3bl1F405rzsGgQb5aHz8e+vSB6dP9zUkiIlCB5G5mewOvAj2cc5viX3POOaD0ZQdL4Jwb6JzLdM5l1q5duyLfmtZWrvQXSDt39sl8/ny47TaooXlPIhKnXMndzHbDJ/b/OudeC4a/irVbgq9rg/E1wKFx314vGJNK2LbNXyBt3BhmzoQBA2DyZGjQIOzIRCSKyjNbxoBBwBLn3KNxL40COgbHHYGRceNXBrNmWgAb49o3shMWL4YzzvA3np51FixaBF27wi6ayCoipSjPH/OnAX8HFpjZ3GDsduBB4GUz6wR8ArQPXhsLtAWWA5uBq6sy4HSydavvp99zj9+79Pnn4YorNGVdRMpWZnJ3zk0DSksnrUs43wHdKhlX2svP98vyzp8PHTr4pWIOOijsqEQkWegP+4j58Ud/gfTkk+Hrr+H11/38dSV2EakIzbGIkHfe8dX68uVw7bXQt69fA0xEpKJUuUfApk1www3QsqXf/m7SJL87khK7iOwsJfeQjR3rF/p66im46SbfY2/VKuyoRCTZKbmH5Ouv4W9/gwsvhH33hfffh0cegb32CjsyEUkFSu7VzDl46SW/dMDLL8Mdd8Ds2f4CqohIVdEF1Wq0Zo3vrY8aBSee6NeHadw47KhEJBWpcq8GzsHTT/tqfeJE33754AMldhFJHFXuCbZihZ/WOHkynH22T/K/+13YUYlIqlPlniDbtsGjj/rqfNYsP7Vx0iQldhGpHqrcE2DhQn8z0syZcNFFfgXHevXCjkpE0okq9yr0889w113QrJlfd33YMH/xVIldRKqbKvcqMnOmr9YXLoTLL/cLfWkPEhEJiyr3Stq8GW65xW9IvX49jB4NL7ygxC4i4VLlXgmTJ/vt7lauhOuu82uv16oVdlQiIqrcd8rGjT6Zt2rld0OaPBmefFKJXUSiQ8m9gkaP9jcjPfOMb8fMm+e3vhMRiRIl93Jat85fKL3kEjjgAJgxAx56CGrWDDsyEZHtKbmXwTl/gfTYY+HVV+Huu/0WeJmZYUcmIlI6XVDdgc8+g+uvhzfe8Ks2Dhrk114XEYk6Ve4lKCz0F0gbNfIXSx99FN57T4ldRJKHKvdili3zC31NnQqtW/s1YY48MuyoREQqRpV7oKDAXyA9/niYO9ev3jhxohK7iCQnVe74fUs7dfIXStu1gyeegEMOCTsqEZGdl9aV+5Ytfpu75s3hk0/89ncjRiixi0jyS9vKffp0X60vXgx//zvk5vr56zgHWNjhiYhUStpV7j/8ANnZcOqp8N3qjYxt9xRDh7hfE3t2NuTkhB2miEilpFVynzTJ74zUrx9c39Wx8Ir7aTOyq0/oscSelwcbNgQVvIhIckqLtsyGDXDzzTB4MDRo4Kc5nnmmgXsQ9tjiE3penj85K8v3aEytGRFJXilfub/+ul/oa8gQ6NXLL/R15pnBi2Y+kcdTYheRFJCyyf2rr6B9e7jsMjjoIL/Q1wMPwJ57xp0Ua8XEi7VoRESSWMold+fgued8tT5yJNx3H3z4oZ/uuN2JsR57VpZfcyAryz9XgheRJJdSPfdPP/WbaIwf72fDPPOMX82xRGaQkVG0xx5r0WRkqDUjIknNXAQq1MzMTJefn7/T319YCAMG+J66c7790q2b3yWpTM4VTeTFn4uIRJSZzXLOlbgAeZnpz8wGm9laM1sYN7a/mU00s2XB1/2CcTOzx8xsuZnNN7NmVffPKNnSpdCyJdx4o9+keuFC6N69nIkdtk/kSuwikgLKkwKfBS4oNtYLmOScawBMCp4DtAEaBI8uwICqCbNkgwdDkyawaBE8+yy8+SbUr5/I3ygikhzKTO7OuXeAb4sNtwOGBMdDgEvjxoc6bzqQYWZ1qijW7Rx9NFx0kV9CoGNHFd0iIjE7e0H1YOfcF8Hxl8DBwXFd4LO481YHY19QjJl1wVf3HHbYYTsVxOmn+4eIiBRV6amQzl+RrfBVWefcQOdcpnMus3bt2pUNQ0RE4uxscv8q1m4Jvq4NxtcAh8adVy8YExGRarSzyX0U0DE47giMjBu/Mpg10wLYGNe+ERGRalJmz93MhgFnAQea2WrgTuBB4GUz6wR8ArQPTh8LtAWWA5uBqxMQs4iIlKHM5O6cu7yUl1qXcK4DulU2KBERqZyUW1tGRESU3EVEUpKSu4hICorEwmFmtg5/YTZMBwJfhxxDRSnmxEu2eEExV5coxHy4c67EG4UikdyjwMzyS1tdLaoUc+IlW7ygmKtL1GNWW0ZEJAUpuYuIpCAl918NDDuAnaCYEy/Z4gXFXF0iHbN67iIiKUiVu4hIClJyFxFJQWmb3M1slZktMLO5ZpYfjJW4N2zYzOz3QZyxxyYz62FmOWa2Jm68bchxRnq/3QrE/JCZfRTENcLMMoLx+mb2Y9z7/WSEYi71s2BmvYP3eamZnR+hmF+Ki3eVmc0NxkN/n83sUDObbGaLzWyRmWUF45H+PBfhnEvLB7AKOLDYWF+gV3DcC+gTdpwlxL0rfverw4Ec4JawY4qL7UygGbCwrPcUv3roOMCAFsCMCMV8HlAjOO4TF3P9+PMi9j6X+FkAGgLzgD2AI4AVwK5RiLnY648Ad0TlfQbqAM2C432Aj4P3MtKf5/hH2lbupShtb9goaQ2scM6FfUfvdlyE99stTUkxO+cmOOcKgqfT8ZvOREYp73Np2gEvOue2OOf+h1+O+6SEBVeKHcVsZoZfNnxYtQa1A865L5xzs4Pj74Al+C1DI/15jpfOyd0BE8xsVrCfK5S+N2yUdKDofwQ3Bn8GDo5KG6mYiu63GzXX4CuymCPMbI6ZTTWzM8IKqhQlfRaS4X0+A/jKObcsbiwy77OZ1QdOAGaQRJ/ndE7upzvnmgFtgG5mdmb8i87/rRWpeaJmtjtwCTA8GBoA/A5oit+E/JFwIiufKL6nO2Jm/wQKgP8GQ18AhznnTgBuAl4ws33Diq+YpPosFHM5RQuWyLzPZrY38CrQwzm3Kf61qH+e0za5O+fWBF/XAiPwf6qWtjdsVLQBZjvnvgJwzn3lnNvmnCsEniaEP7fLISn32zWzq4CLgL8G/xETtDa+CY5n4fvXR4cWZJwdfBai/j7XAP4AvBQbi8r7bGa74RP7f51zrwXDSfN5TsvkbmZ7mdk+sWP8BbSFlL43bFQUqXCK9fQuw/8boibp9ts1swuA24BLnHOb48Zrm9muwfGRQANgZThRFrWDz8IooIOZ7WFmR+Bjnlnd8e3AOcBHzrnVsYEovM/BdYBBwBLn3KNxLyXP5znsK7phPIAj8TMI5gGLgH8G4wcAk4BlwFvA/mHHGhfzXsA3QK24seeABcB8/IerTsgxDsP/Sb0V33PsVNp7ip9V0B9flS0AMiMU83J8/3Ru8HgyOPePwedlLjAbuDhCMZf6WQD+GbzPS4E2UYk5GH8W6Frs3NDfZ+B0fMtlftznoG3UP8/xDy0/ICKSgtKyLSMikuqU3EVEUpCSu4hIClJyFxFJQUruIiIpSMldRCQFKbmLiKSg/wcaNYlHBVhd6QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhn0lEQVR4nO3de5yWc/7H8deHsHJoSIgQK6uTDgZFysoxtrKHFrtbSwmlncZaxe4ydu1SZEykRK1yziGlg0oH6UdlOk8lFaJESQdEmub7++N73dwzzTTnua657/fz8bgfc93f+7qbT/fj9vHpc32v79ecc4iISGLZL+wARESk4im5i4gkICV3EZEEpOQuIpKAlNxFRBJQjbADADjqqKNc/fr1ww5DRKRaWbBgwZfOuTqFvRaJ5F6/fn2ys7PDDkNEpFoxs3VFvaa2jIhIAlJyFxFJQEruIiIJSMldRCQBKbmLiCQgJXcRkQSk5C4ikoCU3EVEQrBzJ/TrB+uKnKlePkruIiJVbOZMaNoUBg6ESZMq53couYuIVJFt26BnT7jwQthvP5g1C26+uXJ+l5K7iEgVGD8eGjeGESPg9tth6VJo167yfp+Su4hIJdq0Ca65Bjp1gtq1Ye5cGDAADj64cn+vkruISCVwDp59Fho1gldfhX//G7Kz4ayzqub3R2JVSBGRRPLpp76XPnEitGrlWzGNGlVtDKrcRUQqSF4eDB3qe+szZ0JmJsyZU/WJHVS5i4hUiNWroUcPmD0bLroIhg+Hk08OLx5V7iIi5ZCb6+ern3EGLFniWzBTp4ab2EGVu4hImS1ZAt27w4IF0LkzDBkCxx0XdlSeKncRkVLatQv++U9ITfUXT8eM8TNiopLYQZW7iEipvPuur9ZXroSuXeGhh/z89ahR5S4iUgLffANpaXDeefDttzB5MowaFc3EDkruIiLFmjbNL/Q1eDD07uXIyYHLLgtedC7U2Iqi5C4iUoStW+H66+GSS+DAA+Ht60bySI10Djs0SOjOQXo6ZGSEGmdhlNxFRAoxdqy/+Wj0aLjjDliy2NHm8KWQleUTeiyxZ2X55R4jVsHrgqqISJzPP4c+feDll6FZM7+EQMuWAOZvOQWf0LOy/HFamh83CyvkQqlyFxHBF96jR/tqffx4+M9/4L33Yok9YHEJPiaCiR2U3EVEWLcOOnSAbt2gYUN/c9Kdd8IBBxQ4MdaKiRdr0USMkruIJK28PH9XaZMm8Pbb8Mgj/ufppxdycnyPPS3NvzktLX8PPkLUcxeRpLRqlV/oa84cuPRSGDYM6tffxxvMICUlf4891qJJSYlca8ZcBP5vk5qa6rKzs8MOQ0SqK+fyJ9eCz+Ps3g0PPgj33AM1a/r83LVrKXJzKX5XZTOzBc651MJeK1Fbxsw+NrNlZrbYzLKDsSPNbJqZrQ5+HhGMm5kNNrM1ZrbUzFru+08XESmHjIz8bZF9zD1ftAjOOcf306+8Elas8H32UuXmgidHrGKPKU3P/ZfOueZx/5foD0x3zjUApgfPAS4HGgSPnsDQigpWRCQf5/wc82Lmnn//vU/oZ50Fn30Gr7zipzoee2yo0Veq8vTcOwEXBMejgFlAv2B8tPP9nrlmlmJmdZ1zG8sTqIjIXuL73kXMPZ8zx/fWV62C666DQYPgiCPCC7mqlLRyd8BUM1tgZj2DsWPiEvbnwDHB8fHAp3HvXR+M5WNmPc0s28yyN2/eXIbQRUQocu75198YffpA27a+cp8yBUaOTI7EDiVP7m2ccy3xLZfeZtY2/sWgSi/VlVnn3HDnXKpzLrVOnTqleauIyE8KmXs+5deP06SJY8gQf7dpTo5fHyaZlCi5O+c2BD83AWOBs4EvzKwuQPBzU3D6BuCEuLfXC8ZERCpWgbnnX32Zx58bzuOy126i5tebeHu2IysLDj007ECrXrHJ3cwOMbPDYsfAJUAOMB7oFpzWDRgXHI8HugazZloB29VvF5FKETf3/OXzMmnYyHh29Vn8/aypLOr1BOe1ieZMlqpQkguqxwBjzU/3qQE855x7w8zeA8aYWXdgHdAlOH8S0AFYA+wErqvwqEVEAhtvzOCWWxyvdjFatoQpU4zmzS4GS7I+TAHFJnfn3IdAs0LGtwDtCxl3QO8KiU5EpAjOwVNPwa23wvffGwMG+OMaNQCSt2KP0fIDIlLtfPQR9OwJb74J558PTz4Jp50WdlTRooXDRKTa2LPHb3XXpAnMnesX/Zo1S4m9MKrcRaRaWLkSuneHd9+Fyy/3C32deGLYUUWXKncRibTdu/3GGc2b+7tMn37a746kxL5vqtxFJLIWLPDV+pIl0KWLX2/96KPDjqp6UOUuIpHz3XfQv79fwXHTJr9Z9YsvKrGXhip3EYmU2bP9Ql+rV/ufDzzg71OS0lHlLiKRsGMH9OoF7dpBbq6f5vjEE0rsZaXkLiKhmzzZT28cNswvFbNsGbTf6xZJKQ21ZUQkNFu2QN++8Mwz0KgRvPMOtGoVdlSJQZW7iFQ552DMGGjYEF54Ae66CxYuVGKvSKrcRaRKffaZ762PGwepqb63fsYZYUeVeFS5i0iVcA5GjPDtlylTYOBAf7epEnvlUOUuIpXuww/9Ql/Tp/vZME8+CaeeGnZUiU2Vu4hUmj174OGHoWlTmD/fz4aZMUOJvSqocheRSrF8uV86YN48uOIKn9jr1Qs7quShyl1EKtQPP8C//gUtWsDatfDcc/D660rsVU2Vu4hUmPfe89X6smVw9dV+7fU6dcKOKjmpcheRctu5E/72Nz9P/auvYPx4eP55JfYwqXIXkXKZNcsv8LV2Ldx4IwwYALVqhR2VqHIXkTLZvt0n81/+0j+fMcNfNFVijwYldxEptQkToHFjP1/9tttg6dKfkrxEg5K7iJTY5s1w7bXwq1/BEUf4O0wfeABq1gw7MilIyV1EiuWcv0DaqBG8/DLcfbffAu/ss8OOTIqiC6oisk/r1/uFvl5/3SfzESP82usSbarcRSQ/5wDIy4Phw6FxY8ebb8KgQX69dSX26kHJXUR+kpEB6emsWe1o397Phjnz8NUs65HFrbfC/vuHHaCUlJK7iHjOkfvVDh7MqkHThrtZuNAxvP0LTF//C36+30c/VvRSPajnLiIALMsxus8dxHsYHfeM47EdvTh++meQlgaZmWAWdohSCqrcRZLcrl1+9kvLlvDxx8YLzzteozPH85k/QYm9WlJyF0li8+bBmWf6VRyvvhpWLHf8fm46+VJ5erpaMtWQkrtIEvr2W5+zW7f2ywhMnAhPj3Yc9Z90yMryrZi8PP8zK0sJvhpSz10kyUyfDjfcAB995Oev33cfHH44gEFKSv4ee2amf1NKiloz1YySu0iS2LbNrwMzYgQ0aABvvQVt2xY4KSPDV+ixRB5L8Ers1Y7aMiLVQcGWSClbJOPG+aUDnnoK+vWDJUsKSewxBRO5Enu1VOLkbmb7m9kiM5sQPD/ZzOaZ2Roze9HMDgzGDwqerwler19JsYskh+DGoh8TunP+eUZGsW/dtAl+/3vo3NlvnDFvHtx/Pxx8cGUGLFFQmso9DVgZ93wAkOmcOxXYCnQPxrsDW4PxzOA8ESkL53w/Jf6iZnpw0XPbtiIreOfg2Wd9tf7aa3DvvZCd7WfGSJJwzhX7AOoB04ELgQmAAV8CNYLXWwNTguMpQOvguEZwnu3rzz/zzDOdiBQhL8+5tDTnfM72j7Q0P16ITz5xrkMHf1qrVs4tX16l0UoVArJdEXm1pJX7w8DtQF7wvDawzTmXGzxfDxwfHB8PfBr8jyMX2B6cn4+Z9TSzbDPL3rx5cwnDEElC8bNWYgq5yJmXB0OH+k00Zs3yxf2cOb56l+RTbHI3syuBTc65BRX5i51zw51zqc651DraRVekaLFWTLwC884/+AAuuMBPbTznHMjJgb/8RQt9JbOSVO7nAR3N7GPgBXxrJgtIMbPYVMp6wIbgeANwAkDwei1gSwXGLJI84nvshdxYlLvbMXAgNGsGy5bByJEwdSqcfHLYgUvYip3n7py7A7gDwMwuAG5zzv3BzF4CfotP+N2AccFbxgfP3w1enxH0hkSktKzoG4uWfP8Lrm9lLFwIV10FQ4ZA3brhhivRUZ6bmPoBL5jZvcAiYEQwPgJ42szWAF8BV5cvRJEkV+DGol0/GPcemsn9Q4zatf22d7/5TbghSvSUKrk752YBs4LjD4G9dlB0zn0P/K4CYhORmCCxv/MOdO8O779vdO3qi/gjjww5Nokk3aEqUg18843vzLRpAzt3whtvwKhRSuxSNK0tIxJxU6dCz57wySc/LfR12GFhRyVRp8pdJKK2boXrr4dLL4Wf/Qxmz4ZHH1Vil5JRcheJoFdf9TcfjR4Nd9wBixf7loxISaktIxIhn38Ot9wCr7wCzZvDpEnQokXYUUl1pMpdJAKc8xdIGzWCCRPgP/+B+fOV2KXsVLmLhGzdOrjpJj8D5txz/WYap58edlRS3alyFwlJXp6/q7RJE3j7bRg82P9UYpeKoMpdJASrVkGPHn7Vxksvhccfh5NOCjsqSSSq3EWq0O7dfp56s2awfLnf9m7yZCV2qXiq3EWqyKJFfumARYvgt7+FRx6BY48NOypJVKrcRSrZ99/DnXfCWWfBxo1+muNLLymxS+VS5S5SiebM8b31Vavguutg0CA44oiwo5JkoMpdpBJ8/bW/Gen8833lPnWq30hDiV2qipK7SAWbMsVPb3zsMb+SY04OXHxx2FFJslFyF6kgW7ZAt25w2WVQs6ZvyTz8MBx6aNiRSTJSchcpJ+f8bkiNGsFzz8E//uEX+jr33LAjk2SmC6oi5bBxI/TuDWPHQsuWvrferFnYUYmochcpE+fgf//z1frkyTBgAMybp8Qu0aHKXaSUPv7Y74w0bZqfDfPkk3DaaWFHJZKfKneREtqzxy/u1aQJvPuunw0za5YSu0STKneREli50i8d8O67cPnlMGwYnHhi2FGJFE2Vu8g+7N7tN85o3tzfZfr00zBxYpDYnct/csHnIiFSchcpwoIFkJrqpzZ27uyr9z/+EcyAjAxIT/8poTvnn2dkhBewSBwld5ECvvsO+vWDc86BzZv9NMcXX4Sjjw5OcA62bYOsrJ8SfHq6f75tmyp4iQT13EXivPUW3HADrF7te+wPPggpKQVOMoPMTH+cleUf4NcayMwMSnuRcKlyFwF27ICbb4YLLoDcXHjzTT/Fca/EHhOf4GOU2CVClNwl6U2aBI0b+63u+vaFZcugffti3hRrxcSL78GLhEzJXZLWl1/6C6RXXAGHH+6nOWZmwiGHFPPG+B57Wprf6TotLX8PXiRk6rlL0nHOXyDt08df/7zrLr9T0kEHlfAPMPP9mvgee6xFk5Ki1oxEgrkIVBmpqakuOzs77DAkCWzYAL16wfjxfprjyJHQtGkZ/zDn8ifygs9FKpmZLXDOpRb2mtoykhScgyee8At9TZ0KAwf6NkyZEzvsnciV2CVC1JaRhPfhh35644wZ0K6dnwVz6qlhRyVSuVS5S8Las8e3wps0gexsvx7MjBlK7JIcik3uZvYzM5tvZkvMbLmZ3ROMn2xm88xsjZm9aGYHBuMHBc/XBK/Xr+S/g8hecnLgvPPg1lv9tMbly+HGG2E/lTOSJEryVd8FXOicawY0By4zs1bAACDTOXcqsBXoHpzfHdgajGcG54lUiR9+gHvu8bsirV3rt70bPx7q1Qs7MpGqVWxyd943wdMDgocDLgReDsZHAZ2D407Bc4LX25vpSpNUkH2sxPjee3DmmX7trt/9DlasgGuu0XVOSU4luqBqZvsDC4BTgSHAWmCbcy43OGU9cHxwfDzwKYBzLtfMtgO1gS8L/Jk9gZ4AJ2phbCmJjAw/MT02tzy4mWjnIXW4a9ffycyEunV9pf6rX4UdrEi4SpTcnXN7gOZmlgKMBU4v7y92zg0HhoOf517eP08SXPxKjOATfHo6s7IW06PWS6zd7nvqAwZArVqhRioSCaWaCumc22ZmM4HWQIqZ1Qiq93rAhuC0DcAJwHozqwHUArZUYMySjAqsxLg963/czkCG8zA/P8ox8zW/6JeIeCWZLVMnqNgxs4OBi4GVwEzgt8Fp3YBxwfH44DnB6zNcFG6DleovSPCvcyWNWMGT9OC2vzqWLjUldpECSjJbpi4w08yWAu8B05xzE4B+wK1mtgbfUx8RnD8CqB2M3wr0r/iwJRlt3uS49vSFdOR1arOFubTigdx0ah6s2kGkoGLbMs65pUCLQsY/BM4uZPx74HcVEp0Ivt3+/HOOv/T4lh3fN+WeVpPpP+syDux3Xv4evKbFiPxIyw9IpK1fDzfdBBMnGuccv40Rv3yGxqP7aSVGkWIouUsk5eX5hb5uv93vjJSZCX361GP//fr9lMhjCV6JXWQvSu4SOatX+4W+3nrLLx0wfDicckrsVa3EKFISWmlDIiM3129IfcYZsHixX71x2rT4xC4iJaXKXapGMRtbLF0K3bv71Rs7dYLHHoPjjgshTpEEocpdKl9GRv69RWN7kGZksGsX3H23XxNm3Tq//d3YsUrsIuWl5C6VK37ZgFiCDzaXnruyFi1bOv71L7j6ali5Erp0URtdpCKoLSOVq8CyAWRl8S01+WeLmTz8Ujvq1TMmToQOHcINUyTRqHKXyheX4KdzIU1ZRuaiC7j5ZiMnR4ldpDIouUvlc45tve6kB09wEdOpQS5v/XYwQx51HH542MGJJCa1ZaRyOcdrHUfSa0IfNtkx3H6bI2PnExw85EFI/1A3IYlUEiV3qTRffAF9+hgvTejOGUdt4PXJ+3FmqoEbCDV2a9kAkUqk5C4Vzjl45hno2xe++QbuvRdu/9txHHCglg0QqSpK7lKhPvnEL/Q1eTK0bu3vMm3UCLRsgEjV0gVVqRB5eTB0KDRuDLNnw+DB8PbbscQuIlVNlbuU2wcf+IW+Zs+Giy/2C33Vrx92VCLJTZW7lFluLgwcCM2a+bVhRo6EKVOU2EWiQJW7lMmSJXD99bBwIfz61/Doo1C3bthRiUiMKncplV274B//gNRU2LABXn4ZXnlFiV0kalS5S4m9845flvf996FbN3joITjyyLCjEpHCqHKXYn3zDaSlQZs2sHMnvPEGPPWUErtIlKlyl32aNg169vRrrffuDf/9Lxx2WNhRiUhxVLlLobZuheuug0sugYMO8tMcH3lEiV2kulByl728+qq/+ejpp+GOO/x+pm3ahB2ViJSG2jLyo88/h1tu8bNfmjeHSZOgRYuwoxKRslDlnqhi+5UW9bzAS6NG+Wp9wgTfV58/X4ldpDpTck9E+9iQuqB16+Cyy+DPf/bJffFi34o54IAqjFdEKpySe6LZx4bUbNv2Y8LPy/N3lTZu7OevP/qov2h6+umhRi8iFUQ990RTyIbUgJ+oHqyhvmqVvxnp//7PV+3DhsFJJ4UXsohUPFXuiSg+wcdkZrI717jvPr/Q18qVvs8+aZISu0giUnJPRLFWTJxFf3iQs8923HkndOwIK1ZA167aM0MkUSm5J5r4HntaGt99m8cdqdM46/l0Pv9gB6++4hgzBo45JuxARaQyKbknGjO/8XRaGnN+k0nzFsb92RfRtdECVtwylKt+rVJdJBnogmoC+vqvGdzR3zGkrVG/PkydChdfdDbYOWGHJiJVRJV7gpk82U9vfGyokZYGy5b5re/UXBdJLsUmdzM7wcxmmtkKM1tuZmnB+JFmNs3MVgc/jwjGzcwGm9kaM1tqZi0r+y8hsGWLv0DaoQMceqif5vjww/5YRJJPSSr3XOCvzrlGQCugt5k1AvoD051zDYDpwXOAy4EGwaMnMLTCo5YfOQcvveTvLn3+eb9L0qJF0Lp12JGJSJiKTe7OuY3OuYXB8dfASuB4oBMwKjhtFNA5OO4EjHbeXCDFzLQJWyXYuNHvX9qlC5xwAmRnw7//7ZfoFZHkVqqeu5nVB1oA84BjnHMbg5c+B2KT644HPo172/pgrOCf1dPMss0se/PmzaWNO6k5ByNHQsOGflekAQNg7lx/c5KICJQiuZvZocArQF/n3I7415xzDih62cFCOOeGO+dSnXOpderUKc1bk9pHH/kNNLp398l86VK4/XaooXlPIhKnRMndzA7AJ/ZnnXOvBsNfxNotwc9NwfgG4IS4t9cLxqQc9uzx9yU1aQLz5sHQoTBzJjRoEHZkIhJFJZktY8AIYKVz7qG4l8YD3YLjbsC4uPGuwayZVsD2uPaNlMGKFXD++dC3L7RrB8uXw003wX6ayCoiRSjJP+bPA/4ELDOzxcHYncD9wBgz6w6sA7oEr00COgBrgJ3AdRUZcMJyLv9cdOf4YbcxcKC/SHrYYfDMM3DttZqyLiLFKza5O+fmAEWlk/aFnO+A3uWMK7lkZPi11oMleXGO7GsfovvMP7D0i2P5/e9h8GA4+uiwAxWR6kKX4cIWv7kG8N1/M8loO4MHF/Tl2EO+5rWxjk6dVaqLSOkouYctbu312VkL6ZG1mtW054Ym7zBwdmtSjlBiF5HS0yW5CNjxtdFrVybtmM0e9mc6FzJ8qRK7iJSdknvIJk2Cxo0djz/uuJVBLKMpFzIz/wbXIiKlpOQeki+/hD/+Ea64Amp99znvuNYMSvuUmnnf+v1O4ze4FhEpJfXcq5hzMGYM9Onjr6PefTfcuedJDvy69U+zZWL7n6akaN6jiJSJknsV2rABevWC8ePhrLNgxAho2hTgn/nnuccSvBK7iJSR2jJVwDl44gm/LO+0afDgg/Duu7HEHiiYyJXYRaQcVLlXsrVr4YYb/DowF1zgk/ypp4YdlYgkOlXulWTPHnjoIV+dL1gAjz8O06crsYtI1VDlXglycvySvPPnw5VX+hUc69ULOyoRSSaq3CvQDz/APfdAy5bw4Yfw3HP+4qkSu4hUNVXuFWT+fF+t5+TANdf4aerag0REwqLKvZx27oTbbvMbUm/dCq+/7it2JXYRCZMq93KYORN69PAtmBtv9HuZ1qoVdlQiIqrcy2T7dp/ML7zQ74Y0cyYMG6bELiLRoeReSq+/7m9GevJJ+NvfYMkSP39dRCRKlNxLaPNmf6G0Y0eoXdtvUj1wINSsGXZkIiJ7U3IvhnP+AmnDhvDKK36qY3Y2pKaGHZmISNF0QXUfPv0Ubr4ZJk6EVq18K6Zx47CjEhEpnir3QuTl+QukjRv7i6WZmTBnjhK7iFQfqtwLWL3aL/T11lvQvj0MHw6nnBJ2VCIipaPKPZCbCw88AGecAYsX+7XWp01TYheR6kmVO7B0qV86IDsbOnWCxx6D444LOyoRkbJL6sp91y646y4480xYtw5efBHGjlViF5HqL2kr97lzfbW+YgX86U/+omnt2gQbUmsXJBGp3pKucv/2W0hPh3PPha/Xb2dix8cZPcr9lNjT0yEjI+wwRUTKJamS+/Tpfmekhx+Gm29y5Fz7XzqMv8kn9Fhiz8qCbduCCl5EpHpKirbMtm3w17/CyJHQoIGf5ti2rYG7Hw7a5RN6VpY/OS3N92i0QbWIVGMJX7m/9ppf6GvUKOjXzy/01bZt8KKZT+TxlNhFJAEkbHL/4gvo0gWuugqOPtov9HX//XDwwXEnxVox8WItGhGRaizhkrtz8PTTvlofNw7uvRfee89Pd9zrxFiPPS3NrzmQluafK8GLSDWXUD33Tz7xm2i88Ybf9m7ECL+aY6HMICUlf4891qJJSVFrRkSqNXMRqFBTU1NddnZ2md+flwdDh0L//r7gvu8+6N3b75JULOfyJ/KCz0VEIsrMFjjnCl2AvNj0Z2YjzWyTmeXEjR1pZtPMbHXw84hg3MxssJmtMbOlZtay4v4ahVu1Ctq1g1tu8dV6Tg706VPCxA57J3IldhFJACVJgU8BlxUY6w9Md841AKYHzwEuBxoEj57A0IoJs3AjR0KzZrB8OTz1FEyZAvXrV+ZvFBGpHopN7s652cBXBYY7AaOC41FA57jx0c6bC6SYWd0KinUvp50GV17plxDo1k1Ft4hITFkvqB7jnNsYHH8OHBMcHw98Gnfe+mBsIwWYWU98dc+JJ55YpiDatPEPERHJr9xTIZ2/Ilvqq7LOueHOuVTnXGqdOnXKG4aIiMQpa3L/ItZuCX5uCsY3ACfEnVcvGBMRkSpU1uQ+HugWHHcDxsWNdw1mzbQCtse1b0REpIoU23M3s+eBC4CjzGw9cDdwPzDGzLoD64AuwemTgA7AGmAncF0lxCwiIsUoNrk7564p4qX2hZzrgN7lDUpERMon4daWERERJXcRkYSk5C4ikoAisXCYmW3GX5gN01HAlyHHUFqKufJVt3hBMVeVKMR8knOu0BuFIpHco8DMsotaXS2qFHPlq27xgmKuKlGPWW0ZEZEEpOQuIpKAlNx/MjzsAMpAMVe+6hYvKOaqEumY1XMXEUlAqtxFRBKQkruISAJK2uRuZh+b2TIzW2xm2cFYoXvDhs3MfhHEGXvsMLO+ZpZhZhvixjuEHGek99stRcwPmNn7QVxjzSwlGK9vZt/Ffd7DIhRzkd8FM7sj+JxXmdmlEYr5xbh4PzazxcF46J+zmZ1gZjPNbIWZLTeztGA80t/nfJxzSfkAPgaOKjA2EOgfHPcHBoQdZyFx74/f/eokIAO4LeyY4mJrC7QEcor7TPGrh04GDGgFzItQzJcANYLjAXEx148/L2Kfc6HfBaARsAQ4CDgZWAvsH4WYC7w+CLgrKp8zUBdoGRwfBnwQfJaR/j7HP5K2ci9CUXvDRkl7YK1zLuw7evfiIrzfblEKi9k5N9U5lxs8nYvfdCYyivici9IJeME5t8s59xF+Oe6zKy24IuwrZjMz/LLhz1dpUPvgnNvonFsYHH8NrMRvGRrp73O8ZE7uDphqZguC/Vyh6L1ho+Rq8v9HcEvwz8CRUWkjFVDa/Xaj5np8RRZzspktMrO3zOz8sIIqQmHfherwOZ8PfOGcWx03FpnP2czqAy2AeVSj73MyJ/c2zrmWwOVAbzNrG/+i8//WitQ8UTM7EOgIvBQMDQV+DjTHb0I+KJzISiaKn+m+mNnfgVzg2WBoI3Cic64FcCvwnJkdHlZ8BVSr70IB15C/YInM52xmhwKvAH2dczviX4v69zlpk7tzbkPwcxMwFv9P1aL2ho2Ky4GFzrkvAJxzXzjn9jjn8oAnCOGf2yVQLffbNbM/A1cCfwj+IyZobWwJjhfg+9enhRZknH18F6L+OdcAfg28GBuLyudsZgfgE/uzzrlXg+Fq831OyuRuZoeY2WGxY/wFtByK3hs2KvJVOAV6elfh/w5RU+322zWzy4DbgY7OuZ1x43XMbP/g+BSgAfBhOFHmt4/vwnjgajM7yMxOxsc8v6rj24eLgPedc+tjA1H4nIPrACOAlc65h+Jeqj7f57Cv6IbxAE7BzyBYAiwH/h6M1wamA6uBN4Ejw441LuZDgC1Arbixp4FlwFL8l6tuyDE+j/8n9W58z7F7UZ8pflbBEHxVtgxIjVDMa/D908XBY1hw7m+C78tiYCHwqwjFXOR3Afh78DmvAi6PSszB+FPATQXODf1zBtrgWy5L474HHaL+fY5/aPkBEZEElJRtGRGRRKfkLiKSgJTcRUQSkJK7iEgCUnIXEUlASu4iIglIyV1EJAH9P9KjtXmE2MJ+AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -233,8 +233,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "[[2.669915]]\n", - "-3.2335143\n" + "[[2.6698928]]\n", + "-3.2299957\n" ] } ], @@ -517,7 +517,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAnKUlEQVR4nO3dd3hUVf7H8fehCCglIogsiNhX13URIwaV3hEElPYDpIgCghqCKIgisa0UMcZdUFhxEZUuXSwIIohESRCluqCAgkgJCaTX8/tjbnSICQmQcCczn9fzzDN3zr0z+Wae4cPJuWfONdZaRETEv5RyuwARESl6CncRET+kcBcR8UMKdxERP6RwFxHxQ2XcLgCgWrVqtm7dum6XISJSosTExByz1lbPa59PhHvdunWJjo52uwwRkRLFGLM/v30alhER8UMKdxERP6RwFxHxQwp3ERE/pHAXEfFDCncRET+kcBcR8UMKdxERFyQmZnLHHSPZtOmXYnl9hbuIyHm2fn0WtWr1Y+PGyUyevLJYfobCXUTkPElMhEceyaJx4wGcPDmb/v3/ydy5g4vlZ/nE8gMiIv4qPT2dRYsWERWVwLvvwvHjq4F5PPPMC7zwwlPF9nMV7iIixSQjI4N77+3Jhx8uPqX9ueee49lnnynWn61wFxEpBpmZmTRu3IuoqMUYM5lHHulBaChUqVKOatWqFfvPV7iLiBSxAwcyadiwDwcOLKRWrVdZvjyMW245vzXohKqISBGxFt5+O4urr+7HgQPzaN9+Evv2nf9gB4W7iEiR2LcP2rTJYuDAAaSnz2bEiJf58MORlHFpfETDMiIiZ8lay65d/+PddzN57TXIyHgFeJcXXniRZ54Z7WptCncRkbOQkZFBhw7/x6effnBK+3PPPcczzzztUlV/ULiLiJyhlJRMGjTozbZtH1C+/DM8+ODNNGoENWpcSpMmTdwuD1C4i4ickW++yaRNmz7Exy/gH/94lU8+CaNGDber+jOdUBURKYSUFHjyySxCQvoRHz+Pvn0nsWWLbwY7KNxFRAq0fj384x9ZTJrUH2tnM27ceN55Z6Rnp7XuFpcPhbuISD5OnoRhw6Bx4ywOHRoIvMdLDRsSPu5JzwHWQlgYhIe7WWaeFO4iIrlkZGTQokVfgoIqM3VqZcqUqUxi4js8HxLCmI0bPYGeE+yRkRAf73M9eJ1QFRHx8ttvGdx+ey9+/nkhVar0o127qtSsCfXq1aPv/ff/EeiRkZ4nhIZCRAQY427huRjrA//bBAcH2+joaLfLEJEAZi3MnZvJgAG9SUubT+vWr7JsWRjlyuVxYCmvQY/sbNeC3RgTY60NzmufhmVEJOD9+it06ZJFr159SUubz4gRk/jkk3yCPSzs1LacIRofo3AXkYBlLcyYATfckMXy5f2BOfzzn+OZPHlk3gfnDMmEhnp67KGhnsc+GPAacxeRgPTTTzBoEKxenU2NGgM5efI9XnrpJZ56alTeTzAGgoJOHWOPiPDsCwrSmHteNOYuIufE2lPDNfdjL6mpGbRr9xTr1m3DGKhdO5b9+6N5/vnnGTt2bJH+rOJ2zmPuxph9xpitxpgtxphop62qMWaVMWa3c3+x026MMa8bY/YYY743xtQvul9FRCSX8PBTh0VOM/d8y5YMatXqxdq1k6lUKZabb47nsstKM3ny5MIFO/w5yH2sx57jTMbcm1lr63n9LzEaWG2tvRZY7TwGaAdc69wGAW8UVbEiIqew1jPH3HvcO4+55+npMG5cJvXr9+H48YX07v0qcXGb2Lw5iqioKEaMGOHqr1EczmXMvRPQ1Nl+B1gLjHLaZ1nPeE+UMSbIGFPTWnvoXAoVEfkT73HvXHPP08aP5+XnnmPLloOsWwdxcbuBLxg3bhLh4WH5vqS/KNSYuzFmLxAHWGCatXa6MSbeWhvk7DdAnLU2yBizAhhvrf3S2bcaGGWtjc71moPw9OypU6fOrfv37y/CX0tEAkquuefpqal0ubcbK1cuB2pSqpShatXSjBkTRljuqYwl2OnG3Avbc7/LWnvQGHMpsMoYs8t7p7XWGmPO6MystXY6MB08J1TP5LkiIr/LNfc8HWh+5W1sOLQVmMqgQQ8zcSJUqeJaha4o1Ji7tfagc38EWAw0AA4bY2oCOPdHnMMPApd7Pb220yYiUrRyzT0/diSN6ys3ZsOhrVQr/zJrVg9h2rTAC3YoRLgbYy4yxlTK2QZaA9uAZUA/57B+wFJnexnQ15k1EwKc0Hi7iBQLr7nnS5pM5PI6vdh3ch3Naw9j/4gsmjX3zZks50NhhmVqAIs9w+qUAWZbaz82xmwC5htjBgL7ge7O8SuB9sAeIBkYUORVi4g4jg4L59FHM5h3bx/gA8LCInh1cqjPTlE8XwoMd2vtT8A/8miPBVrk0W6BYUVSnYhIHtLS0li8eAmff57E7NmQlPQhsIjx419h1KjhbpfnE7T8gIiUKGlpaXTo0JXPPltxSvv48eMZNepxl6ryPQp3ESkxUlPTCQnpznffraBs2dcZPboTAwZAxYoVqF69utvl+RSFu4iUCDt3ZtC4cU+OHVvGddf9m5Urh3H11W5X5bu05K+I+LTMTJgwIYObburFsWOL6dnzdXbtUrAXROEuIj5r61YICclk9Og+ZGcvZNy4V5kz59FAnwhTKBqWERGfYq1lx449TJ2axbRpUKbM88B8Jk6cxBNP+M/SAcVN4S4iPiMtLY2WLbvx5ZfLf2/LyvLMhHniiTyujiT5UriLiE+Ii0vnttt68OOPy6lceRwPP/xX6tWDv/zlLzRu3Njt8kochbuIuO6TTzK4996eJCcvpVGjf7NixTAqV3a7qpJNJ1RFxDXx8fDAAxm0bduL5OTFPPbY66xbp2AvCuq5i4grliyBhx/O5PDhPsBCJk6M4IknHnW7LL+hnruInFeHD0P37tClSyapqfdj7XxeeeUVnnhiuNul+RX13EXkvEhNTaNZswF8/fVHWAsXXJBJfHwiEyZM4PHHtSZMUVO4i0ix27MnnTvv7M6RI8uoXr0fbdpUoWpVaNCgAb1793a7PL+kcBeRYpOdDVOnZjB8eE+yspbRtesU5s4dSunSblfm/xTuIlKkUlJSGDJkCFFR33LgACQnJwD7GDfudcLDh7pdXsBQuItIkUlNTaVz5y6sWvUpxtxN6dJlqV8fHn00nP79+xX8AlJkFO4iUiTS0tJo1eo+vvzyE2AGnTs/wJQpULOm25UFJoW7iJyzEyfSCA7uyp49K6lUaTr//e8D3Hef21UFNs1zF5Fz8sUX6dSu3Z09e1YQEvIG+/Y9pGD3AQp3ETkriYkwbFgGTZv2JDFxGUOH/puNG4dQtarblQloWEZEzkBKSgrjx48nOvow69ZBYuJOYB2TJr3OyJHD3C5PvCjcRaRQUlNTufvuznz++SrgUkqXhurVyzBu3L8ZNkzB7msU7iJSoNTUVBo27MKWLZ9izAxGj36AZ5+F8uXdrkzyo3AXkdPavz+NkJCu/Pbbx1x++X9YtuwB6tVzuyopiE6oisiprP397q230rnmmm789tuHdO78Bj/++KCCvYRQuIvIH8LDISyMfXstrVtn8NBDPcjMXM6zjbuxePEQypZ1u0ApLA3LiAgAqSkpLPl6Eys+TmfBv2eQxXJgGZHAY7f8xdOVN8btMqWQFO4iQmpqKi1bdWbDhk89DVmfYYAI4LHQUIiIULCXMBqWEQlwCQmp3HxzFzZsWMWFF77B5Fd+5EfgN2A4KNhLKIW7SADbuDGNWrW6snv3xwQH/4e9Pw1mxC+vcxVwac5BYWG/n2SVkkPhLhKAUlLgiSfSueOObiQkfMjDD09j0zcPcOnLYRAZCaGhnitthIZ6HivgSxyNuYsEmPXr4YEHMtizpwewnEmTpjBy5CDPzqAgT6DnDMVERPzRrqGZEsVYH/jfODg42EZHR7tdhojfys7O5vvv9zJxYjZz5lguvHAMyckf8K9//YtHHnnk1INzz4rRLBmfZYyJsdYG57VPPXeRkuAcAjc1NZW77upMTMwnv7clJ8Nrr73252CHP7+ugr1EKnS4G2NKA9HAQWttB2PMlcBc4BIgBrjfWptujCkHzAJuBWKBHtbafUVeuUigCA+H+Pg/hkqs9YyBBwV59p3GgQOp3H57F3799VOqV3+OYcOu5pproE6dOjRq1Og8FC9uOZOeeyiwE6jsPJ4ARFhr5xpj3gQGAm8493HW2muMMT2d43oUYc0igcNaT7BHRnoeR0R4gj3npGeuHry1ltTUVKyF+fMzGDy4F+npH9Ox41ssWDCQcuXc+TXEBdbaAm9AbWA10BxYARjgGFDG2d8Q+MTZ/gRo6GyXcY4zp3v9W2+91YpIPrKzrQ0NtdYT5Z5baKin3UtiYqJt3bq1BU65jR07zZWypfgB0TafXC1sz/014EmgkvP4EiDeWpvpPD4A1HK2awG/OP9xZBpjTjjHH/N+QWPMIGAQeP5EFJF85Mxayem9w5++WJScnEzHjh1Zu/YLLrjgSbKzq9K6NQwbVo/27du4ULS4rcBwN8Z0AI5Ya2OMMU2L6gdba6cD08EzW6aoXlfE7+SMsXsLC/s94FNSUmjduhMbNqwFZhES0oe33oJrr3WjWPEVhfkS053APcaYfXhOoDYHIoEgY0zOfw61gYPO9kHgcgBnfxU8J1ZF5EzlBHs+XyxKSkzhlls6s2HDasqXn8mbb/bh888V7FKInru19ingKQCn5z7SWtvbGLMA6Ion8PsBS52nLHMeb3T2r3HGhkTkTBmT7xeLvk2pS7Pa93HixCpuvnkGH37Yl9q13S1XfMe5zHMfBcw1xrwIfAvMcNpnAO8aY/YAx4Ge51aiSIALDz9lVkx6huGlyuN54fWuWPsRDz30FtOmDdB0dDnFGYW7tXYtsNbZ/glokMcxqUC3IqhNRBxJyckMHjyYTZu28/PPkJoaD+zjlVem8fjjA90uT3yQvqEq4uOSk5Np374j69d/gbXtKF++NA0a1OGxx16kd+/ebpcnPkrhLuLDUlJSaNy4EzExa4F3eeih3kyaBFWquF2Z+DqFu4iPOnw4leDgzhw4sJpLL53J3Lm9adbM7aqkpNB67iI+aNGiVK64ogsHDqyiTZsZ7N3bV8EuZ0ThLuJDjh6FHj3SuO+++0hL+5inn/4PH388gAsvdLsyKWk0LCPisqSkJCZMmEhU1DHWr4e0tO+BL5kyZRpDh2omjJwdhbuIi5KTk2nduiNffbUWuIQyZaBatbK89NJ0HnroIbfLkxJM4S7ikqSkFIKD72HXri8oW/ZdJkzozWOPQenSblcm/kDhLuKC7dtTadSoE3Fxa7jhhndYvrw3V1/tdlXiT3RCVeQ8ysyEl19O5eabOxMX9xn9+7/N9u33K9ilyKnnLnKebN0KAwakERNzH/AJkyfPYMSI/m6XJX5K4S5SjFJSUli8eAULFqSxbBmUKTMHWMmbb05j8OAH3C5P/JjCXaSYJCcn07hxB2JiPv+9LSPDMHXqVAYPHuRiZRIIFO4ixeDYsRTq17+HX375gosvfouJE5vQtClUqlSJGjVquF2eBACFu0gRSEtL45tvviE7O5voaMszz/yT1NQ1tGjxDosW3U/lym5XKIFG4S5yjhISEmjbti1fffWVV6th9Oi3efnl+12rSwKbwl3kHCQmJtK+fXuior6mcuU3SEy8nu7dYdSomtSr91e3y5MApnAXOUtJSUm0anU3X3+9EWvncOWV3ZgxA2691e3KRPQlJpGzkpSUzG23dSAq6ktKlXqPl17qxqZNCnbxHeq5i5yhH35I5s47OxIbu45rrpnFsmU9ueEGt6sSOZV67iIFsNaSnp5Oamo6r76awN/+1pnY2M/p02cmu3b1VrCLT1LPXeQ0EhIS6Ny5M2vWrPFqNUya9DYjR2omjPguhbtIPhITE2nXrj0bN26kdOlRlC1bmbvvhkGDbqN161ZgLRjzxxNyPxZxkcJdJA9JSUk0aXI3mzdvBOZw773dmDIFLrvMOSA8HOLjISLCE+jWQlgYBAV59om4TGPuIrkcP57MjTd2YPPmL6lS5X0WLuzGBx94Bbu1nmCPjPQEek6wR0Z62q11sXoRD/XcRbysWZNMx44dSU5ex113zWLp0h5UrZrrIGM8PXbwBHpkpGc7NPSPnryIy9RzFwESE2Ho0BRatOhEcvLnjBw5k/Xre/852HN4B3wOBbv4EPXcJWAlJCQwaNAgYmJ2s38/pKfHAvt54423GTKkgJkwOUMx3sLCFPDiM9Rzl4CUmJhIq1btmDdvAbt3X0rZspdxxx03MXfuHIYM6X/6J3uPsYeGQna25957DF7EZeq5S8BJSkri9tvvZseOKEqVmsOYMd145hkoX76QL2CMZ1aM9xh7zhBNUJB67uITjPWBXkZwcLCNjo52uwwJAD/9lExIyN0cPbqOunVns3hxD+rVO8sX0zx3cZkxJsZaG5zXPg3LSECwFqZNS+b66zty9Og6unefxf/+dw7BDn8OcgW7+BCFu/i9ffugVasUhgzpTGbm50yYMJN583pTtqzblYkUH425i19KSEhg0qRX+OKLOL76CrKzYzBmIzNm/JcBA7QmjPi/AsPdGFMeWAeUc45faK0dZ4y5EpgLXALEAPdba9ONMeWAWcCtQCzQw1q7r5jqF/mTxMREmjZtz+bNG4AgypaFSy4px8SJb9O/fz+3yxM5LwozLJMGNLfW/gOoB7Q1xoQAE4AIa+01QBww0Dl+IBDntEc4x4mcF/HxSfz97541YSpWnMesWcdJSzvOkSOH6N+/v9vliZw3BfbcrWc6TaLzsKxzs0BzoJfT/g4QDrwBdHK2ARYC/zbGGOsL03Kk5Ms1IyU+Lo5333uPlJQUDh6EGTOWk5T0FSEhs1mypBs1arhYq4iLCjXmbowpjWfo5RpgCvAjEG+tzXQOOQDUcrZrAb8AWGszjTEn8AzdHMv1moOAQQB16tQ5t99CAkOulRjj4+Jo9de/En3kiNdB5QkLe5dXX+3hUpEivqFQs2WstVnW2npAbaABcM6XdbfWTrfWBltrg6tXr36uLyf+LtdKjCfi42lzww1sOXKUv1w0E0iiX78kDh8+wauv9irgxUT83xnNlrHWxhtjPgcaAkHGmDJO7702cNA57CBwOXDAGFMGqILnxKrI2fP6FmhCZCStI/9FNJDNYspdeg+f/cfQooW7JYr4kgJ77saY6saYIGe7AtAK2Al8DnR1DusHLHW2lzmPcfav0Xi7FAljSHj+eUII4hsM2cxjeOg9bN2qYBfJrTA995rAO864eylgvrV2hTFmBzDXGPMi8C0wwzl+BvCuMWYPcBzoWQx1SwDatzeB2//WhCMkUJtJLOAVQvgSLowA9O1QEW+FmS3zPXBLHu0/4Rl/z92eCnQrkuokoKWmphITE0N2tmXN6mxeeuFpMrK/576rn+T9bcMpN3r/HxfK0FK7IqfQN1TFJ8XHx9O6dWs2bdrk1VqK8Xd0Z9SX/9RKjCIFULiLzzl58iRt27Zl8+YtVKgwjczMq+jfHx57rDY3/e36P4I8J+AV7CJ/onAXn5KQkEDTpm3ZsiUGaxfSoEEn3noLrrkmnyco2EXypHAXnxEfn0D9+u3Yu/cbypefT2RkJx58EEpp7VKRM6Zwl/OjgAtbbNqUSIsWd5OQEEX9+nNZuvReatd2oU4RP6E+kRS/8PBTry1qLXb4cLKefZaUlCyefjqB22/vQELCBh599H2io7sq2EXOkXruUry8lw0AiIggfuhQOr75Jl8CvPACAMaU4s0332PwYK0JI1IUFO5SvLynLEZGciIyklYYNpsyYEdQqVJFOnaEBx64gxb6mqlIkdEFsuX8sJaTpUrRkErsIAVYyKBBnZg4EapUcbs4kZLpdBfIVs9dip+1HHhwBMFczWH2U4NI5t73C03ftJrKKFJMdEJVipe1zL/731z99kYOs4+OHWbz09C9NP3g0VNPsopIkVLPXYrN0aMwbFgyCz76ANjESy/NZsyYbmC7QtkMLRsgUowU7lKk4uPjGTJkCNHRe9m/HzIzj2DMz7wz813u7+vMhNGyASLFTuEuRebEiRM0a9aG7777FmubU6WK4eabL2H48Mnce++9px6sYBcpVgp3KRLx8SepX78te/du5oILFvLyy50IDYXSpd2uTCQwKdzlrMTGxjJmzBhiY2NJTIT163eSnPwDN900nyVLOnH11W5XKBLYFO5yxo4fP07Lli3ZsWMHF198LUeOgDEX8PDDC5gypYtGXER8gMJdzkhcXBytWrVi+/YdXHnlUv73v7bccw9MnQq1arldnYjkULhLocXHx9OqVWu++24b1i4mLq4tc+dC9+46PyriaxTuUignTpzgzjvbsHPnd1i7iD592hMRAdWquV2ZiORF4S4FOnToJLfe2pZDhzZzySUfMGtWB9q3d7sqETkdhbv8SVxcHO+//z5paWns3g0zZy4kLS2aNm3mM3/+PVSu7HaFIlIQhbuc4vjx47Ro0YItW7b83mZMeZ5/fi5jx3ZxrzAROSMKd/ndHzNhdnLxxSs4caIxjz0G48ZdQFBQObfLE5EzoHAXwDMTplmz1mzduo3s7CVcfnk7Vq2CW291uzIRORta8tdf5V5K9zRL68bHn+DWW9vw3XffUarUB7z4YjuioxXsIiWZeu7+KDzcc93SnJUXrfWsnR4U5NnnZfv2k9x1V1vi4zdz/fULWby4Azfc4ELNIlKk1HP3N94XpM65GEZYmOdxfDypKSlERUWxYcNGRo78iptvbkd8fDQDB85n+/ZOCnYRP6Geu7/JdUFqIiM926GhHB87lhZ33JFrJkxppk6dx8MPayaMiD/RBbL9lbVQ6o8/zOJiY2nRshVbt24HplCuXG0GD4YHH7yCG274q3t1ishZ0wWyA03OUIwjHrjz2pvZFXcUa5fQpUs7pkyBmjVdq1BEipnG3P2N9xh7aCiHD8Vx40XXsfP4Eapc8C4LF7Rl0SIFu4i/U8/d3xjjmRUTGsqn7Z6j05VtSU3dS7Pa/2Rhr71U7arlG0UCgcLdDyWODGfk4yeZ1rYdEM3YsfN5/rnOWpdXJIAo3P1EbGwsHTp0ICoq6vc2Y0oza9Y8+vTRTBiRQFNguBtjLgdmATUAC0y31kYaY6oC84C6wD6gu7U2zhhjgEigPZAM9LfWbi6e8gU8a8I0b96Kbdt2AKO45JLy3HMP9O3blKZNm7pdnoi4oDA990zgcWvtZmNMJSDGGLMK6A+sttaON8aMBkYDo4B2wLXO7XbgDedeikF8fDzBwa346aftlCq1hKeeasezz0L58m5XJiJuKjDcrbWHgEPOdoIxZidQC+gENHUOewdYiyfcOwGzrGcCfZQxJsgYU9N5HTlHR44coWfPnuzevZusLDh2LJGMjCSuumoRH3zQjnr13K5QRHzBGU2FNMbUBW4BvgZqeAX2b3iGbcAT/L94Pe2A05b7tQYZY6KNMdFHjx4907oD0tGjR2nevDlRUVFccUVLYmNbk5V1HwMHfsQPP3RQsIvI7wp9QtUYUxH4ABhurT1pvGZeWGutMeaMvupqrZ0OTAfPN1TP5LmB6NixY7Ro0YI9e37kpps+ZMOG5jRqBG+9Bddd53Z1IuJrCtVzN8aUxRPs71trFznNh40xNZ39NYEjTvtB4HKvp9d22uQsxcbG0rJlS3bt2o0xy/nhh+ZMmQJr1yrYRSRvBYa7M/tlBrDTWvuq165lQD9nux+w1Ku9r/EIAU5ovP3sxcXF0ahRK77/fhcZGUto2rQl27fD0KGnLB0jInKKwgzL3AncD2w1xmxx2sYA44H5xpiBwH6gu7NvJZ5pkHvwTIUcUJQFB5KjR+OpV68Vv/66nYoVlzJ1ahv69NF3kUSkYIWZLfMlkF+ctMjjeAsMO8e6AtKRI0cYO3Ys8fHxxMXBunVbSUvbw113LWbhwrbUqFHwa4iIgL6h6jNyZsLs2bOHiy66kuPHoUyZcowZs4iXXrrb7fJEpIRRuPuAnJkwu3f/SPXqKzl4sDkDB8KkSXDxxW5XJyIlkcLdZSdOnKB585bs2LGbrKzllC3bnFWroGVLtysTkZJM8y1c1q1bGFu3biMrawnDh7dk2zYFu4icO/XcXXLsGPTo8Qlr1vyXSy4ZzYoVbQgJcbsqEfEXCvfzzFpYsACGDj1JbOxDVKt2A3v2jKNKFbcrExF/omGZ8+jXX6FLF+jRA4wZhTEHWL78bapU0RKOIlK01HM/D6yFQYPe5+23x5GdnUFQEBw79jMjRowgRGMxIlIMFO7F7KefoGPH99mx434qVqxP69Z/p3JluOyyyxg7dqzb5YmIn1K4F5OsLHj9dRg9eg7p6X25/vqmREevoGLFC90uTUQCgMK9GGzfDgMHwtdfzwf60LBhY1atWs5FFynYReT80AnVIpSeDs8/D7fcAjt2LKRUqV40anQnn366nIsuusjt8kQkgCjci8imTRAcDOPGwe23LyYl5f9o2DCElStXUrFiRbfLE5EAo2GZc5ScDL16LWbp0nlUqAB33JFFVNQSbrvtNj766CMFu4i4QuF+DtauhR493uPIkb5ceOFl1KpVmdhY6NChAzNnzqRSpUpulygiAUrhfhZOnIAnn4Tp02cD/bjllmZ8+eVyLrxQJ0xFxDco3M/AsmXLmDlzPatWQWJiEsZMo1GjxqxcuUzBLiI+ReFeSBERbzFixENAOYwpTfny0KxZG+bPn6+ZMCLicxTuBbAWhgz5L9OnD8KYtjz99GLGji3PBRe4XZmISP4U7qdx4AB07DiLLVsGUqVKK9asWUz9+lrkS0R8n+a55yE7G6ZNg2uvfY8tW/pz3XUtOHBgiYJdREoMhXsue/ZAixYwZMhsUlP70bBhM779dikVK1ZwuzQRkULTsIzj669jmDr1Z+bMgdKl92LMEzRp0pgVKzQTRkRKHoU7EB7+Fs8999DvjzMyoHHjxqxYsUIzYUSkRArocE9Lg+7d/8uyZYO44IK2vPjiy7RqZShVynDjjTdSpkxAvz0iUoIFbHpFRcF9973Dr78OpGbNVmzatJhatcp75j4a43Z5IiLnJOBOqCYlQVgYNGz4Hr/+OoB61a7nxz1ewR4WBuHhbpcpInJOAircV6+Gv/8dXnttNsb0o3Gty9lwbBcVxoz5I9gjIyE+3vNYRKSECohw37//BL16/UbLlr+RnPwepUrdT5Mmjfnohx1cGBrqCfRSpTz3oaEQEaGhGREp0Yz1gR5qcHCwjY6OLpbXHjbsLaZOHQJk/d7WqFEjPvroI89MGGs9wZ4jO1vBLiIlgjEmxlobnNc+vz2hevgwdOjwNtHRD1GxYiseeeRerrgCKlSoQNeuXf8I9rCwU58YFqaeu4iUeH4X7tbCe+/Bww+/Q1LSg1x7bRtiYpZQqVL5Px+YM8aeMxST8xgU8CJSovlVuP/8MwweDB9//B4wgDvuaMlnny2mQoU81oQxBoKCTh1jj4jw7AsKUrCLSInmF2Pu2dnw5pswahRkZMwmPf1+mjRpwocfrih46YDc89o1z11ESojTjbkXOFvGGPO2MeaIMWabV1tVY8wqY8xu5/5ip90YY143xuwxxnxvjKlfdL9G3n74AZo0gWHDoG7deWRk3O+sCVPIy97lDnIFu4j4gcJMhZwJtM3VNhpYba29FljtPAZoB1zr3AYBbxRNmXnr1286f/3rVXz11VVUr34VO3f25s4779SaMCIS8Aocc7fWrjPG1M3V3Alo6my/A6wFRjnts6xnrCfKGBNkjKlprT1UZBV7+dvfalGnzl00aAAVKsCll17KuHHjFOwiEvDO9oRqDa/A/g2o4WzXAn7xOu6A0/ancDfGDMLTu6dOnTpnVcSTT97Nk0/efVbPFRHxZ+f8DVWnl37GZ2WttdOttcHW2uDq1aufaxkiIuLlbMP9sDGmJoBzf8RpPwhc7nVcbadNRETOo7MN92VAP2e7H7DUq72vM2smBDhRXOPtIiKSvwLH3I0xc/CcPK1mjDkAjAPGA/ONMQOB/UB35/CVQHtgD5AMDCiGmkVEpACFmS3zf/nsapHHsRYYdq5FiYjIuQmIJX9FRAKNwl1ExA8p3EVE/JBPLBxmjDmK58Ssm6oBx1yu4Uyp5uJX0uoF1Xy++ELNV1hr8/yikE+Euy8wxkTnt7qar1LNxa+k1Quq+Xzx9Zo1LCMi4ocU7iIifkjh/ofpbhdwFlRz8Stp9YJqPl98umaNuYuI+CH13EVE/JDCXUTEDwVsuBtj9hljthpjthhjop22PK8N6zZjzPVOnTm3k8aY4caYcGPMQa/29i7X6dPX2z2DmicZY3Y5dS02xgQ57XWNMSle7/ebPlRzvp8FY8xTzvv8gzGmjQ/VPM+r3n3GmC1Ou+vvszHmcmPM58aYHcaY7caYUKfdpz/Pp7DWBuQN2AdUy9U2ERjtbI8GJrhdZx51l8Zz9asrgHBgpNs1edXWGKgPbCvoPcWzeuhHgAFCgK99qObWQBlne4JXzXW9j/Ox9znPzwJwI/AdUA64EvgRKO0LNefaPxl41lfeZ6AmUN/ZrgT8z3kvffrz7H0L2J57PjrhuSYszn1n90rJVwvgR2ut29/o/RNr7TrgeK7m/N7T36+3a62NAoJyLgBzPuVVs7X2U2ttpvMwCs9FZ3xGPu9zfjoBc621adbavXiW425QbMXl43Q1G2MMnmXD55zXok7DWnvIWrvZ2U4AduK5ZKhPf569BXK4W+BTY0yMcz1XyP/asL6kJ6f+I3jE+TPwbV8ZRsrlTK+362sewNMjy3GlMeZbY8wXxphGbhWVj7w+CyXhfW4EHLbW7vZq85n32RhTF7gF+JoS9HkO5HC/y1pbH2gHDDPGNPbeaT1/a/nUPFFjzAXAPcACp+kN4GqgHp6LkE92p7LC8cX39HSMMU8DmcD7TtMhoI619hZgBDDbGFPZrfpyKVGfhVz+j1M7LD7zPhtjKgIfAMOttSe99/n65zlgw91ae9C5PwIsxvOnan7XhvUV7YDN1trDANbaw9baLGttNvAfXPhzuxBK5PV2jTH9gQ5Ab+cfMc7QRqyzHYNn/Po614r0cprPgq+/z2WAe4F5OW2+8j4bY8riCfb3rbWLnOYS83kOyHA3xlxkjKmUs43nBNo28r82rK84pYeTa0yvC57fwdeUuOvtGmPaAk8C91hrk73aqxtjSjvbVwHXAj+5U+WpTvNZWAb0NMaUM8Zciafmb853fafREthlrT2Q0+AL77NzHmAGsNNa+6rXrpLzeXb7jK4bN+AqPDMIvgO2A0877ZcAq4HdwGdAVbdr9ar5IiAWqOLV9i6wFfgez4erpss1zsHzJ3UGnjHHgfm9p3hmFUzB0yvbCgT7UM178IyfbnFubzrH3ud8XrYAm4GOPlRzvp8F4Gnnff4BaOcrNTvtM4EhuY51/X0G7sIz5PK91+egva9/nr1vWn5ARMQPBeSwjIiIv1O4i4j4IYW7iIgfUriLiPghhbuIiB9SuIuI+CGFu4iIH/p/oA139txnoBoAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAnZ0lEQVR4nO3deXhU1f3H8feXRUBZooBIQYpU6/KrFjFFUNkXWQVRxArIKqCgMVRFsEik2oKIGCsiKC6oCAiyurQIKopESRBFFgsqKC6sSUjIQkLO74+50SEmECDhTiaf1/PMM3fOvTP5Zp7hw8m5Z8415xwiIhJeyvhdgIiIFD2Fu4hIGFK4i4iEIYW7iEgYUriLiIShcn4XAFCjRg1Xv359v8sQESlREhIS9jrnaua3LyTCvX79+sTHx/tdhohIiWJmOwrap2EZEZEwpHAXEQlDCncRkTCkcBcRCUMKdxGRMKRwFxEJQwp3EZEwpHAXEfFBamo2TZvew6effl8sr69wFxE5xT788DB16vQjLm4yjz/+VrH8DIW7iMgpkpoKI0YcpnnzARw4MJsBA/7JnDlDi+VnhcTyAyIi4erQoUO88cYbxMWl8PLLsH//CmAuY8f+g/HjRxfbz1W4i4gUk6ysLHr0uJk331x4RPtDDz3Egw/+vVh/tsJdRKQYZGdn07z5LcTFLcRsMiNG9CIqCqpVq0CNGjWK/ecr3EVEitj332dz1VV92LlzPnXqTGbZspE0bHhqa9AJVRGRIuIczJx5mD/8oR87d86lY8dH2b791Ac7KNxFRIrE9u3Qvv1hBg8eQFbWbKKj/8lbb91LOZ/GRzQsIyJygpxzbN78P15+OZvYWEdW1mPAy4wf/w/Gji2+mTCFoXAXETkBWVlZdOnyV/773wVHtMfExDB2bPHOhCkMhbuIyHFKT8+mcePefPnlAipW/DuDB19Ks2ZGrVpn06JFC7/LAxTuIiLH5ZNPsunQoQ9JSa/z5z8/zjvv3M0555jfZf2GTqiKiBRCejrcd99hmjbtR1LSXPr1m8T69dEhGeygcBcROaZVq+Cyyw4zaVJ/nJvNuHETePHFewI7nfO3uAIo3EVECnDgANxxB7RocZiffx4EvMIjTZsSM+6+wAHOQXQ0xMT4WWa+FO4iInlkZWXRps2tRERUZdq0qpQrV5XU1JcY36QJY9asCQR6brDHxkJSUsj14HVCVUQkyE8/ZdGkyS189918qlXrR8eOZ1G7NjRs2JBb+/b9NdBjYwNPiIqCKVPAQmvs3VwI/G8TGRnp4uPj/S5DREox5+C117IZOLA3mZnzaN/+cZYsiaZChXwOLBM06JGT41uwm1mCcy4yv30alhGRUu/HH6Fbt8P07n0rmZnzGDlyEv/5TwHBHh19ZFvuEE2IUbiLSKkVWOgLLr74MG++2R94jX/+cwKTJ9+T/8G5QzJRUYEee1RU4HEIBrzG3EWkVPrmG7jtNli5ModatQZx4MArPPLII4wePSr/J5hBRMSRY+xTpgT2RURozD0/GnMXkZPi3JHhmvdxkIyMLDp2HM2qVV9iBnXr7mPHjnjGjx/P2LFji/RnFbeTHnM3s+1mtsHM1ptZvNd2lpktN7Ot3v2ZXruZ2ZNmts3MvjCzRkX3q4iI5BETc+SwyFHmnq9fn0WdOrfw/vuTqVJlH5ddlsQ555Rl8uTJhQt2+G2Qh1iPPdfxjLm3cs41DPpf4n5ghXPuAmCF9xigI3CBdxsCTCuqYkVEjuBcYI558Lh3PnPPDx2CceOyadSoD/v3z6dPn8dJTFzLunVxxMXFMXLkSF9/jeJwMmPu3YCW3vZLwPvAKK99lguM98SZWYSZ1XbO/XQyhYqI/EbwuHeeueeZEybwr4ceYv36H1i1ChITtwIfMG7cJGJiogt8yXBRqDF3M/sWSAQcMN05N8PMkpxzEd5+AxKdcxFmtgyY4Jz7yNu3AhjlnIvP85pDCPTsqVev3hU7duwowl9LREqVPHPPD2VkcH2Pnrz11lKgNmXKGGedVZYxY6KJzjuVsQQ72ph7YXvu1zjnfjCzs4HlZrYleKdzzpnZcZ2Zdc7NAGZA4ITq8TxXROQXeeaeHwJan/cXVv+0AXiaoUNvZ+JEqFbNtwp9Uagxd+fcD979bmAh0BjYZWa1Abz73d7hPwDnBj29rtcmIlK08sw937s7kwurNmf1TxuoUfFfvLdyGM88U/qCHQoR7mZ2hplVyd0G2gNfAkuAft5h/YDF3vYS4FZv1kwTIFnj7SJSLILmni9q8Sjn1ruF7QdW0brucHaMPEzLVqE5k+VUKMywTC1gYWBYnXLAbOfcO2a2FphnZoOAHcBN3vFvAZ2AbUAaMKDIqxYR8ewZHsOdd2Yxt0cfYAHR0VN4fHJUyE5RPFWOGe7OuW+AP+fTvg9ok0+7A4YXSXUiIvnIzMxk4cJFvPfeQWbPhoMH3wTeYMKExxg16m6/ywsJWn5AREqUzMxMunS5kXffXXZE+4QJExg16m8+VRV6FO4iUmJkZBziyitv4osvllG+/JOMHt2N/v2hcuVK1KxZ0+/yQorCXURKhM2bs2je/Gb27l3CH//4FG+/PZwGDfyuKnRpyV8RCWnZ2TBxYhZ/+tMt7N27kL/+9Um2bFGwH4vCXURC1oYN0KRJNvff34ecnPmMG/c4s2ffWdonwhSKhmVEJKQ459i0aRtTpx5mxgwoV248MI9HH53EvfeGz9IBxU3hLiIhIzMzk7Zte/LRR0t/aTt8ODAT5t5787k6khRI4S4iISEx8RCRkb345pulVK06jmHDLuLyy+F3v/sdzZs397u8EkfhLiK++89/sujR42bS0hbTrNlTLFs2nKpV/a6qZNMJVRHxTVISDByYRYcOt5CWtpC77nqSVasU7EVBPXcR8cWiRXD77dns2tUHmM+jj07h3nvv9LussKGeu4icUrt2wU03wfXXZ5OR0Rfn5vHYY49x7713+11aWFHPXUROiYyMTFq1GsAnn7yNc3DaadkkJaUyceJE/vY3rQlT1BTuIlLstm07xNVX38Tu3UuoWbMfHTpU48wzoXHjxvTu3dvv8sKSwl1Eik1ODkydmkV09M0cPryEnj2nMmfOHcGXO5VionAXkSKVnp7OsGHDiIv7jJ07IS0tBdjOuHFPEhNzh9/llRoKdxEpMhkZGXTr1p13312OWWfKli1Po0Zw550x9O/f79gvIEVG4S4iRSKwdEAPVq/+LzCT7t0HMnUq1K7td2Wlk8JdRE5acnImkZE3sG3b21Sp8iwvvDCQG27wu6rSTac1ROSkfPDBIerWvYlt296kadNn2L59sII9BCjcReSEpKbCiBFZtGx5M6mpSxgxYioffzyUs87yuzIBDcuIyHFIT09nwoQJxMfvYtUqSE3dDKxi0qQnuecezYQJJQp3ESmUjIwMOnfuznvvLQfOpmxZqFmzHA8++G9GjBjhd3mSh8JdRI4pMzOTq67qwWef/RezmYwePZCxY6FiRb8rk4Io3EXkqHbsyKRJkxv5+ee3OffcZ1myZCANG/pdlRyLTqiKyJGc++XuuecOcf75Pfn552V07z6Nr78erGAvIRTuIvKrmBiIjmb7t4527bK47bZeZGcv5cHmPVm4cBjly/tdoBSWhmVEBICM9HQWfbKWZe8c4vWnZnKYZcBiYoG7Lv9doCtv5neZUkgKdxEhIyODtu26e0sHAIffxYApwF1RUTBlioK9hNGwjEgpl5KSwWWXXc/q1cs5/fRpTH7sa74GfgbuBgV7CaVwFynF1qzJpE6dG9m69R0iI5/lm6+HMvL7J2kAnJ17UHT0LydZpeRQuIuUQunpcO+9h7jqqp6kpLzJ7bdPZ+2nA6k1IRpiYyEqKnCljaiowGMFfImjMXeRUubDD2HgwCy2besFLGXSpKncc8+QwM6IiECg5w7FTJnya7uGZkoUcyHwv3FkZKSLj4/3uwyRsJWTk8MXX3zLpEk5zJ7tOP30MaSlLeDf/85n6YC8s2I0SyZkmVmCcy4yv33quYuUBCcRuBkZGVxzzfUkJLzzS1taGjzxxBP5rwmT93UV7CVSocPdzMoC8cAPzrkuZnYeMAeoDiQAfZ1zh8ysAjALuALYB/Ryzm0v8spFSouYGEhK+nWoxLnAGHhERGDfUfzwQyaNG/fgxx/foWbNhxg+/A+cfz7Uq1ePZs2anYLixS/H03OPAjYDVb3HE4Epzrk5ZvYMMAiY5t0nOufON7ObveN6FWHNIqWHc4Fgj40NPJ4yJRDsuSc98/TgnXNkZmbiHMybl8WQIX/l0KG36dLlWebPH0yFCv78GuID59wxb0BdYAXQGlgGGLAXKOftbwr8x9v+D9DU2y7nHWdHe/0rrrjCiUgBcnKci4pyLhDlgVtUVKA9SGpqqmvfvr0Djrj9/e/P+FK2FD8g3hWQq4XtuT8B3AdU8R5XB5Kcc9ne451AHW+7DvC99x9Htpkle8fvDX5BMxsCDIHAn4giUoDcWSu5vXf4zReL0tLS6Nq1K++//wGnnXYvOTln0a4dDB/ekM6dO/hQtPjtmOFuZl2A3c65BDNrWVQ/2Dk3A5gBgdkyRfW6ImEnd4w9WHT0LwGfnp5O+/bdWL36fWAWTZv24bnn4Pzz/ShWQkVhvsR0NXCdmW0ncAK1NRALRJhZ7n8OdYEfvO0fgHMBvP3VCJxYFZHjlRvsBXyx6GBqOpdf3p3Vq1dQseKLTJ/eh5UrFexSiJ67c240MBrA67nf45zrbWavAzcSCPx+wGLvKUu8x2u8/Su9sSEROV5mBX6xaF1afVrX7UFy8nL+/OeZLFt2K3Xr+luuhI6Tmec+CphjZg8DnwEzvfaZwMtmtg3YD9x8ciWKlHIxMUfMijmUZTxcZQIPP3kDzr3Dbbc9y/TpAzQdXY5wXOHunHsfeN/b/gZonM8xGUDPIqhNRDwH09IYOnQoa9du5LvvICMjCdjOY49N529/G+x3eRKC9A1VkRCXlpZGp05d+fDDD3CuIxUrlqVx43rcddfD9O7d2+/yJEQp3EVCWHp6Os2bdyMh4X3gZYYM6c2jj0K1an5XJqFO4S4SonbtyiAysjs7d67g7LNfZO7c3rRs6XdVUlJoPXeRELRgQQa///317Ny5nGuvncm3396qYJfjonAXCSF79kCvXpnceOMNZGa+wwMPPMs77wzg9NP9rkxKGg3LiPjs4MGDTJz4KHFxe/nwQ8jM/AL4iKlTp3PHHYP8Lk9KKIW7iI/S0tJo374rH3/8PlCdcuWgRo3yPPzwdIYMGeJ3eVKCKdxFfHLwYDqRkd3YsuUDypd/mYkTe3PXXVC2rN+VSThQuIv4YOPGDJo1605i4gouvvglli3rTYMGflcl4UQnVEVOoexs+Ne/MrjssutJTFxO//7Ps3FjXwW7FDn13EVOkQ0boH//TNatuwF4h8mTZzJyZH+/y5IwpXAXKUbp6eksXLiM11/PZMkSKFfuNeAtnnlmOkOHDvS7PAljCneRYpKWlkbz5l1ISHjvl7asLOPpp59m6FDNhJHipXAXKQZ796bTqNF1fP/9B5x55nNMmtSCFi2gSpUq1KpVy+/ypBRQuIsUgczMTD799FNycnKIj3f8/e//JCNjJW3avMQbb/SlalW/K5TSRuEucpJSUlLo0KEDH3/8cVCrcf/9z/Ovf/X1rS4p3RTuIichNTWVTp06ERf3CVWrTiM19UJ69YL77qtNw4YX+V2elGIKd5ETdPDgQdq370Jc3Bqce43zzuvJzJlwxRV+VyaiLzGJnJCDB9P4y1+6smbNh5Qp8yqPPNKTtWsV7BI61HMXOU7/+186V111Hfv2fcAFF8xiyZJeXKQRGAkx6rmLHINzjqysLDIzs3j88VQuuaQb+/atpE+fF9mypbeCXUKSeu4iR5GSkkL37t1ZuXJlUKsxadLz3HOPZsJI6FK4ixQgNTWVjh07sWbNGsqWvY/y5avSqRMMGfIXrr22PTgHZr8+Ie9jER8p3EXycfDgQVq06My6dWuA1+jRoydTp8I553gHxMRAUhJMmRIIdOcgOhoiIgL7RHymMXeRPPbvT+OSS7qwbt1HVKv2KvPn92TBgqBgdy4Q7LGxgUDPDfbY2EC7cz5WLxKgnrtIkBUr0rjuuq6kpa2iWbNZLFrUi7POynOQWaDHDoFAj40NbEdF/dqTF/GZeu4iQGoq3H57Om3bdiMt7T3uvfdFVq3q/dtgzxUc8LkU7BJC1HOXUislJYUhQ4aQkLCVHTvg0KF9wA6mTXueYcOOMRMmdygmWHS0Al5ChnruUiqlpqbSrl1H5s59na1bz6Z8+XO46qo/MWfOawwb1v/oTw4eY4+KgpycwH3wGLyIz9Rzl1Ln4MGDXHllZzZtiqNMmdcYPbonY8dCxYqFfAGzwKyY4DH23CGaiAj13CUkmAuBXkZkZKSLj4/3uwwpBb7+Oo0mTTqzd+8q6tefzcKFvWjY8ARfTPPcxWdmluCci8xvn4ZlpFRwDp55Jo2LLurK3r2ruOmmWfzvfycR7PDbIFewSwhRuEvY274d2rVL5/bbu5Od/R4TJ77I3Lm9KV/e78pEio/G3CUspaSkMGnSY3zwQSIffww5OQmYreG5555n4ECtCSPh75jhbmYVgVVABe/4+c65cWZ2HjAHqA4kAH2dc4fMrAIwC7gC2Af0cs5tL6b6RX4jNTWVVq06kZCwGoigfHmoXr0CEyfOZMCA/n6XJ3JKFGZYJhNo7Zz7M9AQ6GBmTYCJwBTn3PlAIjDIO34QkOi1T/GOEzklkpIOcumlnUlIWEPlynOZNWs/mZn72b37JwYMGOB3eSKnzDF77i4wnSbVe1jeuzmgNXCL1/4SEANMA7p52wDzgafMzFwoTMuRki/PjJTkpCRefuUV0tPT2bkTZs5cysGDq2nSZDaLFvWkVi0faxXxUaHG3M2sLIGhl/OBqcDXQJJzLts7ZCdQx9uuA3wP4JzLNrNkAkM3e/O85hBgCEC9evVO7reQ0iHPSoxJiYm0v/hi1u7aFXRQRaKjX+bxx3v5VKRIaCjUbBnn3GHnXEOgLtAYOOlrzzjnZjjnIp1zkTVr1jzZl5Nwl2clxgPJyXS45BI+27Wb2qe/AKRy662p7NqVzOOP33KsVxMJe8c1W8Y5l2Rm7wFNgQgzK+f13usCP3iH/QCcC+w0s3JANQInVkVOXNC3QFNiY2kX+2/igRwWUrHWdbz7rNGmjb8lioSSY/bczaymmUV425WAdsBm4D3gRu+wfsBib3uJ9xhv/0qNt0uRMCNl/HiacCafYuQwl7ujrmPDBgW7SF6F6bnXBl7yxt3LAPOcc8vMbBMwx8weBj4DZnrHzwReNrNtwH7g5mKoW0qhHdtTaHxJC3ZzgLpM4nUeowkfwelTAH07VCRYYWbLfAFcnk/7NwTG3/O2ZwA9i6Q6KdUyMjJISEggJ8exckUOj/zjAbJyvuCGP9zHq1/eTYX7d/x6oQwttStyBH1DVUJSUlIS7du3Z+3atUGtZZhw1U2M+uifWolR5BgU7hJyDhw4QIcOHVi3bj2VKk0nO7sB/fvDXXfV5U//d+GvQZ4b8Ap2kd9QuEtISUlJoWXLDqxfn4Bz82ncuBvPPQfnn1/AExTsIvlSuEvISEpKoVGjjnz77adUrDiP2NhuDB4MZbR2qchxU7jLqXGMC1usXZtKmzadSUmJo1GjOSxe3IO6dX2oUyRMqE8kxS8m5shrizqHu/tucsaNIyMjhwceSOXKK7uQkrKaESNeJT7+RgW7yElSz12KV/CyAQBTppB8xx10feYZPgQYPx4AszJMm/Yyw4ZpTRiRoqBwl+IVPGUxNpYDsbG0w0iwcuCiqVKlMl27wsCBV9NGXzMVKTK6QLacGs6RUqYMTanKRtKA+Qwd2o2JE6FaNb+LEymZjnaBbPXcpfg5x87BI4nkD+xiB7WI5bUe39NqmtNURpFiohOqUryc4/XO/+YPz3/MLrbTtetsvrnjW1q9ceeRJ1lFpEip5y7FZs8eGD48jdfffgOI55FHZjNmTE9wN0L5LC0bIFKMFO5SpJKSkhg2bBjx8d+yYwdkZ+/G7DteevFl+t7qzYTRsgEixU7hLkUmOTmZVq2u5fPPP8O51lSrZlx6aXWioyfTo0ePIw9WsIsUK4W7FImkpAM0atSBb79dx2mnzWfChG7cdReULet3ZSKlk8JdTsi+ffsYM2YM+/btIzUVPvxwM2lpX3HppfNYtKgbDRr4XaFI6aZwl+O2f/9+2rZty6ZNmzjzzAvYvRvMTuOOO17nqaeu14iLSAhQuMtxSUxMpF27dmzcuIn69RezdWsHrrsOpk2D3/3O7+pEJJfCXQotOTmZdu3a8/nnX+LcQpKSOjBnDtx0k86PioQahbsUyoEDB7j66mvZuPFzYAG9e3fiiSegRg2/KxOR/Cjc5Zh+/jmFRo068NNPCVSvPp9Zs7rSqZPfVYnI0Sjc5TcSExOZPXs2mZmZbN0KL7wwn8zMT7n22nnMm9eNqlX9rlBEjkXhLkfYv38/bdq0Yf369b+0mVXkoYfm8OCDPQp+ooiEFIW7/OLXmTCbOfPMZSQnN+POO2HcuNM488yKfpcnIsdB4S5AYE2YVq3as2HDl+TkLKRevU7MnAlXXOF3ZSJyIrTkb7jKu5TuUZbWTUpK5oorruXzzz+nTJkFPPxwJ9auVbCLlGTquYejmJjAdUtzV150LrB2ekREYF+QjRsPcPXVHUhOXseFF85n4cIuXHyxDzWLSJFSzz3cBF+QOvdiGNHRgcdJSWSkpxMXF8fq1Wu4556PueyyjiQnxzNo0Dw2buymYBcJE+q5h5s8F6QmNjawHRXF/rFjaXPVVXlmwpTl6afncvvt15/6WkWk2OgC2eHKOSjz6x9mifv20bpNW778chMwlQoV6jJ0KAwe/Hsuvvgi/+oUkROmC2SXNrlDMZ4k4OoLLmNL4h6cW8T113dk6lSoXdu3CkWkmGnMPdwEj7FHRbHrp0T+74wL2bx/N9VOe5n5r3fgjTcU7CLhTj33cGMWmBUTFcV/Oz5Et/M6kJHxNa3q/pP5t3zLWTdq+UaR0kDhHoZS74nhnr8dYHqHjkA8Y8fOY/xD3bUur0gponAPE/v376dLly6sWbPmlzazssyaNYc+fTQTRqS0OWa4m9m5wCygFuCAGc65WDM7C5gL1Ae2Azc55xLNzIBYoBOQBvR3zq0rnvIFAmvCtGqVOxPmPqpXr8h110Hfvi1p1aqV3+WJiA8K03PPBv7mnFtnZlWABDNbDvQHVjjnJpjZ/cD9wCigI3CBd7sSmObdSzFISkoiMrId33yzkTJlFjF6dEcefBAqap0vkVLtmOHunPsJ+MnbTjGzzUAdoBvQ0jvsJeB9AuHeDZjlAhPo48wswsxqe68jJ2n37t3cfPPNbN26lZwc2LMnlaysgzRo8AYLFnSkYUO/KxSRUHBcUyHNrD5wOfAJUCsosH8mMGwDgeD/PuhpO722vK81xMzizSx+z549x1t3qbRnzx5at25NXFwc9eu3Ze/e9hw+fAODB7/Nli1dFOwi8otCn1A1s8rAAuBu59wBC5p54ZxzZnZcX3V1zs0AZkDgG6rH89zSaO/evbRp04Zt277mT396k48+as0118Bzz8GFF/pdnYiEmkL13M2sPIFgf9U594bXvMvManv7awO7vfYfgHODnl7Xa5MTtG/fPtq2bcuWLVsxW8pXX7Xmqafggw8U7CKSv2OGuzf7ZSaw2Tn3eNCuJUA/b7sfsDio/VYLaAIka7z9xCUmJtKsWTu++GILWVmLaNmyLRs3wvDhRywdIyJyhMIMy1wN9AU2mNl6r20MMAGYZ2aDgB3ATd6+twhMg9xGYCrkgKIsOGw5d+SXjJxjz95kGjZsx48/bqRy5cU8/fS19Omj7yKJyLEVZrbMR0BBcdImn+MdMPwk6ypdvItr7B49mrEPPkhSUhKJa75i1Y9pZB7ezjXXLGTBgg6cfbbfhYpISaFvqPrNu7jGnthYWr/yCttSUznDzmZ/xhmUK1OBMWMW8Mgjnf2uUkRKGI3a+s2MvQ88QJvq1dm6L5EamdPZn/Edg//vefbs/YJHHunqd4UiUgKp5+6z5ORkWrdpx6akgxzmP5xGA96lDW02vKvBdRE5Yeq5+6xnz2g2bPiSw4ff4G42sIFLacPKX69/KiJyAhTuPtm3D9q0+Q/Ll79A9Yq3s4aHmBK1gzNyUiEq6sgLXIuIHCcNy5xizsH8+XDHHQfYu/c2qle/iK8Hn0m1jCaBC1sHX+A6IkJDMyJyQhTup9CPP8Idd8DixVCz5ijMdrJ06WqqNW165Dz33IBXsIvICVK4nwLOwZAhr/L88+PIyckiIgL27PmOkSNH0rRp08BBeYNcwS4iJ0HhXsy++Qa6dn2VTZv6UrlyI9q3v5SqVeGcc85h7NixfpcnImFK4V5MDh+Gf/8bRo16jUOHbuXCC1sSH7+MypVP97s0ESkFFO7FYONGGDQIPvlkHtCHJk2a8e67SznjDAW7iJwamgpZhA4dgvHj4fLLYdOm+ZQpcwvXXHMVy5cv44wzzvC7PBEpRRTuRWTtWoiMhHHj4MorF5Ke/leaNm3CW2+9ReXKlf0uT0RKGQ3LnKS0NLjllkUsXjyXSpXg6qsPExe3kL/85S+89dZbVKlSxe8SRaQUUrifhPffh169XmH37lupVKkWdepUZc8e6Ny5My+99BJVq1b1u0QRKaUU7icgORlGjYLp02cD/WjYsCWrVy/j9NN1wlREQoPC/TgsWbKEF1/8kOXLITX1IGbTueaaZrz99lIFu4iEFIV7IU2Z8hwjR94GVMCsLBUrQqtW1zJv3jzNhBGRkKNwPwbnYNiwF5gxYwhmHRgzZiEPPliR007zuzIRkYIp3I9i507o2nUW69cPolq1dqxcuZBGjSr6XZaIyDFpnns+cnJg+nS44IJXWL++P3/8Yxt27lykYBeREkPhnse2bdCmDQwbNpuMjH40bdqKzz5bTOXKlfwuTUSk0DQs4/nkkwSefvo7XnsNypb9FrN7adGiOcuWLdFMGBEpcRTuQEzMczz00G2/PM7KgmbNmrF06VLNhBGREqlUh3tmJvTs+QJLlw6hfPkO/OMf/+Laa40yZYxLLrmEcuVK9dsjIiVYqU2vuDi44YaX+PHHQdSu3Y61axdSp07FIy93JyJSQpW6E6oHD0J0NDRt+go//jiAhjUu5OttQcEeHQ0xMX6XKSJyUkpVuK9YAZdeCk88MRuzfjT73bms3ruFSmPG/BrssbGQlBR4LCJSQpWKcN+xI5lbbvmZtm1/Ji3tFcqU6UuLFs15+6uNnB4VFQj0MmUC91FRMGWKhmZEpEQzFwI91MjISBcfH18srz1ixEymTh0KHP6lrVmzZrz99tuBmTDOBYI9V06Ogl1ESgQzS3DORea3L2xPqO7aBV26vEB8/G1UrtyWESN68PvfQ6VKlbjxxht/Dfbo6COfGB2tnruIlHhhF+7OwSuvwO23v8TBg4O44IL2JCQsokqVir89MHeMPXcoJvcxKOBFpEQLq3D/7jsYOhTeeecVYABNm7ZhxYqFVKqUz5owZhARceQY+5QpgX0REQp2ESnRwmLMPScHnnkmcHWkrKzZHDrUl5YtW7JsWSEuopF3XrvmuYtICXG0MfdjzpYxs+fNbLeZfRnUdpaZLTezrd79mV67mdmTZrbNzL4ws0ZF92vk76uvoEULGD4c6tefS1ZWX29NmEJeHSlvkCvYRSQMFGYq5ItAhzxt9wMrnHMXACu8xwAdgQu82xBgWtGUmb9+/WZw0UUN+PjjBtSs2YDNm3tz9dVXs2yZrmcqIqXbMcfcnXOrzKx+nuZuQEtv+yXgfWCU1z7LBcZ64swswsxqO+d+KrKKg/zf/9WhXr1raNwYKlWCs88+m3HjxmmxLxEp9U70hGqtoMD+GajlbdcBvg86bqfX9ptwN7MhBHr31KtX74SKuO++ztx3X+cTeq6ISDg76W+oer304z4r65yb4ZyLdM5F1qxZ82TLEBGRICca7rvMrDaAd7/ba/8BODfouLpem4iInEInGu5LgH7edj9gcVD7rd6smSZAcnGNt4uISMGOOeZuZq8ROHlaw8x2AuOACcA8MxsE7ABu8g5/C+gEbAPSgAHFULOIiBxDYWbL/LWAXW3yOdYBw0+2KBEROTmlYslfEZHSRuEuIhKGFO4iImEoJBYOM7M9BE7M+qkGsNfnGo6Xai5+Ja1eUM2nSijU/HvnXL5fFAqJcA8FZhZf0OpqoUo1F7+SVi+o5lMl1GvWsIyISBhSuIuIhCGF+69m+F3ACVDNxa+k1Quq+VQJ6Zo15i4iEobUcxcRCUMKdxGRMFRqw93MtpvZBjNbb2bxXlu+14b1m5ld6NWZeztgZnebWYyZ/RDU3snnOkP6ervHUfMkM9vi1bXQzCK89vpmlh70fj8TQjUX+Fkws9He+/yVmV0bQjXPDap3u5mt99p9f5/N7Fwze8/MNpnZRjOL8tpD+vN8BOdcqbwB24EaedoeBe73tu8HJvpdZz51lyVw9avfAzHAPX7XFFRbc6AR8OWx3lMCq4e+DRjQBPgkhGpuD5TzticG1Vw/+LgQe5/z/SwAlwCfAxWA84CvgbKhUHOe/ZOBB0PlfQZqA4287SrA/7z3MqQ/z8G3UttzL0A3AteExbvv7l8pBWoDfO2c8/sbvb/hnFsF7M/TXNB7+sv1dp1zcUBE7gVgTqX8anbO/dc5l+09jCNw0ZmQUcD7XJBuwBznXKZz7lsCy3E3LrbiCnC0ms3MCCwb/topLeoonHM/OefWedspwGYClwwN6c9zsNIc7g74r5kleNdzhYKvDRtKbubIfwQjvD8Dnw+VYaQ8jvd6u6FmIIEeWa7zzOwzM/vAzJr5VVQB8vsslIT3uRmwyzm3NagtZN5nM6sPXA58Qgn6PJfmcL/GOdcI6AgMN7PmwTtd4G+tkJonamanAdcBr3tN04A/AA0JXIR8sj+VFU4ovqdHY2YPANnAq17TT0A959zlwEhgtplV9au+PErUZyGPv3JkhyVk3mczqwwsAO52zh0I3hfqn+dSG+7OuR+8+93AQgJ/qhZ0bdhQ0RFY55zbBeCc2+WcO+ycywGexYc/twuhRF5v18z6A12A3t4/YryhjX3edgKB8es/+lZkkKN8FkL9fS4H9ADm5raFyvtsZuUJBPurzrk3vOYS83kuleFuZmeYWZXcbQIn0L6k4GvDhoojejh5xvSuJ/A7hJoSd71dM+sA3Adc55xLC2qvaWZlve0GwAXAN/5UeaSjfBaWADebWQUzO49AzZ+e6vqOoi2wxTm3M7chFN5n7zzATGCzc+7xoF0l5/Ps9xldP25AAwIzCD4HNgIPeO3VgRXAVuBd4Cy/aw2q+QxgH1AtqO1lYAPwBYEPV22fa3yNwJ/UWQTGHAcV9J4SmFUwlUCvbAMQGUI1byMwfrreuz3jHXuD93lZD6wDuoZQzQV+FoAHvPf5K6BjqNTstb8IDMtzrO/vM3ANgSGXL4I+B51C/fMcfNPyAyIiYahUDsuIiIQ7hbuISBhSuIuIhCGFu4hIGFK4i4iEIYW7iEgYUriLiISh/wcnkJcMBAKRuwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -694,7 +694,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOMAAAGnCAYAAABFMOCCAABPy0lEQVR4nO2deXxURda/n84eSCCiAiHmJ4sECARBRBAMRGEcEQFlEREBcRlQcBmXEUVHR9xe35kRB15REBEcB0wQYYZFQZCEZUBBUFYJyL6phEBYsp/fH9Wd253ubKS7by/18OlP3773pu+5xf12VZ2qOsciIoJGozGbjBCzLdBoNAotRo3GR9Bi1Gh8hDAzL378OGzfrl4HDsDRo2rfyZOQmwulpZCXB8XFUKcOREZCVBTExUF8PCQkQJMmkJQEKSmQnAx165p5R/7FcWC79XUAOGrddxLIBUqBPKAYqANEAlFAHBAPJABNgCQgBUgGdPFfOhZvOXBKSmDrVsjMVK916+DUKfdew2JRwkxNhR49IC0NEhPdew1/pQTYCmRaX+sANxc/FpQwU4EeQBqgi7/aZHhUjIWFsHIlfPEFLFoEv/xS+fkhIdCoETRsCA0aQGgoxMZCWBhcuAAFBXDxIuTkqFr07Nmqbbj2Whg4EO66S9WewUQhsBL4AlgEVFH8hACNgIZAAyAUiEU1ny4ABcBFIAdVi1aj+LkWGAjchao9NRXiGTHu3QvTp8OsWfDbb87HQ0OVSDp1gnbtoG1baNUKGjdWwqsuFy7AoUOwcyfs2KGau+vXw5Ejrs/v2BHGjoV774WYmEu7N39gLzAdmAW4KH5CUSLpBLQD2gKtgMbUrN9yATgE7AR2oJq764EKip+OwFjgXiCAi/9Sca8YN2yASZNg2TIo/63NmsGdd0KvXnDTTVC/vruu6sy+fZCVpexYtgzOnXM8Xq8ejBkDzzyjauFAYQMwCVgGlP9PbQbcCfQCbgI8WPzsA7KsdiwDyhU/9YAxwDOoWlgDQAbiBjZtErntNhElQePVuLHIhAki33/vjqtcGhcviixaJHL33SIREY721a0r8swzIjk55tnnDjaJyG0iQrlXYxGZICImFr9cFJFFInK3iESIo311ReQZEfHz4ncX6bUS4+nTIuPGiYSGOj7k3buLpKeLFBa6yUw3ceKEyBtviMTHO9rbsKHIxx+LlJaabWHNOC0i40QkVBwf8u4iki4iPlb8ckJE3hCReHG0t6GIfCwiflb87ubSxbhkiUijRo4PdY8eIitXutM+z3Dhgsjkyc6iTEsTOXzYbOuqxxIRaSSOD3UPEfGD4pcLIjJZnEWZJiJ+UvyeoOZiLCwUefllkZAQ4yFu0kRk9mwPmOdhzp9X9xIZadxL/fqqVvdVCkXkZREJEeMhbiIiflj8cl7UvUSKcS/1RdXqQUjNxJiTI5Kaajy4FovIE0+InDvnIfO8xM6dIl26ON7Xa6+ZbZUzOSKSKsaDaxGRJ0TEz4tfdopIF3G8Lx8sfk9TfTEeOiTStq1jP2vpUk/a5l0KC0Wee86xxn/kEZHiYrMtUxwSkbbi2M8KoOKXQhF5Thxr/EdExEeK3xtUT4zHj4u0aGE8pCkp/tO3qilffCESHW3c68MPm+/YOS4iLcR4SFMkcPtWX4hItBj3+rAEjWOnajHm5op06GA8nD17Ki9qILN2rUiDBsY9T5xoni25ItJBjIezpygvaiCzVkQaiHHPJha/N6lajAMGGA9l167+3z+sLhs2qHFI273Pm2eOHQPEeCi7iv/3D6vLBlHjkLZ7N6n4vUl6pUuopk1Tc0oBWreGxYuDZ1VEly4wf74xPW/MGLWyxJtMQ80pBWgNLCZ4VkV0AeZjTM8bg1pZEshUKMYDB+Dpp9V2VBSkp8Pll3vJKh/httvgpZfU9pkz8OCD3rv2AcBa/EQB6UCQFT+3Adbi5wzgxeI3hQrFOHGiWiEB8NZbvrviYevWrfTt25e4uDhiY2Pp3bs369atc9v3T5wI3bur7VWrVOvAG0xErZAAeAvPrnhYunQpSUlJhFUxS/+mm27CYrG4fD355JMesW0iYC1+VqFaB4GKSzFu2QJz56rtdu1g/HhvmlR9Nm7cSLdu3YiNjWXXrl3s37+f5s2bk5aWxvLly91yjdBQmDJFLe8CmDDBeRK8u9kCWIufdoCnin/fvn3079+f559/npMnT3roKrUjFJiC8aBOwHkSfMDgqif58MOG42LxYm/3Y6tHSUmJtG3bVuLj4+XChQtl+4uLi6VVq1aSmJgo+fn5brve8OFGmXzzjdu+1iUPi+G48GTxDxs2TN58800pKiqShIQECQ0NrfT87t27y3fffedBiypmuBhl8o0pFngcZwfOxYuQkaG2mzeH22/39s9D9cjKymLHjh0MHjyY6Ojosv2hoaEMGzaMw4cPs9iNbcrHHze2P/rIbV/rxEXAWvw0BzxZ/DNnzmTChAlVNk99Abvix4PFbypOYlyxQsWfAeWwsFi8bFE1WbVqFQDXX3+90zHbvpUrV7rtejfcYPSbFy5UYUQ8wQpU/BlQDgtPFr/9j5ivcwNGv3khKoxIoOEkxrVrjW131YrlO/733XcfAL1793bYn2v7FagGu3fvBuCqq65yOpaQkADAnj17am+8HbbyyMuDH39061eXYVf8Hq0VL5VPPvmEDh06ULduXerXr09qair/+te/vHJtW3nkAR4qflNxEuPGjeo9JsZ9HtS1a9eydetW6taty7XXXssHH3wAwJIlS+jSpQtz585FRIiLi6v2d9qEW9fFwGeMNabG6dOna227Pd26GdsbNrj1q8uwFj8x+GbMmNOnT/PRRx/xyy+/8O2339KsWTOGDx/O4/bteA9hV/x4qPhNxUmMtvgxSUnKk+gurr32WmbNmsUPP/zAyJEjERHGjBlDr169uOeee9x3IUCs7k6Lm9vYycnGdkVxdmqL7WuTUJ5EX2Lt2rXMmTOH6667jrp169KqVSvmzJnDDTfcwJQpU9ho+yX3EHbFX2GcHX/GSYy2AFJXXun+iw0ZMoSJEyeyYMECbrrpJk6dOsWkSZMu6btstej58+edjtn21aSmrQ72kx5cBdpyB7av9UDxe4zBgwcD8J///Mej17Gf9OCh4jcVl95UAE/17SdNmkSXLl1Yv349Q4YMISTk0oKat27dGoAjLqqoo0ePApCUlHTphrrAvkXs4jfALdgG+v3HtQLx8fEA/FJVLM5aYt8h8VDxm4qTEi67TL27ubtVxurVqzlz5gwpKSk8+uij/PDDD5f0PTfffDMAmzdvdjpm29erV69LN9QF9kGXPTU10Fr8eKj4PcKxY8cAaOjhUHv2QZcDcWqgkxhtD5knJmTs37+fBx98kM8//5x///vfREdHM2DAAH799dcaf1fPnj1JTk5m/vz55Ofnl+0vKSlh3rx5JCYm0rdvX3ea7xCEuUEDt351GbaHzNfmw3z44Yd06tTJab+IkJ6eDkC/fv08aoN9veuh4jcVJzG2aqXe9+xRk6Pdxblz57jzzjuZPHkyycnJNG3alPnz53Ps2DEGDx5MUVFRjb4vJCSEmTNnkpOTw+jRozlx4gSnTp1i3LhxZGdnM2PGDKKiotx3A8B33xnbbdq49avLsBY/e1CTo32J77//nnHjxrF3717y8/P56aefGDFiBJs3b+axxx6jS5cuHr2+XfHjoeI3l/Jzcv73f41pX1995Z55PuPGjRPUlEIBZNu2bfLrr7867ANk0qRJNf7u77//Xvr06SP16tWTmJgYueWWW2Tt2rXuMbwco0cbZXPokEcuIf8rxrQvNxV/hfznP/9x+j+wvWbMmOFwbn5+vmRkZMhdd90lLVq0kMjISKlfv76kpaXJv/71Lw9bqhgtRtl4qPjNJN0povi336q1fKBm4Hz4oZd+FXyc/HyV9SonR0VH//lnz1znW9RaPlAzcHTxK/JRWa9yUNHRPVT8ZuKcubhzZzXGCPDZZ86h8YOVhQuVEAFGjPDcdTqjxhgBPsM5NH6wshAlRAAPFr+pOInRYoH771fb587Bu+962SIfpLQU3n5bbVssMGqU565lAe63bp8DdPGrPJHW4scCeLD4TcXlIN+YMcYQx9tvV53KzZ1UtHjV/vXKK694zyBgzhy1xhNg6FC1msWTjMEY4nibqlO5BTpzUGs8AYaiVrMEIhVmofrrX+HZZ9X2wIHw+efeNMt3OHlSpa87eRIiIlT6uRYtPH/dvwLW4mcgEKTFz0lU+rqTQAQq/ZwXit8MnPuMNsaPV0GoABYsgBkzvGWT71BaCsOHG2Ouf/yjd4QIanW/tfhZAARh8VMKDMcYc/0jAStERWW+1h9/FImKUq78iAj3DXX4C08+aQxldOokUlDg3ev/KCJRolz5EeL5oQ5f40kxhjI6iYiXi9/bVB6qMSXFcFwUFsKQIeBi9llA8uqrMHmy2r7sMpg3TzVTvUkKhuOiEBgCBEnx8yow2bp9GTAP1UwNaKoj2aefNmqImBiRL7/09I+EeZSWqsxUtvuNjhbJyjLXpqfFqCFiRCSAi19KRWWmst1vtIiYXPzeonq5NkpLRUaNMh7QyEj/TAFXFefPiwwbZtxnRITKemw2pSIySowHNFL8MwVcVZwXkWFi3GeEqKzHQUL1s1CVrzFAZMQIkbw8D5rnRXbuVAl97FsAy5aZbZVB+RoDERkhIgFS/LJTVEIf+xaADxW/N6h5stR33hEJCzMe2pYtRZYv94BpXiI/X+T11x0zTyUmimzZYrZlrnlHRMLEeGhbiogfF7/ki8jr4ph5KlFEtphok0lcWhrxdetErr7asZYcMkRk/373WudpliwRSUpyvI8BA0ROnTLbsspZJyJXi2MtOURE9ptn0iWxRESSxPE+BoiIjxe/p7g0MYqoLMYjR6osv7YHOTxc5KGHRH7+2Z02up9ly1RGLXsRxsWJTJtmfi7G6pIjIiNFZfm1PcjhIvKQiPh48csyURm17EUYJyLTJGhyMbri0sVoIyvLsa8FKvtv794i6em+k/n3zBmRDz5wzDVpX6ufOGG2hZdGljj2tRCV/be3iKSL72T+PSMiH4hjrkn7Wt1Pi9+d1F6MIiJFRSIffyxyzTXOD3rTpiLPPqvyHXq71jl3TiQjQ+SeexxzLYKq0fv1E9m0ybs2eYIiEflYRK4R5we9qYg8KyrfobdrnXMikiEi94hjrkVE1ej9RCQAit9dOK9nrA3FxSphztSpal1keRIS4JZboEcPSE01ogq4i4ICtRo/MxPWrIGsLCPAlo3ISBg0CJ56ClxEkfBrilEJc6ai1kWWJwG4BegBpGJEFXAXBajV+JnAGiALI8CWjUhgEPAUEGDFX1sy3CpGe7ZsgenTVcLRisIa1qunYpGmpKg1lPHxkJgIjRqpY1FRKiJbRIRazlVUBGfPqtfhw2rO6MGDavL29u2Qna1+EFzRrh2MHAmjR8MVV3jijn2LLcB0VMLRisIa1kPFIk1BraGMBxKBRtZjUaiIbBGo5VxFwFnr6zBqzuhB1OTt7UA26gfBFe2AkcBoIAiK/1LwnBhtlJSommrBAvjqK9i715NXOwPUByA8XC2U7tdPrTpxc9RGv6EEVVMtAL4CHIr/zBmoX98j1w1HLZTuh1p1EqTFXxM8L8byHDumxLl+varNtm1zDIF4KYSEQEzMeCIj9/Doo8tJTYWuXYMn5XlNOIYS58pffuHj5s2pu3AhZ3v3rtV3hgBNUTVsB1QTuCvBk/LcTXhfjK44cULFlDl+HI4eVc3PvDzVB7xwQb3HxkJYmMoBUq+e6n/Gx6v3li1h9eol9OvXj507d5YFONZUzKRJk3jnnXc4cuQIZ+vU4WfgOHAU1fzMQ/UBL1jfY4EwVA6Qeqj+Z7z1vSVaeG7AN8ToDkSE1q1bc+uttzJlyhSzzfFpiouLyxLWvPXWW2abo1FUvLjY37BYLPzhD39g9uzZnD171mxzfJoFCxZw7NgxxowZY7YpGjsCRowADz74IKWlpcyZM8dsU3yaqVOn0q9fP5o1a2a2KRo7AkqMcXFxDB8+nH/84x8ESOvb7Wzfvp01a9Ywfvx4s03RlCOgxAjw+OOPs3fvXr7++muzTfFJ/vGPf9CmTRu3JwXS1J6AE2Pbtm3p0aMHU6dONdsUnyM3N5d//etfjBs3zu2JZDW1J+DECDB+/HgWL17M/v37zTbFp/jwww8JCQlhhCdDomsumYAU45133kmTJk2YNm2a2ab4DKWlpUybNo3Ro0dTr149s83RuCAgxRgWFsaYMWP48MMPuXDhgtnm+ARLlixh//79PPLII2aboqmAgBQjwJgxY7h48SJz58412xSfYOrUqfzud7/Ts5N8mIAV45VXXsmQIUP0bBwgOzubr7/+Wg9n+DgBK0aAJ554gh9++IG1a9eabYqpTJ06lcTERG6//XazTdFUQkCLsVOnTtxwww1BPcxx7tw5Zs+ezfjx4wkNDTXbHE0lBLQYQQ1zfP755xw9etRsU0xh9uzZFBYWMnr0aLNN0VRBwItx6NChXH755UyfPt1sU0zh/fff57777uPyyy832xRNFQS8GCMiInjooYd4//33KSgoMNscr/L111+zfft2xo4da7YpmmoQ8GIEePTRRzl9+jSfB1nG16lTp5Kamsp1111ntimaahAUYmzSpAkDBgwIKkfOoUOHWLx4sR7O8COCQoygHDn//e9/2bRpk9mmeIX33nuPRo0acdddd5ltiqaaBI0Ye/bsSfv27fm///s/s03xOAUFBcyaNYuxY8cSHh5utjmaahI0YgTVd5w7dy6//PKL2aZ4lE8//ZTc3Fwefvhhs03R1ICgEuOIESOoW7cuH330kdmmeJRp06YxZMgQGjdubLYpmhoQVGKsU6cO999/P9OmTaO4otDjfs66devYtGmTdtz4IUElRlBN1SNHjvCf//ynVt+zdetW+vbtS1xcHLGxsfTu3Zt169a5ycpLZ+rUqVx33XV07dq1ynOXLl1KUlISYWFhXrBMUxVBJ8YWLVrQp0+fWg1zbNy4kW7duhEbG8uuXbvYv38/zZs3Jy0tjeXLl7vR2ppx/PhxFixYwOOPP17pefv27aN///48//zznDx50kvWaarEjNxXZrNs2TIB5Mcff6zx35aUlEjbtm0lPj5eLly4ULa/uLhYWrVqJYmJiZKfn+9Oc6vNyy+/LFdccYVcvHix0vOGDRsmb775phQVFUlCQoKEhoZ6yUJNJbgnP6O/UVpaKq1atZJHHnmkxn/7zTffCCCPPfaY07FXXnlFAJk/f747zKwRhYWFkpCQIC+88EKV59r/iGgx+gzpQddMBRV9fOzYsXzyySecOXOmRn+7atUqAK6//nqnY7Z9K1eurL2RNWT+/PmcOHGiWsMZ0dHRXrBIU1OCUoygoo+HhITw8ccf1+jvdu/eDcBVV13ldCwhIQGAPXv21Nq+mjJ16lQGDBhA06ZNvX5tjXsIWjHGxsYyfPhwpk6dSmlpabX/Ljc3F4C6LvLNxcTEAHD69Gm32Fhdtm7dyvr16/Vwhp8TtGIENV913759bvOAijWlgLcDBE+ZMoXk5GTS0tK8el2NewlqMSYnJ3PzzTfXaJgjLi4OgPPnzzsds+2zneMNTp8+zbx583jsscd0lHA/J6jFCKp2XLp0abX7ebZQh0eOHHE6ZgvtkeTFnOXTp08nIiKC++67z2vX1HiGoBdj//79ufrqq/nggw+qdf7NN98MwObNm52O2fZ5K6lMSUkJH3zwAaNHjy7rr2r8GLMHV3yBN954Q+Li4uTcuXNVnltSUiLJycnSpEkTh8H14uJiadOmjSQmJlY56O4uvvjiC7FYLPLTTz9d8nfocUafITjHGcvz8MMPk5+fz6efflrluSEhIcycOZOcnBxGjx7NiRMnOHXqFOPGjSM7O5sZM2YQFRXlBavVcMZtt93m1WaxxnNoMQJXXHEF99xzT7WTrHbt2pX169dz5swZWrVqRdOmTcnOzmb16tX8/ve/94LFsGvXLlatWnVJwxmLFy/GYrFgsVg4evQoJSUlZZ8//PBDD1irqQ4Wqc7TFwRs2bKF6667jtWrV9OzZ0+zzamS8ePH8+WXX7Jnzx5CQvRvagCQof8XrXTs2JEbb7zRL4JW5eXl8cknnzBu3DgtxABC/0/aMX78eBYuXOhy2MKXmDVrFsXFxYwaNcpsUzRuRIvRjiFDhtCwYUPef/99s02pEBFh2rRpjBw5kgYNGphtjsaNaDHaER4ezkMPPcT06dPJz8832xyXLF++nN27d+ukpwGIFmM5xo4dS25uLhkZGWab4pKpU6eSlpZG+/btzTZF42a0GMsRHx/PwIEDmTx5stmmOHHw4EGWLVumV2cEKFqMLhg/fjzff/893377rdmmODB16lQaN25M//79zTZF4wG0GF1w00030alTJ58a5rh48SKzZs3i0Ucf1VHCAxQtxgp45JFH+Oyzz3wmeto///lPzp07x4MPPmi2KRoPocVYAffeey+xsbE+Mz3s/fff55577qFRo0Zmm6LxEFqMFRAdHc0DDzzAe++9R1FRkam2ZGVl8f333zNu3DhT7dB4Fi3GShg3bhwnT55k0aJFptoxdepUunTpQufOnU21Q+NZtBgr4eqrr6Zv376mOnKOHTvGwoUL9XBGEKDFWAXjx48nMzOTH3/80ZTrv//++8TFxTF48GBTrq/xHlqMVdC7d29at27tkGT1yJEjvPjiiwwcONBt1zl69CidO3dm9uzZZVPxCgsLmTFjBmPHjvXagmWNiZgbacA/mDJlitSpU0f+/e9/y6BBgyQ0NFQAadGihduusX37dgHEYrFI/fr15fnnn5fJkydLWFiYHD582G3X0fgs6ToXWBUUFBQQHh5OdHQ0/fv3Jzw8nJKSEoAapwaoDFvgYxHhzJkz/O1vf6OoqIjmzZuzZcsWEhISdCjGAEc3Uyvg559/ZsKECTRq1Ihx48aVicV+mCMvL89t1ysfhbywsBAR4eDBg/Tv358WLVrw7rvvcu7cObddU+Nb6LAbLli5ciW33norFoulrBasiPz8fCIjI2t9zX/+85+MGjWqwlQDFosFEaFZs2b8+OOPOjRj4KHDbriiV69ePPvss9UKTmXLvVFbcnNzCQ0NrfSciIgIPvnkEy3EAEWLsQLefPNN7r///ioF4i4x5uTkVBrPxmKxMHfuXLp37+6W62l8Dy3GCrBYLEyfPp077rij0pz37so4lZubW2FNbLPFnUMpGt9Di7ESQkNDmTt3Lp07d65w2ZI7m6mu+qcWi4U33nhDr9YIArQYqyA6Opply5bRsmVLJ0FaLBa3ifH06dNOYgwJCWHs2LFMmDDBLdfQ+DZajNWgfv36rFixgoYNGzoIMiwszG3N1F9//dXhc1hYGIMHD/apBc4az6LFWE2aNGnC6tWriYmJKetDhoSEuNWBYyM8PJzu3bszZ84cHaQ4iND/0zXgmmuu4auvviI8PLxMJO7sM4ISYnJyMosXL3bL+KXGf9DT4WpI586d+fzzz+nXrx8FBQWc3r4d3nkHDhyAo0fh+HE4eRJyc6G0FPLyoLgY6tSByEiIioK4OIiPh4QEaNIEkpLIs4rxqquuYsWKFXossRocB7ZbXweAo9Z9J4FcoBTIA4qBOkAkEAXEAfFAAtAESAJSgGSgrvfMd0LPwKkuJSWwdStkZkJmJv9ctYqR584xCKhthNVS1K/iFcC3zZvT9JZboEcPSEuDxMRafntgUAJsBTKtr3XAKTdfw4ISZirQA0gDvFj6GVqMlVFYCCtXwhdfwKJF8MsvDof/DnwJLLftCAmBRo2gYUNo0ABCQyE2FsLC4MIFKCiAixchJ0fVomfPAupXvBmQhfqFduDaa2HgQLjrLkhxOhrQFAIrgS+ARcAvlZ9OCNAIaAg0AEKBWNQP3QWgALgI5KBq0bPVsOFaYCBwFy7+b9yLFqNL9u6F6dNh1iz47Tfn46GhSiSdOpFeVMTd990HrVpB48ZKeNXlwgU4dIjj69ax97//JTUvD9avh4oS73TsCGPHwr33QgA3Y/cC04FZgIvSJxQlkk5AO6At0ApoTM36XReAQ8BOYAequbseqCjtUUdgLHAv4IHS12J0YMMGmDQJli2D8sXSrBnceSf06gU33QT163vOjn37ICtL2bFsGZRfqVGvHowZA888o2rhAGEDMAlYBpR/KJsBdwK9gJsAD5Y++1CtlGXWV/l1MvWAMcAzqFrYTWToxcUiIps2idx2m4iSoPFq3FhkwgSR7783z7aLF0UWLRK5+26RiAhH++rWFXnmGZGcHPPscwObROQ2EaHcq7GITBARE0tfLorIIhG5W0QixNG+uiLyjIi4qfTTg1uMp0+LjBsnEhrq+JB37y6Sni5SWGi2hY6cOCHyxhsi8fGO9jZsKPLxxyKlpWZbWCNOi8g4EQkVx4e8u4iki4iPlb6cEJE3RCReHO1tKCIfi0gtSz+IxbhkiUijRo4PdY8eIitXmm1Z1Vy4IDJ5srMo09JE/CRExxIRaSSOD3UPEfGD0pcLIjJZnEWZJiK1KP0gFGNhocjLL4uEhBgPcZMmIrNnm21ZzTl/Xt1LZKRxL/Xrq1rdRykUkZdFJESMh7iJiPhh6ct5UfcSKca91BdVq18CQSbGnByR1FTjwbVYRJ54QuTcObMtqx07d4p06eJ4X6+9ZrZVTuSISKoYD65FRJ4QET8vfdkpIl3E8b4uofSDSIyHDom0bevYz1q61Gyr3EdhochzzznW+I88IlJcbLZlIiJySETaimM/K4BKXwpF5DlxrPEfEZEalH6QiPH4cZEWLYyHNCXFb/pWNeaLL0Sio417ffhh0x07x0WkhRgPaYrUqm/l03whItFi3OvDUm3HThCIMTdXpEMH4+Hs2VN5UQOZtWtFGjQw7nniRNNMyRWRDmI8nD1FeVEDmbUi0kCMe65m6QeBGAcMMB7Krl39v39YXTZsUOOQtnufN88UMwaI8VB2Ff/vH1aXDaLGIW33Xo3STw/sJVTTpqk5pQCtW8PixVDXzHn5XqRLF5g/35ieN2aMWlniRaah5pQCtAYWY+6qCG/SBZiPMT1vDGplSWUErhgPHICnn1bbUVGQng6XX26qSV7nttvgpZfU9pkz4MU4OgcAa+kTBaQDQVb63AZYS58zQFWlH7hinDhRrZAAeOutoFvxUMbEiWAL77hqlWodeOOyqBUSAG/h8RUPLlm6dClJSUmVRvfzNBMBW3DNVajWQUUE5kTxLVugUyfVW2rXTq1DrCL+qafo2rUrV1xxBYu9JAKXbNkC11+vFju3bQvbtoEH83ZsQa2oENSqiq2olRbeYt++ffzxj3/k4MGDHDhwgPPnz1NcXOxFCxzZAlyPWrfaFtiGWjtZjgCNKD5tmrHq4q23TBOiz9CxIwwbprZ37FALpD3INIxVF2/hXSECvPTSS3Tr1o3NmzcTGxvr5as70xGwlj47UIujXRF4Yrx4ETKsa++bN4fbbzfXHl/h8ceN7Y8+8thlLmJEPmgOmFH6M2fOZMKECaY2T8tjV/pUVPqBJ8YVK1T8GVAOC51GTXHDDUa/eeFCFUbEA6xARS4A5bAwo/Sjo6NNuGrl3IDRb16ICiNSnsAT49q1xrauFR2xlUdeHngoLbpd6ZtSK/oytvLIA1yVfuCJceNG9R4TE7we1Iro1s3Y3rDBI5ewlj4xmONB9WXsSh9Xpe87jWp3YYsfk5TkdcdNWFhYhfkcy2cdbtSoESdOnPCGWQbJycZ2RXF2aontW5PwvuPG17ErfZdxdgJPjLYAUlde6fVLu3Kf+8TQhg37SQ+uAm25Adu3er/0fR/7SQ+uSj/wmqm2gX4f7MSbjv1UwPPnPXIJ20C/Ln1n7KcCuir9wBPjZZepdzclpAkoTtmF/fXQ1EBr6aNL3xn7oMuuSj/wxGh7yE6eNNcOX8Q+CHODBh65hO0h06XvjH0QZlelH3hibNVKve/ZoyZHawy++87YbtPGI5ewlj57UJOjNQZ2pY+r0g88MdomRZeWGsMcGsX69cb2jTd65BK2SdGlGMMc3mbx4sVYLBYsFgtHjx6lpKSk7POHH35oklUqWrkNV6UfeBPFv/1WreUDNQPHxML3KfLzVdarnBwVHf3nnz1ymW9Ra/lAzcDRpa/IR2W9ykFFR3dR+gE4UbxzZzXGCPDZZ86h8YOVhQuVEAFGjPDYZTqjxhgBPsM5NH6wshAlRICKSj/wxGixwP33q+1z5+Ddd001xycoLYW331bbFguMGuWxS1mA+63b5wBd+qrJbi19LEBFpR94YgQVYsI2xPH2206p3IKOOXPUmkaAoUPVahYPMgZjiONtqk7lFujMQa1pBBiKWs3iisAUY4MG8MILavvsWXjkEXPtMZOTJ2HCBLUdEQGvvebxSzYArKXPWSCIS5+TgLX0iQAqK/3AFCPA+PEqCBXAggUwY4a59phBaSkMH26Muf7xj9CihVcuPR4VhApgARCEpU8pMBxjzPWPQKWl77lgdT7Ajz+KREWpUIURESJffWW2Rd7lySeNUI2dOokUFHj18j+KSJSoUIURIhJkpS9PihGqsZOIVFH6AR6qMSXFcFwUFsKQIbB5s7k2eYtXX4XJk9X2ZZfBvHmqmepFUjAcF4XAECBISp9XgcnW7cuAeahmaqV4/vfBB3j6aaOGiIkR+fJLsy3yHKWlKjOV7X6jo0Wyskw16WkxaogYEQng0pdSUZmpbPcbLSLVLP0giCguoh7QUaOMBzQy0j9TwFXF+fMiw4YZ9xkRobIem0ypiIwS4wGNFP9MAVcV50VkmBj3GSEq63E1CRIxijjXGCAyYoRIXp7ZlrmHnTtVQh/7FsCyZWZbVUb5GgMRGSEiAVL6slNUQh/7FkANSz+IxGjjnXdEwsKMh7ZlS5Hly8226tLJzxd5/XXHzFOJiSJbtphtmUveEZEwMR7aliLix6Uv+SLyujhmnkoUkS01/6ogFKOIyLp1Ildf7VhLDhkisn+/2ZbVjCVLRJKSHO9jwACRU6fMtqxS1onI1eJYSw4Rkf3mmXRJLBGRJHG8jwEicomlH6RiFFFZjEeOVFl+bQ9yeLjIQw+J/Pyz2dZVzrJlKqOWvQjj4kSmTTM9F2N1yRGRkaKy/Noe5HAReUhEfLz0ZZmojFr2IowTkWlS7VyMrghiMdrIynLsa4HK/tu7t0h6us9k/pUzZ0Q++MAx16R9rX7ihNkWXhJZ4tjXQlT2394iki41yvzrUc6IyAfimGvSvlZ3Q+lrMYqISFGRyMcfi1xzjfOD3rSpyLPPqnyH3q51zp0TycgQuecex1yLoGr0fv1ENm3yrk0eoEhEPhaRa8T5QW8qIs+Kynfo7Tr/nIhkiMg94phrEVE1ej8RcWPppwfeesbaUFwMc+fC1KlqXWR5EhLgllugRw9ITTWiCriLggK1Gj8zE9asgawsI8CWjchIGDQInnpKJfcJIIqBucBU1LrI8iQAtwA9gFSMqALuogC1Gj8TWANkYQTYshEJDAKeQiX3cSMZWowVsWULTJ+uEo5WFNawXj0VizQlRa2hjI+HxERo1Egdi4pSEdkiItRyrqIiNXH97Fk4fFjNGT14EHbuhO3bITtb/SAAe4Fr7K/Vrh2MHAmjR8MVV3j67k1nCzAdlXC0oqCS9VCxSFNQayjjgUSgkfVYFCoiWwRqOVcRauL6WeAwas7oQWAnsB3IRv0guKIdMBIYDXio9LUYq6SkRNVUCxbAV1/B3r0ev+R/Ub/861JS6HLvvTBwoLFgOsgoQdVUC4CvUD9SFVJY6LYpf+GohdL9gIEYC6Y9iBZjjTl2TIlz/XpVm23b5hgC8VIICYGmTVUN26EDpKbSa9IkcvPy+PbbbwkN9pR2dhxDiXM9qjbbhjUEYn4+NGwIn34K/frV6DtDgKaoGrYD6oewK15Pea7F6BZOnFAxZY4fh6NHVfMzL0/1AS9cUO+xsRAWpnKA1Kun+p/x8eq9ZUvHAMPAzp076dChA//4xz8YO3asSTfmH5wAPs/MZHxaGn/++WeKmzUjD9UHvGB9j0WFz49BNWETUM3aBKAlXheeKzICL7y/GTRurF5uJDk5mSeeeIIXXniBQYMGcaUJ6Qr8hcbAqcxMEhMT+UuzZmabc8kE9hIqP+fPf/4zderU4QVb1AJNhWRmZpKWlma2GbVCi9GHiY2N5a9//SsfffQRGzyUwi0QKCwsZMOGDfTs2dNsU2qF7jP6Ab169SI3N1c7cypg7dq1pKamkp2dzTXXXFP1H/gmARg3NQCZMmUK27ZtY0YwxvGpBpmZmcTHx/uzEAHdTPUL7J05v/76q9nm+ByZmZncfPPNZptRa7QY/QTtzHFNcXFxQPQXQYvRb9DOHNds2rSJvLw8LUaNd7nnnntIS0tj3LhxlJSUmG2OT7B69WoaN25MUgBMF9Ri9DO0M8eRzMxMevbsicViMduUWqPF6GdoZ45BcXEx69evD4gmKmgx+iXamaPYsmULZ8+e1WLUmId25ihWr17NlVdeSRsPpUT3NnoGjh8T7DNz7rjjDqKjo8nIyDDbFHegZ+D4M8HszCkpKWHdunUB00QF3Uz1a4LZmfPDDz+Qm5urxajxHYLVmZOZmUmDBg1o27at2aa4DS1GPydYnTmZmZn06NGDkJDAeYQD506CmGCbmVNaWsratWsDqokKWowBQzA5c7Zt28apU6f8fmV/ebQYA4RgcuZkZmZSv359UlJSzDbFrWgxBhDB4syx9RcDbWxVizGACAZnjogEZH8RtBgDDk84c7Zu3Urfvn2Ji4sjNjaW3r17s27dOrd8d03ZsWMHv/zyS5X9xaVLl5KUlERYmP9EI9ViDEDc6czZuHEj3bp1IzY2ll27drF//36aN29OWloay5cvd4O1NSMzM5N69erRoUMHl8f37dtH//79ef755zl58qR3jaslem5qgPLss88yc+ZMfvrpp0sOgFxaWkr79u3Jyclh3759REdHA2oqWtu2bblw4QLZ2dlERka60/RKufvuuzl//jxLlixxefzee++lffv2PPPMMzRt2pQTJ05QXFxROhufQs9NDVTc4czJyspix44dDB48uEyIAKGhoQwbNozDhw+zePFid5hbLUSErKysSvuLM2fOZMKECX7VPLWhxRiguMOZs2rVKgCuv/56p2O2fStXrrx0I2vI7t27OXnyZKVitP/R8De0GAOY2jpzdu/eDcBVV13ldCwhIQGAPXv21M7IGpCZmUlMTAzXXXed167pTbQYA5zaOHNyc3MBqFvXOUdTTEwMAKdPn66VfTUhMzOT7t27Ex4e7rVrehMtxgDHUzNzbH4/bwaCqqq/6O9oMQYBl+rMiYuLA+D8+fNOx2z7bOd4mj179nDs2DEtRo1/c6nOnNatWwNw5MgRp2NHjx4F8Fq80szMTOrUqePSmRQoaDEGCZfizLHlr9i8ebPTMdu+Xr16uc/ISsjMzKRbt25ERER45XpmoMUYRNicOdOnT6/W+T179iQ5OZn58+eTn59ftr+kpIR58+aRmJhI3759PWWuA2vWrAnoJipoMQYVycnJPPnkk0ycOLFazpyQkBBmzpxJTk4Oo0eP5sSJE5w6dYpx48aRnZ3NjBkziIqK8rjd+/bt49ChQ1qMmsCips6crl27sn79es6cOUOrVq1o2rQp2dnZrF69mt///vcetlaRmZlJVFQUnTt3rvLcxYsXY7FYsFgsHD16lJKSkrLPH374oResvXT03NQgZN68eQwfPpx169bRtWtXs82pklGjRnH48OGyGUEBip6bGoz4W8wcW3KbQEeLMUipqTPHLA4dOsTBgwe1GDWBS02dOWbxzTffEBkZSZcuXcw2xeNoMQYx/hAzJzMzky5duvj1aozqosUYxMTExPh8zJxg6S+C9qZq8N1sVkeOHCExMZGvv/7aazN9TER7UzW+68xZvXo1ERERfjH84g60GDU+68zJzMykc+fOLtdTBiJajBrAN505wdRfBC1GjRV7Z85///tfs83h+PHjZGdnB5UYtQNH44CvOHPmzp3LyJEjycnJITY21jQ7vIh24GgcmTp1qk84czIzM7n++uuDRYiAbqZqytGmTRufcOYEW38RtBg1LvCmM+f06dO89NJLfP3112VxdX755Rd++umnoBOj7jNqXGJbZrV27VpuvPFGp+MlJSVu6VMWFBQQHR2NiBAaGsp1111HQkIC//73vzl8+DBNmjSp9TX8hAwtRk2FuHLm7N+/nyeffJKRI0cyaNAgt1ynXr165OXllX0ODw+nqKiI0NBQ2rdvz+9+9zt69uxJampqIPchMxCNpgJ27twp4eHh8t5778nFixflL3/5i0RERAggzz33nNuu06JFCwEqfIWHhwsgf/vb39x2TR8kXdeMmkr505/+xCeffEKdOnU4ePBg2WLk1NRUsrKy3HKNnj17VvpdYWFhXHvttWzcuNGn5s66mQz/S9Wj8RpHjhzhwIEDnDhxgpCQEEpLS8uOff/995SWlhISUnsfYGJiotP322OxWJg9e3YgCxHQ3lSNCwoLC3n33Xdp2bIlCxcuBHASyvnz58nOznbL9Ro3blxh/ozQ0FBeeeUV2rZt65Zr+TK6ZtQ4cPDgQW6++WYOHDhAZT2YkJAQvvvuO1q1alXrazZq1MjltcLCwkhKSuLZZ5+t9TX8AV0zahy4+uqr+dOf/kRISEilzcKwsDC+++47t1yzcePGLrMLiwhz5swJ2KxT5dFi1DgxduxYvvnmG2JjYyvMAFxYWMi6devccr34+HinZnBoaCjPP/88nTp1css1/AHtTdVUyL59++jTpw8HDhygqKjI6XhERATnzp2rdc21fft2UlJSyj6HhYVx9dVXs337dq9ELPcR9ERxTcW0aNGCzZs306tXL5dN1sLCQnbs2FHr6zRu3Njhc0lJCbNnzw4mIQK6maqpgtjYWBYvXswzzzzjdMxd/cbLL7+8rDkcFhbGU089Rffu3Wv9vf6GFqOmSkJDQ3nrrbeYMWMGYWFhDrWkO8RosVho0KABAAkJCbz66qu1/k5/RA9taKrNQw89RJs2bejXrx95eXkUFxc7OHGOc5zt1n8HOMBRjnKc45zkJLnkUkopeeRRTDF1qEMkkUQRRRxxXGh0AX6F7rO7M6/OPFJIIZlk6hIc8W9AO3A0l8C+ffvoc3sfsvdkYwm1cHve7WyI3sApTl36l94BJALTjF0WLCSRRCqp9KAHaaSRSGJtzfdV9KoNTfUppJCVrOQLvmDhmYX8evevsBxYB3RzPj+EEBrRiIY0pAENCCWUWGIJI4wLXKCAAi5ykRxy+Pm1nyl4ogCqWJRxLdcykIHcxV2kkFL5yf6FFqOmavayl+lMZxaz+I3fjAMlwEQIaRJCh8c70IlOtKMdbWlLK1rRmMaEVbMnVFRURFF4EYc4xE52soMdbGc761nPEY64/JuOdGQsY7mXe4khxg13aipajJqK2cAGJjGJZSxDcHxMmtGMO7mTXvTi/x34f6Q09VwttY99ZJHFMuu/c5xzOF6PeoxhDM/wDA1p6DE7PIwWo8aZzWzmRV7kS7502N+YxtzP/dzN3XSkoym25ZPPcpbzKZ+ykIUUUlh2rC51eYRHeIEXuIzLTLGvFmgxagxyyeVFXuR93qcEI4lqd7rzBE9wJ3cSju/MEz3JST7iI6YwheMcL9vfkIa8zduMZCQWLCZaWCO0GDWKpSzlAR7gJCfL9vWgBy/zMrdwi4mWVc1FLjKd6fwP/+MgyjTS+IRPuIqrTLSu2ujpcMFOEUW8wiv0o1+ZEJvQhNnMJpNMnxciQDTRPMET7GUvL/MykUQCsJrVtKMdGWSYbGH10DVjEHOa0wxgAGtYA6hxvcd5nNd53a8H23exi9GMZiMbAXVfk5jERCaabFml6JoxWDnMYVJJLRNiQxqyhCVMZrJfCxGgDW1Ywxqe4zlCCEEQXuRFHuVRh76wr6FrxiDkBCe4iZvYxz4AUkhhKUv9pW9VIxaykHu5l4tcBOBhHuYDPvBFx46uGYONM5yhD33KhNiTnmSRFZBCBLiTO1nBChqgJqLPYAYv8ZLJVrlGizHIGMUotrIVgK50ZQlLiCPOVJs8TXe6s5SlZc3v13mdz/jMZKuc0WIMIqYxjUUsAqA1rVnMYr/vH1aXLnRhPvPLpueNYQwHOGCuUeXQYgwSDnCAp3kagCiiSCedy7ncZKu8y23cVtZEPcMZHuRBky1yRIsxSJjIxDInxlu8ZeqKhxYtWvDpp5+acu2JTKQ7KorAKlaxmMWm2OEKLcYgYAtbmMtcANrRjvGMN9WeqKgoIiMjTbl2KKFMYQoh1kd/AhOcJsGbhRZjEDCNaWUP3Fu8RSjeDZP/2Wefceutt/Ljjz8CEBkZSWRkJIWFhfz973/n5ptvprCwsIpvcR8d6cgwhgGwgx1kkum1a1eGFmOAc5GLZdPBmtOc27nd6zakpaWRmppKv379eOihh8jPz2fFihWkpKSwZs0aXnjhBa8HKn6cx8u2P+Ijr167QryW8EpjCotkkWD997q8bqot+fn5MnLkSAHkiiuukKysLFPtSZEUQZBYiZViKTbVFhFJ1zVjgLOWtWXbZtSKoNKCv/nmmyQnJxMWFkabNm0YNmwYDzzwAP3792f58uWV5vXwFLbyyCOPH/nR69cvjxZjgGObLB1DjGke1G+++YZVq1bxxRdfMHPmTKKiovjd737Hjh076NmzJ2+++aZX+4w2utkF7tnABq9fvzxajAGOLX5MEkled9zYGDp0KCtWrKB9+/YAFBQUUFBQQEREBE8//TTffPONKd7VZJLLtiuKs+NNtBgDHFsAqSu50mRLDAoKCsjPzzfbDIdJDw6BtkxCBzEOcGwD/dFEm2yJwd69e802AcBhKuB5zptoiULXjAGOLTDTaU6bbInvYR902RemBmoxBji2h8w+to1G8Qu/lG3blliZiRZjgNMKleZ7D3s4wxmTrfEtvsNI2tOGNiZaotBiDHBsk6JLKS0b5tAo1rO+bPtGbjTREoUWY4DTgx5l2+mkm2iJb5FPftnazmY084mEOlqMAU5nOpNEEgCf8ZlTaPxgZSELySEHgBGMMNkahRZjgGPBwv3cD8A5zvEu75prkA9QSilv8zagymcUo0y2SKHFGASMYUzZEMfbvO3gRQxG5jCHLWwBYChDaU5zky1SaDEGAQ1owAu8AMBZzvIIj5hskXmc5CQTmABABBG8xmsmW2SgxRgkjGc8rWkNwAIWMIMZJlvkfUopZTjDy8Zc/8gfaUELk60y0GIMEmxBqKKIApQ4l7PcZKu8y9M8zUpWAtCJTrzKqyZb5IgWYxCRQkqZ46KQQoYwhM1sNtkq7/AqrzKZyYCaIjiPeUQQYa5R5dBiDDIe47GykI1nOUsaaXzFVyZb5TkE4RVe4WVeBtSE+UUs4hquMdkyZ7QYg5D/5X/L3PnnOMcABjCHOSZb5X4ucIHhDOcv/AVQDpt5zCOVVJMtc40WYxBiwcIsZpXVFgUUMIpRjGRkwEwK2MUuutK1LERlDDEsYhH96W+yZRWjxRikWLDwCq/wDu+Uhbz/hE+4jutYwQqTrbt0CijgDd6gE53YxjYAEklkDWu4jdtMtq5ytBiDnCd5kkwyuZqrAcgmm1u5lbu52+dyUVTFUpbSnvYO0dMHMICtbKUDHcw1rhpoMWroRje2sIWRjCzLW5hBBkkk8TAPs5/9JltYOV/yJTdyI33pyx72ABBHHNOYxhd84RNrFauDTpaqcWANaxjHuLImHkAIIdzCLfyBPzCQgaYFtrLnLGeZxzymMa0sxZ2NIQxhClNoRCNzjLs0MrQYNU4UU8ynfMprvMZeHOPVNKUpQxjCIAZxAzd4NQPwec6zjGV8zuf8h/84xK2xYOEO7uBlXqYTnbxmkxvRYtRUTDHFzGUuU5nKt3zrdDyBBG7hFnrQg1RSy6IKuIsCCviO78gkkzWsIYussr6gjUgiGcQgnuIpfxWhDS1GTfXYwhamM535zK8wrGE96pFMMimkkEQS8cSTSCKNaEQ96hFFFHWpSwQRnOMcRRRx1vrvMIc5yUkOcpCd7GQ728kmm2KKXV6rHe0YyUhGM5oruMKTt+4ttBg1NaOEEjLJZAEL+IqvnJqxniKccDrTmX70YyADyxZMBxBajJracYxjZJLJetazne1sY5tDCEQndgOLgOcqPiWEEJrSlBRS6EAHUkmlK10DPeW5FqPG/ZzgBD/zM8c5zlGOcpKT5JFHAQXsSt/FmqFreEAeIIwwYoihHvVIIIF44kkggZa0DHThuSJDRxTXuJ3G1n+uSCedNaxhJjO9bJXvowf9NRofQYtRo/ERtBg1Gh9Bi1Gj8RG0GDUaH0GLUaPxEbQYNRofQYtRo/ERtBg1Gh9Bi1Gj8RG0GDUaH0GLUaPxEbQYNRofQYtRo/ERtBg1Gh9Bi1Gj8RG0GDUaH0GLUaPxEbQYNRofQYtRo/ERtBg1Gh9Bi1Gj8RG0GDU+ydatW+nbty9xcXHExsbSu3dv1q1bZ7ZZHkWLUeNzbNy4kW7duhEbG8uuXbvYv38/zZs3Jy0tjeXLl5ttnsfQEcU1XiU9PZ2hQ4dS0WNXWlpK+/btycnJYd++fURHRwNQUlJC27ZtuXDhAtnZ2URGRnrTbG+QoWtGjU+RlZXFjh07GDx4cJkQAUJDQxk2bBiHDx9m8eLFJlroObQYNT7FqlWrALj++uudjtn2rVy50qs2eQstRo1PsXv3bgCuuuoqp2MJCQkA7Nmzx6s2eQstRo1PkZubC0Ddus5ZqGJiYgA4ffq0N03yGlqMGr/B5vSxWCwmW+IZtBg1PkVcXBwA58+fdzpm22c7J9DQYtT4FK1btwbgyJEjTseOHj0KQFJSwKUQB7QYNT7GzTffDMDmzZudjtn29erVy6s2eQstRo1P0bNnT5KTk5k/fz75+fll+0tKSpg3bx6JiYn07dvXRAs9hxajxqcICQlh5syZ5OTkMHr0aE6cOMGpU6cYN24c2dnZzJgxg6ioKLPN9AhajBqfo2vXrqxfv54zZ87QqlUrmjZtSnZ2NqtXr+b3v/+92eZ5jDCzDdBoXNGxY0eWLl1qthleRdeMGo2PoMWo0fgIWowajY+gxajR+AhajBqNj6DFqNH4CFqMGo2PoMWo0fgIWowajY+gxajR+AhajBqNj6DFqNH4CFqMGo2PoMWo0fgIegmVxmMcPXqUlJQUioqKHPbXqVOH2NjYss8Wi4Ubb7yRr776ytsm+hRajBqPkZCQwDXXXMOmTZsqzK0BSox9+vTxomW+iW6majzKyJEjCQmp+jEbMmSIF6zxbbQYNR5l6NChlR4PCQmhR48eZaH7gxktRo1HufLKK0lLSyM0NNTlcYvFwogRI7xslW+ixajxOCNGjKiwz2ixWLjrrru8bJFvosWo8Th33XUXYWHOvsKwsDD69OlDgwYNTLDK99Bi1HiGUuA4sA3qZdejb5e+hIU6CrKkpIT7ut4Hm4Fs4KwJdvoQOo245tIpAHYC24DtwD6UAA8BJ4Fi49TP+ZwhDEEwHrdoovmN36hDHePEukAi0Bi4CmgDtANSgKZAYCagAsjQ44ya6nMAWA18A3wL7MVBcJXRl77UoQ7nUZmkwglnEIMchQhwHthtfZUnFiXMm4CeQA/rvgBB14yairkIfAn8GyXAg1WcHwo0AhKAeFQNdyUQBdSB++fez9zv5lJYXAjA0seW0qdZHygEzgFHUDXrEeAYUFVO1FCgE3ALMAhwzjzuT2RoMWocuQAsAeYDS1EiccXVQAdUTdXe+p5EpXO6li9fXhaev379+vz666+Eh4dX/AdngR2oZrCtKfw9Ffctm6JEORjogr81abUYNVaygZnADCDHxfF4VPOwN/A7oFnNL1FcXEyjRo3IycnhkUce4b333qv5l5SgmrDrgK+tL1c1aBLwAPAw4B/OWi3GoEaARcBUYJX1sz3XomqZQShHSkWUAPtRNdcB4Chwwu69ADgDlMLjZx5nSukUsqKySI1OVU3YaKA+0ATluEmwbicBbYGGlVy72Gr758AXwK/ljscA9wFPAK0r+R7z0WIMWv4D/BnYWm5/IvAH4B7gGhd/JygP6hpU7bQd2IUSXDVYz3ru4R4OcICQ6o6sXY4S5XVAKtAd1TctTwmQCcwBPgPy7Y6FAvei7tnVfZmPFmPQsQJ4EeUNtWEBegGPAv1RD649J1FOnCXAWuBUNa9lq+3qAPXU90qsMP3QdMY0HqMEfBElmt+s18mv8NscaQWkAQNQDpzIcsd/Az4C3kfV2jbCgJHAK6gfHt9BizFoOA48CaTb7bOgmqAvoxww9hwDPgUWAhtQg/iuSMQYC2yDago2QfUxo13/iYhgsVTgXcmx2noY5bzZhVH7VuS4iQVus97LnTgKsxTljPoLqka3EWPd9zi+spBQizHgEeAT4I84OmZ6A/+DavrZKEF5UD+0vpcfQwxB9SNTUc6cm1Ci8walKHFmoZrHWag+aXkuB0agHDfJ5f7+c+Al4Ce7/e2BD4Cu7je5hmgxBjTHgeGoMUIbbVFNt5vs9l1ECfCvqNkz9kShmrADUE1YV301s9iCckAtwrnvC6r5+gLKfhvFwBRU39E2bBOKarq/hHMT3XtoMQYs36CEeNz6ORr4E/A8RjPuPPAe8DdUf82eG1G1yxBUk87X2QfMsr6OlTt2IzAR6Gu37xgwAdVqsJEG/Avv1faOaDEGHAK8an3Z+nmdgblAC7tzPgOeRc12sVEHGA2MxbkP6S8Uo5rYU1BjkPb0Av6BY/M1A/Wjc8b6uTGqX53qWTNdoMUYUJSgPKLT7fb9AfVgRlg/bwfGo4YAbMRa/+4pKh/T8zc2Aq8DizHGUMNR9/8KysMLaprfUOv5oFoO/0SNsXqPDL2EKlDIRz08NiHGAAtQzokI1MP4N9T8TZsQw1CD4QeAtwgsIYKaEvdvYBNGH7kIeAc1le+/1n1Xo8pkjPVzATAMNTTiRbQYA4EC4A7UMATAFcBKwLaA/ihwK/AMxuD8zSgHyGT8ZbrYpXMdyvv6T9SwC6ixxx6o4Y1iVG34PjDJerwYeAg1O8lL6GaqvyPAKAxHRBPUSosU6+dNQD/UtDRQ6wXfQfWTgpGzqGaqvePmNlQ/0bYc62NU+RSjqqvP8EaTVTdT/Z5nMB6sBGA9hhC/RLn3bUK8HrWqPliFCKqfOAfluLG1CL4EumEM69yPaqJaUE6wEajpfx5Gi9GfmQH83bpdH+VFvNr6eRaq6Zpn/TwKNVjeypsG+jCDUQ6bJOvn7ag5r/usn0cAb1q381Eze8qPwboZLUZ/ZS/K+wnKQ5iBmk0Cqu/4B5R31YKa7jYLw6OqUVyDcuL0tH4+gupL20T3HGq6HKjZS8NRZeohtBj9kWLUsiDbDJK3UWsMAb5CuemLUUJ8D+XG96+Ftt6jAarMbNkFDlu3bZPh/4aaNABqkvxfPWeKFqM/8ibGmFgvjF/vw6hlQoXWz2+hBvA1lROJmrfaw/p5J6qZKqjhn08wnDt/RjVpPYAWo79xElUTAlyG8vyFoMbPhmBMBn8WNf1NUz2iUWOStplHyzBqwRbAu9btQtSUQg+gxehvvIrRPP0zKpwhqH6hrbbsgeF80FSf+qi+t20u7kSU9xnUNMFu1u3FqCh5bkaPM/oTP6PWDBaigi/tRjWx9qFWYxSg+kBbgP9njokBwTzUDBxQ/cV1qD53JmoyOagZPe4d7tDjjH7FBxj9wb9grL54GmNmzd/QQqwt96AmAoDytmZYt3tiOHrWon703IgWo79QglreA2oOqe2XeyNqPR+oaV8jvWxXoPI3jAgAL2CsgHnS7pzZ7r2kFqO/8BXGcqcRqLFFUPMpbbyNR/5HO3TogMViqfbrtddeIyYmxmn/X//qPC5w5MgRl9+xcOFCh/NefPFFp3N273YVdtxNJKP6iaC6ASus270xWh7/pNqBuKqFaPyD+0UE6+tH675cEalr3ddKREo9c+lrr71WMjIyHPaNGTNGAFm2bJnD/qFDh8qkSZNERGTLli0CyIABA6q8xty5cwWQ5557rtLzevbsKTNmzKjZDVwqP4hR5oPs9k+027/UbVdL1zWjv7DO+t4MY+7pArCmrlDzTfXAvntpj1qYDWrYw7YAub/dOevddznfiIulqZzfUNPfwHCvg1oWZKPybN21YuvWrdU+d968eZ4zxAyGAt+hxnHXoxw4HVHjkhcx1kS6AV0z+gP/xVip3sVuv8213gxjvFHjXuzDb9haJ+EYUfW+xW3zVbUY/YGf7bY7WN9PYaww6O5Va4KLjqg1oGBMqgDj/yEP+MU9l9Ji9AfsI3jbQmOcsNvnm+HqA4NwjGVp9mV+pd22q0RBl4AWoz9gL0bbgtjf7PZd4UVbghFb+VZU5tVNd1AFWoz+wBm77Tjre67dvsu8ZonHCA1V0YNLSirvgJWUlJSd6zVsP4D2NaB9mVeV1LWaaDH6A/aZti9Y3+va7TuP3xMTo2Znnz1bUUINRW5uLvXq1av0HLdjm5gf42IfOP5f1AItRn/gcrvtUy722Tef/JSkJBX/YseOHRWeU1BQwN69e2nZsqW3zFLYcj5W1DS1/7+oBVqM/oB9KEXbQ2D/YBzHbwkLC2P37t20aNGC1q1bs2HDBrKzs12em56ezpVXXkm7dl4Od24rXy1GjUPuB9tzehWGSDd41xxP8c477xASEkKfPn1YsGABOTk5lJSUcOzYMd577z3Gjx/P3//+d0JCvPjY7sMYukix22/7fwjD0bNaG9w2s07jOX4SYy7keLv9d1j3hYnIWe+YMmvWLEFNQXB45eXlOZxXt25dl+e5eu3atavs7zZv3iz33XefNG3aVCIjIyUiIkKuuuoqGTJkiKxbt847N2nPLDHK/hO7/Y2s+zq67UrpenGxPyCo8cXfgE6owMSg8itOsG7PRyUL1biXuzHWM+5HLereC9i6rY8C/+eWK+nFxX6BBSOZ548YDpu7MCaHf+hto4KA31ATxEEliW1q3V5pd44bk6xqMfoLt1vfizAWGSdhxPxcjkpgo3EfszDWK9pH2bMtKg7DCJHpBrQY/YV7USsFwHGFuS1UfykqKJXGPZzFiA4Xgyp/gD0YDrO+qHyObkKL0V+oj7GO7nvUagFQfZq21u1PUMt9NLXndQwv6pMYuRzfx1hBc797L6kdOP7E1xjNot4YoSAWozJNgerDrEGvVK0NO1BJgvJRNd8eVBDjI6iuwUVUtq8DGOFPao924PgVvVFZpUAJ05Ym+w4MkW4AXvSyXYHEeVRrI9/6+XWMaOKvoIQIKmat+4QI6JrR/9iAWu0vqDV136IeisOotXenUJ2PxRhhBTXV536MPnl/VBIhC/ADqrYsRg1r7MDdYtQ1o9/RFZWeDGArKsI4QCIq76Atp+AQjJXpmurxZwwhJmLkaMxHJRoqth57DbfXiqAdOP7JFIz5kG+gIl2DGv6wTQI4j/pl91CSloDj7xgpxOugMhnbyngCRjn2Qf3QeQAtRn8kAZhm3S5Fxfe0ef5eR+WiB7X+rheO4SI0zryJygANRq5L22D+QuAf1u1GqJrTQ1H4tBj9lSEY0cP3o8a8zqEelA9QIepBibQnKn+ExpFi1HS2F1B98BBUU982weI7VPNUUOX6Ie6bFO4CLUZ/ZhpGIs9NGElSbQ/VA9ZjBaisu69g9HuCnWPArRgtjGhU09T2I7YP5aW2Ldz+i/WzB9Fi9GfqoJpRLayfl6JmihSgmlszgcmo/+VS1APVHSMGa7CyEBWg+Bvr58tR0wltE+13o4aQbE3/h4GXPG+WFqO/0xCVh6OR9XMGyslgi17xBKqJWt/6+VvUyo//I/hqyZOooYu7MBYHX49qjt5k/bwJld/ykPXz7ahU7F5AizEQaIGaANDE+vkblOPGFlpwCGq1hy1N9llgPGqx7FfeM9M0ilCZh1thDF1YUOnX16GCQIPKVnwzRpiNAailaV6azaTFGCi0Q4Wfb2X9vAnVFFtu/fz/gFUob6stwNVuVB7CfgSmx7UItfKiLWp+qS3K3jWoZVDvAhEoB83/oMrBFmhqJEqI0XgNLcZA4mpU/g1bspZfUc2sV1F9xlCU53AXjmNli1Gu/N+hBOvvc7LOo5qWLVFOLFuIjBjUMMZ2VA0IqvXQGzWWWIKqMZ8HPsbr83v1dLhApAB4Cse+TnfUigP7WE7foPLWl0/ekoQaqxyFEcHcH9iEGn6Yi9FnBlX7jUQ5sGxNeUHlV3wGw1FTHzXrZqA3jHUiQ4sxkPkCVTPkWj+HocbVXscxBuhK1BSv1eX+PgLl/r8TNZvHg2Nsl8wPqMzNn6P6xfZEAQ8Cf8IxtfpeVDmssNvXETW0YV6qBC3GgGcf8AdU89NGU1QtMRzVdLWxETVhIB3nwMihqAnqt6IyM92AV/tTZZwA1qKa44tREx7K0wz1I/QQjot/f0X1DadirOAPB55GjcFGesTi6qLFGDRkAI+h3Ps2mqH6Sg/iKMqzqNAes1FDIaU4E4EaFrge5SBpi0q97a5UAwIcBHaiVkhsRzmoKhojjUENyj+A8iTbe0NyUFPa3sGx+XoTatDfy2FYK0CLMag4jVrrOAPlabSRjBrquA9j7Z6N46igTAtRfcyqctg3RMV5TUCNfV6FCn9fFyVg2/t5oBDlvSxC/Uj8Ahy1bh+i6rQFDVHN5wEoJ0xUuePZKLF9hGO+kiaoSeGj8aVsz1qMQcl+lIf1nzgO/NcDRqCCL7mqLS6gQn6sQzUV1+G2pC/VIh5Vm3W3vnfEeTygGNV8nYbqE9o/3Q1RLYGxmNPErhwtxqDmJ5QzJx3nGi8FGGx9JVfw96UoYe/EaE7+jKpNj2Gslq8Jl6FqriaoMdO2QBvUj0NFYfSLUH3i+SinVfkUbU1QA/zjcVuSGg+gxahBNQ9nopw3B10cT0aNV/ZEOW/quzjHFadRwryI0Sy1vcegnCe29waomq98U7Mifkat4/wGWIJzwlILkIbymt6JP8QE0mLU2FGCmmw+F9XUy3NxTiiqeZiKCvvRDlV7edITeQo1hLEdNZa4GhVmxBXNUbX5/aga1X/QYtRUQD7wJarptwTH5KzlCUPNdmmNCldha2ZehRqbrIPqo0VZtyMxHDdnUT8Ctlr0mPV1BCW4bVSdZaslasXFYNQkeP9Ei1FTDUpQ81jXoSakr8RteewvCZsjpzdqCl+zyk/3E7QYNZdACSqW6LZyr4PWY+6iDqq2TUE1h9tbt+Mr+yO/RYtR40ZKUGOER1BNy8Oo5u05lLf2AsqZk48aRgkF4lDDE3GoccnGqOZtExyTxAY+Gb7vY9L4D6EY/UVNjdFLqDQaH0GLUaPxEcIw8rJqNBrz2PD/AbetQncRG8WFAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -746,7 +746,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAne0lEQVR4nO3deVyVZf7/8dcFouYCqKi5rywuldtkTVNZzpRao/m1dZyyxrIpKyLLNFOx0sk2o99kZqu2aI6lmS1jatqqIzZNZmpqggoKIiI7CFy/P85tAaGiAvfhnPfz8eDBfa77PvDxPE7vLj73de7bWGsRERHfEuB2ASIiUvUU7iIiPkjhLiLigxTuIiI+SOEuIuKD6rhdAEBYWJjt2LGj22WIiNQqGzduTLPWNq9on1eEe8eOHYmPj3e7DBGRWsUYk3isfWrLiIj4IIW7iIgPUriLiPgghbuIiA9SuIuI+CCFu4iID1K4i4j4IIW7iIgLMjLzaX1zP5Z/vr5afr7CXUSkhq35vJDmY6LY12kjsW8/Vy2/wys+oSoi4g+ys2H8hEJeSO4G5yTS59BlxM95q1p+l8JdRKQaZedl89AbD/Hjjgy+WQe5LdfAOXu4uHgga579d7X9XoW7iEg1yc3PpevECFKa7IOGwEDP+CVcwupHVlbr71a4i4hUg7yCPNrFRJB+5j7491BuOXcyo0dDWGhjIttFVvvvV7iLiFSxhN35dH84krwuSYR8M4zPnl9K7941W4NWy4iIVBFr4dVXi+l6/YXkddlD5O4hpC2v+WAHhbuISJVISIDLLy9m9JibKD4/njZFHdny8nLquNQfUVtGROQUlZSU8J9N8Sx7pyHPPgtHjjwFvd+GYHj9xpcwxrhWm8JdROQU5Obn0ml8BKkhSbAYyAMCIeTKEHq068HATgNdrU/hLiJykrJy8mkbHUlmuyQ4HEzgX/IY3/4BCs8o4OmfnmbKRVNcnbWDeu4iIifl63X5NLstgsx2e2n9/TC2RO/irFY9eCb5ad5MepP+bfpzWZfL3C5T4S4iUhl5eXD/+EIueDKKI5F76HvwCpLeXUpUh6asvHElkWGRpOSkMOVi92ftoLaMiMgJffEF/O3WQnb0iIJzEhloB7HyueWendbSrEEzPhv1GV/v+ZrBXQe7W6xDM3cRkWPIzISxY+GiiwtJOLs7nLOLP/3UjpVTP/IcYC3ExEBsLE3PaMqVEVd6xawdFO4iIr+Rm59Lqzu7EPK4YXaIgYn1KOq5k0u3t2XF23s8gX402OPiICPD89iLqC0jIlLKnqRcIidFkNcpiaDNXejcKoSGDaFvWF/mTnkRwpxAj4vzPCE6GmbNAi+ZsR9lrBf836Zfv342Pj7e7TJExI9ZC28tyGfU+xGUdN9D5K5h/O/FpdSrV8GBAaWaHiUlrgW7MWajtbZfRfvUlhERv5ecDFcNL+TG96Io6b6Hi/KvYOvrxwj2mJiyY0dbNF5G4S4ifstaeOUViOpeyLLAKDgrkcsDB7H2H8srPvhojz062jNjj472PPbCgFfPXUT80s8/w5gxsGp1EfWv6w5Ru/hTwJ/45OGPK36CMRAaWrbHPmuWZ19oqHruFVHPXUROi7Vlw7X841KycnLpHn0RewsSAKgbkkdh81wuNZeyasqqKv1d1e20e+7GmARjzCZjzHfGmHhnrKkx5lNjzHbnexNn3BhjnjPG7DDGfG+M6VN1/xQRkXJiY8u2RUqtPS9vw7e5NLs9gr3tNhLYKI8GTfMJCjIMrTe0csEOvw1yL5uxH3UybZlLrLVppR5PAFZZax83xkxwHj8IDAbCna/+wAvOdxGRqmWtZ4350WWJs2aV7Ys7s+rCQnh0ej6P/RgFPZPoc2AY8bOXemsuV4nT6bkPAwY42/OANXjCfRgw33r6PeuMMaHGmFbW2n2nU6iIyG+U7nuXW3ue+dg0hk67hISD+9m3Hwob7Yeeh/mTvYIV/1zqWsk1pbKrZSywwhiz0RgzxhlrWSqw9wMtne02wJ5Sz93rjJVhjBljjIk3xsQfOHDgFEoXEaFswDuyZzxK+MORrDVrSay3ncL22wlols2wesNYEVvBShgfVNmZ+x+stUnGmBbAp8aYraV3WmutMeakzsxaa+cCc8FzQvVknisi8otya8+zA6HDnW1J75QJy69nTJ8FPPEEhIS4WKMLKjVzt9YmOd9TgSXAuUCKMaYVgPM91Tk8CWhX6ultnTERkapVbu35vn3ZtLy+GemdMmm4YiirZ77Niy/6X7BDJcLdGNPQGNP46DZwGfADsAwY5Rw2Cnjf2V4G3OSsmjkPOKx+u4hUi1JrzxdfNJ22MZHkhh8k/Js/kDrgXC651IfPmJ5AZdoyLYElzmUs6wBvW2s/McZsABYZY0YDicC1zvEfAUOAHUAucEuVVy0i4jgwNpaxd+fxrwWR0DOJi/OuYs3H73ntEsWacsJwt9b+DJxTwfhB4Dd3gHVWyYytkupERCqQmZPJ5Lcm892PmaxfDwXtV0DPZIbUuZIPH1/idnleQZcfEJFaJTMnky4PhZPWNBWaAIM844PqDOLDSR+4Wps3UbiLSK2RmZNNu3GRZLZKJeDfI7jrj+O45hpoFhJKt/bd3C7PqyjcRaRW+H5zLr+bGUFhl/202HANX7+xiC5d3K7KeyncRcSrFRXBE0/lMum/EdB9H31SRhD/wSJ/P196Qrqeu4h4rU2boP/5+UzaGAXdk7jMDmPj7MUK9krQzF1EvEpJSQmf/GcVb759hHfeAS6+E3rs4YqgK1j+0FK3y6s1FO4i4jUyczLp9GAE6c1ToBlwp2d8UJ1BLH/IP64JU1UU7iLiFVLSsuk8IZLcdinU/eZiLu97Nh07QPiZ4dw99G63y6t1FO4i4roPP85l2JsRFEfsp8u2a/h20SKCg92uqnZTuIuIazIy4N77cpmXHQE99nFxzgjWvL3I7bJ8glbLiIgrli6FqO75zMuKgh5J/DnoKtY8sdjtsnyGwl1EalRKClx7LQwfkU/6gEjouYcr617Jsod0TZiqpLaMiNSIw9mZdBl3Ngeb7IbOwIOWI/VgcJ3BfDBR14Spagp3Eal2P27Lpvc/IinstJ96W7rQsVUj6teH37f8PbP/Ptvt8nySwl1Eqk1JCfy/53O59+sIiNpP7+Tr2PDWQgID3a7M9yncRaRKpWem87tHfsfeomSOHAEbVARRRQyyI/j4xYVul+c3FO4iUmUysjOImBLBwdCDsL0FpiSQkBC4utkVvHzXS26X51cU7iJSJTJzMuk8MYJDYQfh/ZsZ3vE1nn8eWrVyuzL/pHAXkdOWejCTThPCyW17gHorbuStSa8xYoTbVfk3hbuInJaVn2Uz6NVIirum0mnzDcR/MJ+mTd2uShTuInJKsrPh/gdzefFgBHTbz4VZ1/D5orfdLkscCncRqbT0zHSGPzOcXQcOsC8ZikKTodthhtUdwdKndE0Yb6JwF5FKycjOoOvkCA41OQgNAqCr5/olIxpew6L7FezeRuEuIieUkZ1B+/HhZLX0rISZOOg1pkyB+vXdrkyOReEuIsf108+ZnP1YJAUd0mjyxU2sfvU1evVyuyo5EYW7iJRlLRiDtfDiy9ncuSYCG5HKOXtuYMPH8wgKcrtAqQyFu4j8KjYWMjJIiJ7F6NvzWN00ArqlMHhbbz56WythahOFu4gAkJF1iKnbl7FhcwH/+Xw0xVEfQ+R+RnwEi8+/6JcZvdQOCncRISM7g04PhZMRcRAiAH4EC1d9AovPj4ZZsxTstYzCXcTPHTiUQccJ4eS2OkjQiht44KrbuWzGAMKOQI8c4GsFe22k2+yJ+LG1X2XSKjqS3NZpdPh+FHvfe4vpSUu4OMMJdoCYGE9LRmoVhbuIH8rLg/seyGbA8xEUd0nl4syRJLz7Gi3+EQNxcRAd7bnTRnS057ECvtZRW0bEz3zxBdwyOpedfTwrYYbXvY73nn7TszM01BPoR3vss2b9Oq7WTK1irBf837hfv342Pj7e7TJEfFZRcREfr/ucuXOLWf5hCYGXjaY4MomrG1zNvx74V9mDy6+K0SoZr2WM2Wit7VfRPs3cRWqD0wjcjOwMOjzYlcwWB6EzcDcUA8PPGP7bYIff/lwFe61U6XA3xgQC8UCStfZKY0wnYCHQDNgI3GitLTTG1APmA32Bg8B11tqEKq9cxF84Hyz6pVViracHHhrq2XccOxIy6PloOAXtDtJg/SUM6h9Fy5bQvU137vrzXTVQvLjlZGbu0cAWINh5PBOYZa1daIyZA4wGXnC+H7LWdjXGXO8cd10V1iziP6z1BHtcnOfxrFmeYD960rPcDL6kpISM7AyshUXv5jJ2dV9seBrnJIxi/ZLXqVfPnX+G1LxKhbsxpi1wBTAduM8YY4BLgb84h8wDYvGE+zBnG2Ax8E9jjLHe0NwXqW1Kn9SMi/s15KN/+8GinJwcwh8MZ1/zfb8+PxyuKBnJ8tder7maxStUdinks8B4oMR53AzIsNYWOY/3Am2c7TbAHgBn/2Hn+DKMMWOMMfHGmPgDBw6cWvUi/qB0wB9VLthzc3O55PpL2Nd8H2ZrBAGrBhG5ZxCPRDzG8mlv1nDB4g1OOHM3xlwJpFprNxpjBlTVL7bWzgXmgme1TFX9XBGfc7THXlpMzC8Bn5eXx2WXDWND6w1QUJ/zUtcx75UmhIe7U654h8rM3C8AhhpjEvCcQL0UiANCjTFH/+fQFkhytpOAdgDO/hA8J1ZF5GQdDfZjfLAoJzuP3r2v4qvtK6EHDG46ji8/VbBLJcLdWjvRWtvWWtsRuB5Yba0dCXwGXO0cNgp439le5jzG2b9a/XaRU2RMxR8sio7mv3kdadN2BNu2fUrIn8+lYVAj3rgzhgB97lw4vcsPPIjn5OoOPD31V5zxV4Bmzvh9wITTK1HEz8XGlumxFx4xTA1+nL4vreTw4Y+5+o5pZLbbwN3n3kWzBr85vSV+Sp9QFakFUg+l0v+x/uwrSqHwCNiSYqCQ1m3aQcNiDucfJuHeBMIahLldqtQgfUJVpBZLO5xGxLRIDodkwI4WBJgAQoKhc+fWtG3bFoDhUcMV7FKGwl3Ei6VnptN5UiRZYRnw3h3cdt5snnwSQkLcrky8ncJdxEslJmUQGRtBQZt0Gq++jffjZnPJJW5XJbWFwl3ECy1cnMFfloVjOx+k585bWP/JXBo0cLsqqU0U7iJe5MABuOPuTN4NjICINK4oGsXyN151uyyphRTuIi5LPZTK1c9ew66UdPYlQ3HYbuiQyQ2NRvL2uNfdLk9qKYW7iIvSDqcRHhtJZpMMCDYQDAEYRobcyPx757tdntRiCncRl6RlpNNhYgS5LTIIfP8OnrxpNvfcA4GBblcmvkDhLuKCb7/PoP+z4RS1P0Tr9bfz+eLZdOnidlXiSxTuIjWoqAhmPJHB1C1doUs6FxwczRcfzdGd7KTK6RJDIjVk0yY49/eZTN0cAV0Pcu0ZN/Pl/3tZwS7VQjN3kWqUnpnOtAWP8dX6PL79FjjrXeh6gJHBI3kz5jW3yxMfpnAXqSZph9Po/HC459IBHfB8Wbi+0fW8GaO7I0n1UriLVIM9+9MJnxJBQasMGqwcxaSRN9K/P7QMbUnPTj3dLk/8gMJdpApk5mQyf/V8ikuK2brVMnfLo5R0PET3n27nmw/nEBzsdoXibxTuIqcp+WAyUY9GkdUk69fBjjCkaDQfvj3HtbrEvyncRU7D/vT9dHu0G1khWdRfeQMFyf0YMADuvjmK4RcOcbs88WMKd5ETKCwuJMAEUCeg7H8uqYdSiZgWRVZoJiyOITLoGV5ZBH37ulSoSCla5y5yHNZahrw1hJ6ze5KclfzL+IGMNDpNiiQr9DBm6d1MH/kMGzYo2MV7aOYuchyrd61m1a5VGAyXzLuENaPWkLq7Lr+bFcGRNhm0/PoOPlv4HN26uV2pSFmauYscg7WWaWun0aZxGz664SOSMpPo9ewAej0RwZG2h/j9gdtJ+mS2gl28ksJd5BjWJq7li91f0PC/DRkcOZicuTmk5v8EndK5tt5ovpo9R1dwFK+ltozIMUxZPYWggrpsf2cHgYEPEpQSzAWJyQwc2paJ104AaylzYZjyj0VcpHAXqcC/t/6bL/Z8AasNHHmHYf93Dc8/D2ee6RwQGwsZGTBrlifQrYWYGAgN9ewTcZnaMiLl7E1JY+g/r4FsCN4+j8WLr+Hdd0sFu7WeYI+L8wT60WCPi/OMW+ti9SIemrmLlPLRp2n8eUEEJe2yiPrhbr7afiNNm5Y7yBjPjB08gR4X59mOjv51Ji/iMmO9YJbRr18/Gx8f73YZ4seys+G+8em8lB0OndMZXHA7H/3jBJcOsBYCSv3xW1KiYJcaZYzZaK3tV9E+zdzFbyUfTOb8GeeTciSNwkKw9QuhcxE3hYxmXkwlgj0mpuxYTIxm7uI11HMXv7Q/fT+Rj0Sxu9FuCtIbEpDbiCZFTbmnzT3Mi3n5+E8u3WOPjvbM2KOjy/bgRVymmbv4ndRDqXSZHEVuWBbm3RgeuuoZHn4Y6tev5A8wxrMqpnSP/WgPPjRUM3fxCuq5i1/Z/FMavZ8M50jrDJp/fg8rZsXRq9cp/jCtcxeXqecufs9a+OeLaUSvi8B2yKB/8h18sSKOoKDT+KHlg1zBLl5EPXfxeQkJcOnl6dzzdSS24yGuq3c7616afXrBLuLlNHMXn5SVlcWTTz7F2rWH+Gp9EcXXLIDOGYxudisv3627I4nvO2G4G2PqA58D9ZzjF1trpxpjOgELgWbARuBGa22hMaYeMB/oCxwErrPWJlRT/SK/kZ2dzYABQ/j2268gMARzQzZ0LeKWZrfw8l0vuV2eSI2oTFumALjUWnsO0AsYZIw5D5gJzLLWdgUOAaOd40cDh5zxWc5xIjUiIyOHs866gm+//YaGIW/S6x9/wHYt4qU/v8Srd73qdnkiNeaEM3frWU6T7TwMcr4scCnwF2d8HhALvAAMc7YBFgP/NMYY6w3LcqT2K7ciJXF/AuPeuJ/cwlwyM+E/G7ZwpE0i7c+/gc4D57Fm7wrmXDGHW/vc6mLRIjWvUj13Y0wgntZLV+B5YCeQYa0tcg7ZC7RxttsAewCstUXGmMN4Wjdp5X7mGGAMQPv27U/vXyH+odyVGBP3J9D90XByWzhvwwbAxZ7N3bzNvuQgZg+Zze39bnepYBH3VCrcrbXFQC9jTCiwBIg63V9srZ0LzAXPOvfT/Xni40pfiRHYPTGGHo+EkxtWRJMl93Dox8mMHAmPPVaHFi3qAhBoAqlXp56LRYu456RWy1hrM4wxnwHnA6HGmDrO7L0tkOQclgS0A/YaY+oAIXhOrIqculKfAk1+IY4e2XHktAYWTSS0cDr/+tgwcKC7JYp4kxOeUDXGNHdm7BhjzgD+BGwBPgOudg4bBbzvbC9zHuPsX61+u1QJY0h++AG6/jWQ7DbA4vu5d9B0Nm1SsIuUV5nVMq2Az4wx3wMbgE+ttcuBB4H7jDE78PTUX3GOfwVo5ozfB0yo+rLFH23+aR8dJ0SS17aYpotH8c2WL5hFDA0baO4gUl5lVst8D/SuYPxn4NwKxvOBa6qkOvFrGdkZLFi7gJISy8aNxbye+DC2fQ7nfjmMzze+Rr0JMb/eKEOX2hUpQ59QFa+UmJJIj8d7kBOa4xkwQHu4/ofzWbByia7EKHICCnfxOnsP7PUEe+Mcgj4ZScnBs7n8crj9hp4MjR38a5AfDXgFu8hvKNzFqyQfTCbqsW7khOTAoon8/swZvPwRdO16jCco2EUqpKtCitfYk5pM58lR5IRmE/T+A7x43wxWrz5OsIvIMWnmLjXjBDe2WPvNfga+2o3i1ll02ngfn3/4BG3bulCniI9QuEv1K3fZAKyl5N5oikKCKXxwCrEz0ng6uTu0z+TynHv4+IOn1W0ROU0Kd6le5S4bwKxZJI4dzdn5r5HZFHhqOtQF2sPoJnfx8rQ4F4sV8R0Kd6lepZcsxsWxe04cPW6EnLbAl/2paxoSGQk3DhjEAyMecLVUEV+iG2RLzbCWvWcEEPHXAPJal8CiiYy5eAZPPAEhIW4XJ1I76QbZ4i5r2XrbXZw9sj5HWucT8q/bWNqzNQPmWC1lFKkmWgop1cta5v/5abqXvMGRtvn0TbiP5EtDGPDu3RAT4+nJi0iV08xdqs2BA3D7XQdY0vwxaJfF9UHRLJj/tCfQg47osgEi1UjhLlUqMSWRC2deSOqRdAoKgFYFEFLEHS3HMvvOZz0H6bIBItVO4S5VZnfqbrrP6EFuSA7sakadQEPjeg24tePNPHHLE2UPVrCLVCuFu1SJ3Sl7iXikBwXNcqjz3kRm/m0G0dEQGOh2ZSL+SeEup2T73u0MfW4oWUVZFBVBqk3DhhXQbt0DfPb+DLp0cbtCEf+mcJeTtjN5J+c8fQ55jfIILKhHcTFQHMDlmeP5+JOZ6riIeAGFu5yUXft2cdaTZ5HXKI82XzxK0tqHGToUZs+GNm3crk5EjlK4S6UlpiTS84me5DXKwyyKpfDQwyxcCNdeq/OjIt5GH2KSStmdupuo6T3IbZwLiyYz8typ/PgjXHedgl3EG2nmLif0U+Jees7swZGwHBp//BALZz3CkCFuVyUix6Nwl9/YtW8X498cT35RPmlpsD5rDfbMbHrtGM/aVdMJDna7QhE5EYW7lLEzeafnhGlonmcgGDgDrqtzPwvfnulqbSJSeQp3+UXplTCN3p9KzpYx3PF3mDKpES3DNF0XqU0U7gJ4VsL0mNmTvMZ5sHAanRtM4dUvoW9ftysTkVOh1TK+qvyldI9zad3ElN1EPtqDvOBcAhZP5rGbpxAfr2AXqc00c/dFFdyQmpgYzyV2Y2PLHLr+u71cMKcHxS1yaP3VRFa+9wjdurlQs4hUKYW7r6nghtTExHgeR0eTkXWIxV+9S3FxCWvWWhamPwCtsxl4aDz/XjFDF/oS8REKd19T7obUv4R8dDQ7H7iLs6a0+XUlTEPgDLgt9H7mPqKVMCK+RDfI9lXWQsCvp1R2Je2kx5OeSwcEfDKKoLxwrhgCfxvRmyv66xNJIrWRbpDtb4722B2J9aH7Y1HkNzsCC6cx7KwpPP88tGrlYo0iUq20WsbXHA12p8e+PSGB8Jvqkx92hIZLxrP4H5N57z0Fu4ivU7j7GmM8q2Kio1nyp3FETu/JkZb59Fw1it1XNGXE1brKl4g/UFvGB2XfH8s99yfx2nvdoE021zCeRV8+rss3ivgRhbuP2L53O32e7kN2aLZnoBVQAve0up+4v2sljIi/OWG4G2PaAfOBloAF5lpr44wxTYF3gI5AAnCttfaQMcYAccAQIBe42Vr7bfWUL+C5JszZT59DfqM8+LI/ZwTVJzISRl18Ffdeda/b5YmICyozcy8CxllrvzXGNAY2GmM+BW4GVllrHzfGTAAmAA8Cg4Fw56s/8ILzXapBYkoiUTN6Uhiah1k0jQkjpjBlCtSv73ZlIuKmE4a7tXYfsM/ZzjLGbAHaAMOAAc5h84A1eMJ9GDDfehbQrzPGhBpjWjk/R07T5oTN/OHZP5AVlIUFSgJLoIml5ZrJfPLOFHr1crtCEfEGJ9VzN8Z0BHoD64GWpQJ7P562DXiCf0+pp+11xsqEuzFmDDAGoH379idbt1/asnsLfZ/rS0GjAlqkdiXtgIESw+C2t7Js9QPU0RkUEXFUOg6MMY2Ad4F7rbWZptTKC2utNcac1EddrbVzgbng+YTqyTzXH23bs40+z/ahoEEB4RueYvuKcVx4Ibz8MkREuF2diHibSq1zN8YE4Qn2t6y17znDKcaYVs7+VkCqM54EtCv19LbOmJyi7Xu30+uZXuQ3yCdo8Uz2fT2O55+HNWsU7CJSsROGu7P65RVgi7X2mVK7lgGjnO1RwPulxm8yHucBh9VvP3W79u3irKfOIb9RPix8jIGdxrN5M9x5Z5lLx4iIlFGZtswFwI3AJmPMd87YQ8DjwCJjzGggEbjW2fcRnmWQO/AshbylKgv2Jzv2JtL98Z4caZJH/aWPMnfqJP76V30WSUROrDKrZb4EjhUnAys43gJjT7Muv7Q5YTNXz76anKIcCo9AKinYpoV0/34qq1c+TMuWJ/4ZIiKgT6h6jV9WwjQsIKCgLiUWKA7gmpLJLFoa63Z5IlLLKNy9QOmVMGH/foq0DeMYPRqefBKaNHG7OhGpjRTuLtudutuzEqZhPiyYSaOScSz4FP74R7crE5HaTOstXHZ+7B/JD/ashLl36Hh++EHBLiKnTzN3l6SlwR//Pp3ks7ZTP/48PntzEued53ZVIuIrNHOvYdbCokUQcdZe/td+KoHpdUl4/WMFu4hUKYV7DUpOhuHD4brrIO+CyyG4mDmDn6dls1C3SxMRH6O2TA2wFi6NvpM15iXoZDH3QX5wMX0L+nLroFvdLk9EfJDCvZr9/DNcNPZOkvq/QEBKA9rWbU3dQAgrCuODBz9wuzwR8VEK92pSXAzPPQcPzL+b4qEv0CA1lF0zttOiSZjbpYmIH1C4V4PNm2H0aFifHQMj/klwRijbp29TsItIjdEJ1SpUWAiPPAK9e8P/joyDEc8SfDiYbVO30KJJC7fLExE/opl7FdmwwTNb37QJooY/yNaez9D4cGO2TdnGmU3PdLs8EfEzCvfTlJsLA+54kA25CwjsDs0uKGFr8yQaZTZi6+StCnYRcYXC/TSsWQPDJt9B5sA5mJwAAorrkGWgVVYr1j20jtbNWrtdooj4KYX7KTh8GMaPh7nfjIXhc2iU1oRd038iLEQnTEXEOyjcT8KkNyaxaN0KEhPhCHkwfDMhh0P56dGtCnYR8SoK90q6buYoFuXPh6ZAqGeseWZzvp/yvVbCiIjXUbifgLVwSczfWBs6H3aEMaHTdqZNDaVuXbcrExE5NoX7cezdCxfcOYbdfV6jTmIzPo/ezvm/C3W7LBGRE9KHmCpQUgIvvgidr7qD3X1eosH+piQ/85OCXURqDc3cy9mxA267DdYc9KyECU5vws6Z2wgLaep2aSIilaZwd8xb8SavL9nEF1+CabIVhi8j9HAo26ZpJYyI1D4Kd2Bo7Cg+MPPhTOBqz1jIoRC2Td2mlTAiUiv5dbgXFMB5f/8b33WYj9kZRnSPf3LeeYbAgACu7H8l9evWd7tEEZFT4rfhvm4dDJ5wGxkDXqPu3mb8+Oh2unQI9ax9NMbt8kRETovfrZbJyYGYGDj/9jvIGPAyjfY0YN/T234N9pgYiI11u0wRkdPiV+G+ahWcdRY8u2osXDWH0OR67Hojl6ZTH/012OPiICPD81hEpJby2bZMel46hcWFAOzZk8mMGfksXQrBvV6AS+cQejiU7U/8RFiD6Z5Aj4vzPDE6GmbNUmtGRGo1Y71ghtqvXz8bHx9fZT/vg20fMHTh0GPuDz4UzPap2z0rYayFgFJ/wJSUKNhFpFYwxmy01varaJ/PtWWstUz+bDIdg7vQ/vsbYTnU+zSKy4/cwA2Nb+DWsFvLBntMTNkfEBOjloyI1Ho+15Z5f9sy/pfyP+p+eBuFG14mPPxyNm5cSuPG5ZY1lu6xH23FHH0Mas2ISK3mU+GemGgZ9cojUNiCwo0v8fvf/4mVK5dwxhkVrFc3BkJDy/bYZ83y7AsNVbCLSK3mEz33khKYMwfGvfgh+f93JbxvGBAygA8/XE6DBg2O/+Ty69q1zl1EaonT6rkbY141xqQaY34oNdbUGPOpMWa7872JM26MMc8ZY3YYY743xvSpun9GxbZtg4svhrFjLWZANByCi0IvZPnyD04c7J6ij/9YRKQWqswJ1deBQeXGJgCrrLXhwCrnMcBgINz5GgO8UDVlVuz8u/5K1AtBfNk3iIBxQeQ13Un4/nA++uAjGjZsWJ2/WkTEq50w3K21nwPp5YaHAfOc7XnAVaXG51uPdUCoMaZVFdX6G1FtutLgYHva056OdKBvYV++mfONgl1E/N6pnlBtaa3d52zvB1o6222APaWO2+uM7aMcY8wYPLN72rdvf0pFvDYxlteIPaXnioj4stNe5249Z2RP+qystXautbaftbZf8+bNT7cMEREp5VTDPeVou8X5nuqMJwHtSh3X1hkTEZEadKrhvgwY5WyPAt4vNX6Ts2rmPOBwqfaNiIjUkBP23I0xC4ABQJgxZi8wFXgcWGSMGQ0kAtc6h38EDAF2ALnALdVQs4iInMAJw91ae8Mxdg2s4FgLjD3dokRE5PT43IXDRERE4S4i4pMU7iIiPsgrLhxmjDmA58Ssm8KANJdrOFmqufrVtnpBNdcUb6i5g7W2wg8KeUW4ewNjTPyxrq7mrVRz9att9YJqrineXrPaMiIiPkjhLiLigxTuv5rrdgGnQDVXv9pWL6jmmuLVNavnLiLigzRzFxHxQQp3EREf5LfhboxJMMZsMsZ8Z4yJd8YqvDes24wxkU6dR78yjTH3GmNijTFJpcaHuFynV99v9yRqftIYs9Wpa4kxJtQZ72iMySv1es/xopqP+V4wxkx0XudtxpjLvajmd0rVm2CM+c4Zd/11Nsa0M8Z8Zoz50Riz2RgT7Yx79fu5DGutX34BCUBYubEngAnO9gRgptt1VlB3IJ67X3UAYoH73a6pVG0XAX2AH070muK5eujHgAHOA9Z7Uc2XAXWc7Zmlau5Y+jgve50rfC8A3YH/AfWATsBOINAbai63/2lgire8zkAroI+z3Rj4yXktvfr9XPrLb2fux3Cse8N6k4HATmut25/o/Q3rxffbPZaKarbWrrDWFjkP1+G56YzXOMbrfCzDgIXW2gJr7S48l+M+t9qKO4bj1WyMMXguG76gRos6DmvtPmvtt852FrAFzy1Dvfr9XJo/h7sFVhhjNjr3c4Vj3xvWm1xP2f8I7nL+DHzVW9pI5Zzs/Xa9zd/wzMiO6mSM+a8xZq0x5kK3ijqGit4LteF1vhBIsdZuLzXmNa+zMaYj0BtYTy16P/tzuP/BWtsHGAyMNcZcVHqn9fyt5VXrRI0xdYGhwL+coReALkAvPDchf9qdyirHG1/T4zHGTAKKgLecoX1Ae2ttb+A+4G1jTLBb9ZVTq94L5dxA2QmL17zOxphGwLvAvdbazNL7vP397Lfhbq1Ncr6nAkvw/Kl6rHvDeovBwLfW2hQAa22KtbbYWlsCvIQLf25XQq28364x5mbgSmCk8x8xTmvjoLO9EU//OsK1Iks5znvB21/nOsD/Ae8cHfOW19kYE4Qn2N+y1r7nDNea97NfhrsxpqExpvHRbTwn0H7g2PeG9RZlZjjlenrD8fwbvE2tu9+uMWYQMB4Yaq3NLTXe3BgT6Gx3BsKBn92psqzjvBeWAdcbY+oZYzrhqfk/NV3fcfwR2Gqt3Xt0wBteZ+c8wCvAFmvtM6V21Z73s9tndN34AjrjWUHwP2AzMMkZbwasArYDK4GmbtdaquaGwEEgpNTYG8Am4Hs8b65WLte4AM+f1Efw9BxHH+s1xbOq4Hk8s7JNQD8vqnkHnv7pd87XHOfYEc775TvgW+DPXlTzMd8LwCTndd4GDPaWmp3x14G/lzvW9dcZ+AOelsv3pd4HQ7z9/Vz6S5cfEBHxQX7ZlhER8XUKdxERH6RwFxHxQQp3EREfpHAXEfFBCncRER+kcBcR8UH/H5W1FYZWj10/AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAnZElEQVR4nO3deXxU1d3H8c9J2GRL2IyssmVhUVGoS91QniqghfKAW62ipaKiGIMCIgJBFAUrMVZBqWhBRUQEccNSQVBbpICPhSIiIBBIIHsYshGSnOePe5EkBgiQcCeZ7/v1mtfcOffO5Me8hm9Ozj1zrrHWIiIiNUuQ1wWIiEjlU7iLiNRACncRkRpI4S4iUgMp3EVEaqBaXhcA0Lx5c9u+fXuvyxARqVY2bNiQZq1tUd4+vwj39u3bs379eq/LEBGpVowxu4+1T8MyIiI1kMJdRKQGUriLiNRACncRkRpI4S4iUgMp3EVEaiCFu4hIDaRwFxHxQJYvn1Z39eKj1Wur5PUV7iIiZ9iqLwtoMTyKfR02MPmdF6vkZ/jFN1RFRAJBdjaMeayAWUld4ILd9My8jvWvvF0lP0vhLiJShbLzsnn8zcf5fnsWa76B3LBVcMEeehf34YsX/l5lP1fhLiJSRXLzc+k8LoLkJvugAdDHab+Ga1g5+fMq/dkKdxGRKpBfkE/bmAgyztkHfx/A3RdPYNgwaB7aiMi2kVX+8xXuIiKVbOfufLpNiCCvUyKNvxnA6plL6dHjzNagcBcRqSTWwmtzCrj371HY7nuITOjPfz9aSi0PklbhLiJSCXbtgj/dU8CKRs5MmMvzr+PrOZ94Vo/CXUTkFBUXF7Ns3d9ZsrSAt94qpqDXaLjgJ641fVjxTNXNhKkIhbuIyCnIzc+lw5gIUpolQl1gmNPem96smFi1M2EqQuEuInKSDubk0yY6El/bRIL/eQX/c14vunQxtG9xLtEDo70uD1C4i4iclH+uyeeav0RwOHIvrTYOZP3cxbRs6X8ruSjcRUQqIC8PJkwq4PkdUXD+Hnqm38D69z/wuqxj8r9fNyIifubLL+G8Cwp4fnsUnL+bPrYv61/82NlprbfFHYPCXUTkGHw+GDECru5dwO4LusIFO/nNj235fNKnzgHWQkwMxMZ6Wmd5FO4iImXk5ufSckQnQp41zAo1MK4uhd13cO22Niyfv8cJ9CPBHh8PWVl+14PXmLuISAkJiblEjY8gr0MitTd3omPLEBo0gJ7NezJ74qvQ3A30+HjnCdHREBcHxnhbeBnG+sFvm169etn169d7XYaIBDBr4a35+dz1YQTFXfcQuXMg/3n1A+rWLefAoBKDHsXFngW7MWaDtbZXefs0LCMiAS8pCQYMLODOJVEUd93DVfk38MPfjhHsMTGl244M0fgZhbuIBCxrYc4ciOpawMe1o+C83Vwf3JfVz3xc/sFHxtijo50ee3S089gPA15j7iISkH76Ce65B1Z+UUi9W7pC1E5+E/QbPntiWflPMAZCQ0uPscfFOftCQzXmXh6NuYvIabG2dLiWfVzCwZxcukZfxd5DuwCoE5JHQYtcrjXXsmLiikr9WVXttMfcjTG7jDGbjDHfGWPWu21NjTH/MMZsc++buO3GGPOiMWa7MWajMeaiyvuniIiUERtbeljkOHPP132bS7N7I9jbdgPBDfOo3zSf2rUNA+oOqFiwwy+D3M967EeczLDMNdbatBKPHwNWWGufNcY85j4eC/QDwt3bJcAs915EpHJZ68wxPzItMS6u9Li426suKIApT+fz1PdR0D2RnqkDWTfzA3/N5UpxOmPuA4He7vZcYBVOuA8E5llnvOcbY0yoMaaltXbf6RQqIvILJce9y8w99z01mQGTr2FX+n727YeChvuh+wF+Y29g+UsfeFbymVLR2TIWWG6M2WCMGe62hZUI7P1AmLvdGthT4rl73bZSjDHDjTHrjTHrU1NTT6F0ERFKB7wre+oUwp+IZLVZze662yhot42gZtkMrDuQ5bHlzISpgSrac7/CWptojDkb+Icx5oeSO6211hhzUmdmrbWzgdngnFA9meeKiPyszNzz7GA4d0QbMjr44ONbubfnO0ybBiEhHtbogQr13K21ie59CrAEuBhINsa0BHDvU9zDE4G2JZ7exm0TEalcZeae79uXTditzcjo4KPB8gF8MX0+r7wSeMEOFQh3Y0wDY0yjI9vAdcB/gQ+Boe5hQ4Gl7vaHwJ3urJlLgQMabxeRKlFi7vmiq56mTUwkueHphK+5gpTeF9P7mhp8xvQEKjIsEwYsMc5p5VrAfGvtZ8aYdcBCY8wwYDdws3v8p0B/YDuQC9xd6VWLiLhSH4jlgZF5vPdOJHRP5Oq837Fq2WK/naJ4ppww3K21PwEXlNOeDvQpp90CD1RKdSIi5fDl+Jjw9gS++97H2rVwqN1y6J5E/1o38smzS7wuzy9o+QERqVZ8OT46PR5OWtMUaAL0ddr71urLJ+M/8rQ2f6JwF5Fqw5eTTdtRkfhapRD098GM/M0jDBkCzUJC6dKui9fl+RWFu4hUCxs35/KraREUdNrP2etuYs1bC+nY0euq/JfCXUT8WmEhTP9zLuP/LwK67qNn8mDWfbQw0M+XnpDWcxcRv7VpE1xyWT7jN0RB10SuswNZP3ORgr0C1HMXEb9SXFzMZ/9ewZtvH2bhQuDqEdBtDzfUvoGPH//A6/KqDYW7iPgNX46PDmMjyGiRDM2BEU5731p9+fjxwFgTprIo3EXELySnZdNxbCS57ZKps+Zqrr/ofNq3h/Bzwhk5YKTX5VU7CncR8dwny3IZ+FYERRH76bT1Jr5duJDGjb2uqnpTuIuIZ7Ky4OFRuczNjoBu+7g6ZzCr5i/0uqwaQbNlRMQTH3wAUV3zmXswCrol8tvav2PV9EVel1VjKNxF5IxKToabb4ZBg/PJ6B0J3fdwY50b+fBxrQlTmTQsIyJnxIFsH50eOZ/0JgnQERhrOVwX+tXqx0fjtCZMZVO4i0iV+35rNhc+E0lBh/3U3dKJDi0bUrce/Drs18y8b6bX5dVICncRqTLFxfDiS7nErImAqP1cmHQL6+cvIEgDwlVO4S4ilSrDl8GvnvwVewuTOHwYbO1CiCqkrx3MslcXeF1ewFC4i0ilycrOImJiBOmh6bDtbExxMCEhMKTZDbz24F+9Li+gKNxFpFL4cnx0HBdBZvN0WHoXg9q/wcsvQ8uWXlcWmBTuInLaUtJ9dHgsnNw2qdRdfidvj3+DwYO9riqwKdxF5LR8/kU2fV+PpKhzCh03/551H82laVOvqxKFu4ickuxsGP1YLq+kRUCX/VydfQurFr7tdVniUriLSIVl+DIYNGMQO1NT2ZcEhaFJ0OUAA+sM5oPnNBPGnyjcRaRCsrKz6Dwhgswm6VA/CDo765f8b/0hvDf6Pa/LkzIU7iJyQr4cH+eOicAX5syEebzfG0yYAPXqeV2ZHIvCXUSO68effJw/JZxD7VNp8tWdrHz9DXr08LoqORGFu4iUZi0Yg7Xw6mvZjFgVgY1I4YI9t7Fu2Vxq1/a6QKkIhbuIHBUbC1lZ7IqO44/D8/iiWQR0Sabf1gv5dP58r6uTk6BwFxEAsg5mMmnbh6zbfIh/fzmMoqhlELmfwZ/Cosuu+rlHL9WDwl1EyMrOosPj4WRFpEMEwPdg4XefwaLLoiEuTsFezSjcRQJcamYW7R8LJ7dlOrWX38bo393LdVN70/wwdMsB/qVgr460qrJIAFv9Tx8toyPJbZXGuRuHsuf9t3k6cQlXZ7nBDhAT4wzJSLWicBcJQHl5MGp0Nr1fjqCoUwpX+25n1/tvEPZsDMTHQ3S0c6WN6GjnsQK+2tGwjEiA+eoruHtYLjsucmbCDKpzC4uff8vZGRrqBPqRMfa4uKPtGpqpVoz1g9/GvXr1suvXr/e6DJEaq7CokGXffMnsvxbx8cfFBF83jKLIRIaUt3RA2VkxmiXjt4wxG6y1vcrbp567SHVwGoGblZ3FuWPD8Z2dBh2AkVAEDDprUPlrwpR9XQV7tVThcDfGBAPrgURr7Y3GmA7AAqAZsAG4w1pbYIypC8wDegLpwC3W2l2VXrlIoHC/WPTzUIm1zhh4aKiz7zh+SvDRdXIEh9qlUX/tNfS9JIqwMOjauisP/vbBM1C8eOVkeu7RwBagsft4GhBnrV1gjHkFGAbMcu8zrbWdjTG3usfdUok1iwQOa51gj493HsfFOcF+5KRnmR58cXExvlwf1sK7i3IZseJCbHgq5++6k38vmUvdut78M+TMq1C4G2PaADcATwOjjDEGuBb4vXvIXCAWJ9wHutsAi4CXjDHG+sPgvkh1U/KkZnz80ZCP/uUXi1IyU+g6uSvpTdKPPj8c+hX9nk/fmHsGixZ/UNGpkC8AY4Bi93EzIMtaW+g+3gu0drdbA3sA3P0H3ONLMcYMN8asN8asT01NPbXqRQJByYA/okywpx1II3JyJOkh6QSt+RVBK68nIuF6JodP4dMndXWkQHTCnrsx5kYgxVq7wRjTu7J+sLV2NjAbnNkylfW6IjXOkTH2kmJifg74DF8GnSdEcqBpFiy5jyubzOK1OdC5syfVip+oSM/9cmCAMWYXzgnUa4F4INQYc+SXQxsg0d1OBNoCuPtDcE6sisjJOhLsx/hiUXpWJm3HRHCgaQa1P7mHVx+YxcqVCnapQM/dWjsOGAfg9twftdbebox5DxiCE/hDgaXuUz50H69x96/UeLvIKTLmmF8sWpPbmqsejqCwfTptv72bfy2ZTZs23pYr/uN05rmPBRYYY54C/g+Y47bPAd40xmwHMoBbT69EkQAXG1tqVkzBYUNso8k8kxoOEWlcmXknq5e+runoUspJhbu1dhWwyt3+Cbi4nGPygZsqoTYRcaVkpXLJU5ewrzCZgsNg6xyGiEKG1L2d917QTBj5JX1DVcTPpR1II2JyJAdCsmD72QSZIEIaw21hg5h530yvyxM/pXAX8WMZvgw6jo/kYPMsWHw/wy+byfTpEBLidWXi7xTuIn5qd2IWkbERHGqdQaOV9/DhizPp3dvrqqS6ULiL+KF33svi9o/CsR3T6b7jbtZ+Npv69b2uSqoThbuIH0lNhftH+ng/OAIi0rihcCgfv/m612VJNaRwF/FYSmYKQ164iZ3JGexLgqLmCXCuj9sa3s78R/7mdXlSTSncRTyUdiCN8NhIfE2yoLGBxhCE4baQ23nr4be8Lk+qMYW7iEfSsjI4d1wkuWFZBH94H8/dMYuHHoLgYK8rk5pA4S7igQ0bM7n0hQgK22XQ8t/D+XrRLDp29LoqqUkU7iJnUGEhTJ2exaQtEdApncvT/8hXn7yqpQOk0lV0PXcROU2bNsGvLvMxaXMEdE7j5np38fVf5ijYpUqo5y5ShTJ8GUx+5yn+uTaPb78FznsfOqfy+8a383bMG16XJzWYwl2kiqQdSKPjE+HO0gHn4tws3NrwVt6O0UwYqVoKd5EqsGd/BuETIzjUMov6nw9l/B/u4JKLISw0jO4duntdngQAhbtIJfDl+Ji3ch5FxUX88INl9pYpFLfPpOuP97Lmk1do3NjrCiXQKNxFTlNSehJRU6I42OTg0cb20L9wGJ/Mf8WzuiSwKdxFTsP+jP10mdKFgyEHqff5bRxK6sU1veHBu6IYdGV/r8uTAKZwFzlFKZkpRE6Owhfqg0UxRNaewZyF0LOn15WJaJ67yClJzUqjw/hIfKEHMEse4unbZ7BunYJd/Id67iInaeP3GfSaEcHh1lmErbmfVQvjiYryuiqR0hTuIidQXFxMfkE+xcXwl1k+Hv9PN+iYya9T7uWrz2YSpL9/xQ8p3EWOIyk9ie5TupPZJPNoY0e4ue4w3p2pmTDivxTuIsdwZCaML8SH+dfFBB9uTEQk3N77Wh6/ZRxYS6mFYco+FvGQwl2kHCmZKYRPiiK7qTMTZlDUDF5+Gc45xz0gNhaysiAuzgl0ayEmBkJDnX0iHtNooUgZe5PTaDcukuymBzhr2UMsenIG779fItitdYI9Pt4J9CPBHh/vtFvrYfUiDvXcRUr4ZHkaAxZEUNw2i8jv7+dfn8XTtGmZg4xxeuzgBHp8vLMdHX20Jy/iMWP9oJfRq1cvu379eq/LkACWnQ0xozN4LSccOmbQv+BePpl6ghOm1lJqqkxxsYJdzihjzAZrba/y9qnnLgErKT2Jy6ZeRvLhNAoKwNYrgLBC7gwZxtyYCgR7TEzptpgY9dzFb2jMXQLS/oz9RD4ZRULDBA5lNCAotyFNCpvyUOuHmBvz2vGfXHKMPTra6bFHR5cegxfxmHruEnBSMlPoNCGK3OYHMe/HMG7gDCZMgHr1KvgCxjizYkqOsR8Zgw8NVc9d/ILG3CWg/HdrGhf9OZzDrbJo8eVDLI+Lp0ePU3wxzXMXj2nMXQKetfCXV9J4eG0E9twsLkm6n6+Wx1O79mm8aNkgV7CLH9GYu9R4u3bBtddnEL0mEts+k1vq3ss3f515esEu4ufUc5caKSk9iVtfvI0diVns2we23U5oc5C7mw3j9ZFaE0ZqvhOGuzGmHvAlUNc9fpG1dpIxpgOwAGgGbADusNYWGGPqAvOAnkA6cIu1dlcV1S/yC/sz9hM5uYuzdEBzA80hqNgwtNndvD7yBDNhRGqIigzLHAKutdZeAPQA+hpjLgWmAXHW2s5AJjDMPX4YkOm2x7nHiZwRiakptB8fRXYTH/U+imFet2KKnymmaHoRr4983evyRM6YE/bcrTOdJtt9WNu9WeBa4Pdu+1wgFpgFDHS3ARYBLxljjPWHaTlS/ZWZkZKQvJtH5j1K7uFcDhyANelfU9zaR+eND/H1pzMIC/OwVhEPVWjM3RgTjDP00hl4GdgBZFlrC91D9gKt3e3WwB4Aa22hMeYAztBNWpnXHA4MB2jXrt3p/SskMJRZiXH3/l10ezKcnDD3Y1gfqA398kfw6ZJ4DwsV8V6Fwt1aWwT0MMaEAkuA076omLV2NjAbnHnup/t6UsOVXIkR2Pv4I3R7MoKc5oU0WTySzC1PcNvvYfoz9WnTsqG3tYr4gZOaLWOtzTLGfAFcBoQaY2q5vfc2QKJ7WCLQFthrjKkFhOCcWBU5dSW+BZo0K54u2fHktAIWjiO04GneW2bo08fbEkX8yQlPqBpjWrg9dowxZwG/AbYAXwBD3MOGAkvd7Q/dx7j7V2q8XSqFMSQ9MZrOfwgmuzWw6FEe7vs0mzYp2EXKqshsmZbAF8aYjcA64B/W2o+BscAoY8x2nDH1Oe7xc4Bmbvso4LHKL1sC0ffb9tH+sUjy2hTRdNFQ1mz5ijhiaFBffQeRsioyW2YjcGE57T8BF5fTng/cVCnVSUDLys7indXvUFxs2bChiL/tfgLbLoeLvx7IlxveoO5jMUcvlKGldkVK0TdUxS/tTt5Nt2e7kROa4zQYoB3c+t/LeOfzJVqJUeQEFO7id/am7nWCvVEOtT+7neL087n+erj3tu4MiO13NMiPBLyCXeQXFO7iV5LSk4h6qgs5ITmwcBy/Pmcqr30KnTsf4wkKdpFyaVVI8Rt7UpLoOCGKnNBsai8dzaujprJy5XGCXUSOST13OTNOcGGL1Wv20+f1LhS1OkiHDaP48pPptGnjQZ0iNYR67lL1YmNLX1vUWoofjqZw0kRy8woZPX4/vWdHUdTKx/XZD7Hjo+cV7CKnST13qVpllg0gLo6EB4ZxXv4b+JoC06dAHaAd3B06gtcna00YkcqgcJeqVXLKYnw8e1+Jp+sdkNMG+Ppi6pgGREbCHb37MXrwaE9LFalJdIFsOTOsJaleEJ3vCCavVREsHMe9vacybRqEhHhdnEj1pAtki7es5Yd7HuT8P9TjcKt8Qt67hyXdWnHNLKupjCJVRCdUpWpZy5u//TNdi9/kcJt8eu4aRdK1IVyzeGTpk6wiUqnUc5cqk5oK9z6YypIWT0Pbg9xaO5p35j3vBHrtw1o2QKQKKdylUu1O3s2V064k5XAGhw4BLQ9BSCH3hz3AzBEvOAdp2QCRKqdwl0qTkJJA16ndyA3JgZ3NqBVsaFS3Pn9qfxfT755e+mAFu0iVUrhLpUhI3kvEk9041CyHWovHMX3YVB56CIKDva5MJDAp3OWUbNu7jQEvDuBg4UEKCyHFpmGbH6Ld2tF88eFUOnb0ukKRwKZwl5O2I2kHFzx/AXkN8wg+VJeiIqAoiL6+MXy6bJpGXET8gMJdTsrOfTs577nzyGuYR6svp5D05RMMGACzZkGrVl5XJyJHKNylwhJSEug+vTt5DfMwC2M5nPkECxbAzTfr/KiIv9GXmKRC9qbuJeqpruQ2yoWFT/D7X03i++/hllsU7CL+SD13OaHtCUl0faYLh1vk0GjZOBbETaF/f6+rEpHjUbjLL+zct5Oxb4/lUOEhUlPhG99KbKtsemwbzeoVU2nc2OsKReREFO5Syo6kHc4J09A8p6ExcBbcHDSKd+dPP+5zRcR/KNzlZyVnwjRcOomcLX/i3nth4viGtGwR6nV5InISFO4COGvCdJvWnbxGefBuLJ3qT2LO19Czp9eVicip0GyZmqrsUrrHWVp3d3ICkVO6kdc4l6BFE3hq6CTWrVOwi1Rn6rnXRLGxznVLj6y8aK2zdnpoqLOvhLXf7eXyWd0oCsuh1T/H8fniJ+nSxYOaRaRSKdxrmnIuSE1MjPM4Opqsg5ks+uf7FBUVs2q1ZUHGaGiVTZ/MMfx9+VQt9CVSQyjca5oyF6T+OeSjo9kx+kHOm9j66EyYBsBZcE/oo8x+cpon5YpI1dAFsmsqayHo6CmVnYk76Pacs3RA0GdDqZ0Xzg394Y+DL+SGS/SNJJHqSBfIDjRHxthdu+tB16eiyG92GBZMZuB5E3n5ZWjZ0sMaRaRKabZMTXMk2N0x9m27dhF+Zz3ymx+mwZIxLHpmAosXK9hFajqFe01jjDMrJjqaJb95hMinu3M4LJ/uK4aScENTBg/RKl8igUDDMjVQ9qOxPPRoIm8s7gKts7mJMSz8+lkt3ygSQBTuNcSOpB30mN6D7CbZTkNLoBhGthzFi/dpJoxIoDlhuBtj2gLzgDDAArOttfHGmKbAu0B7YBdws7U20xhjgHigP5AL3GWt/bZqyhdw1oTp/tx55DfKg68v5qw69YiMgDuuGsioQaO8Lk9EPFCRnnsh8Ii19ltjTCNggzHmH8BdwApr7bPGmMeAx4CxQD8g3L1dAsxy76UK7E7eTdTU7hSE5mEWTuaxwROZOBHq1fO6MhHx0gnD3Vq7D9jnbh80xmwBWgMDgd7uYXOBVTjhPhCYZ50J9N8YY0KNMS3d15HTtHnXZq544QoO1j6IBYqDi6GJJWzVBD57dyI9enhdoYj4g5MaczfGtAcuBNYCYSUCez/OsA04wb+nxNP2um2lwt0YMxwYDtCuXbuTrTsgbUnYQs8Xe3Ko4SHOTu1MWoqBYkO/tn9i6YrR1K7tdYUi4i8qHO7GmIbA+8DD1lqfKTHzwlprjTEn9VVXa+1sYDY431A9mecGoq17tnLRCxdxqP4hwtf9mW3LH+GKK+C11yAy0uvqRMTfVGieuzGmNk6wv22tXew2JxtjWrr7WwIpbnsi0LbE09u4bXKKtu3dRo8ZPcivn0/tRdPY969HeOklWL1awS4i5TthuLuzX+YAW6y1M0rs+hAY6m4PBZaWaL/TOC4FDmi8/dTt3LeT8/58AfkN82HBU/TpMIbNm+GBB0otHSMiUkpFhmUuB+4ANhljvnPbHgeeBRYaY4YBu4Gb3X2f4kyD3I4zFfLuyiy4xrK29JeMrGV7YgJdn+3O4SZ51PtgCrMnjecPf9B3kUTkxCoyW+Zr4Fhx0qec4y3wwGnWFVjci2tsfvhPDJl5EzmFORSk+0hplIdtWkDXjZP4YsUTnH2214WKSHWhb6h6zb24xpa/xtOz+CUOhRQRlFeL4kZBUBTETcUTWPhBrNdVikg1o3D3mjFsHXUfFxW9xKHGRTR/ewxpO6fxp25reO6rSwltojEYETl5CnePJaQk0CPuQvJDiuCdaTTaOYQF9KHPps81uC4ip0zzLTx2Wez/kN84HxZM4eGfarOJ8+jDSmdNdj+4SpaIVE8Kd4+kp0OPIU+TFLaNemsvYs2Oj4mL3k2D4myIjnYutqGAF5FTpGGZM8xaWLQI7oveS8atkwjOqMOuHtcTFpXrXNi65AWuQ0M1NCMip0ThfgYlJcGIEbB0KdQbcj00LmLmJTMJ6ze89Dz3IwGvYBeRU6RwPwOshWujR7DK/BU6WMwoyG9cRM9DPRneb7hzUNkgV7CLyGlQuFexn36Cqx4YQeIlswhKrk+bOq2oEwzNC5vz0diPvC5PRGoohXsVKSqCv/wFHp07kqIBs6ifEsrOqds4u0lzr0sTkQCgcK8CmzfDsGGwNjsGBr9Eo6wQtj+9VcEuImeMpkJWooICePJJuPBC+M/hR2DwCzQ+0JgfJ/3A2U20MIyInDnquVeSdeuc3vqmTRA1aCw/dJ9BowON2DJhC+c0Pcfr8kQkwCjcT1NuLlxz/zj+nTOf4C7Q7PJifmixl4a+hnw//ntaNWvldYkiEoAU7qdh1SoYOOF+fH1egZwggoqD8QHnHDyHtY+vpU2LNl6XKCIBSuF+Cg4cgLFj4dV/PQCDXqFhWig7n95G8xCdMBUR/6BwPwnj3xzPwm+Ws3s3HCYPBm0m5EAIP07ZqmAXEb+icK+gW6YNZWH+PGgKhDptLXwt2Dhxo2bCiIjfUbifgLVwTcwfWR06D7Y3Z2z7bTw5KZQ6dbyuTETk2BTux7F3L1w+YjgJF71Brd3N+DJ6G5f9KtTrskRETkhfYipHcTG8+ip0/N39JFz0V+rvb0rSjB8V7CJSbajnXsb27XDPPbAq3ZkJ0zijCTumbaV5SFOvSxMRqTCFu2vu8rf425JNfPU1mCY/wKAPCT0QytbJP2gmjIhUOwp3YEDsUD4y8+AcYIjT1jizMVsmbtFMGBGplgI63A8dgkvu+yP/OXceZkdzRnZ5iV//2hAcFMSNl9xIvTr1vC5RROSUBFy478jYQWZ+Jps2Qcyf4zlw+VvU2duM76dso9O5oaUvdyciUk0FVLi/9O+XGLls5NGGK6BhQn12z9hK05BQJ9hjYpwLU8fGelSliMjpC5ipkLPWzWLkspHUTxgI8x+B+Ybun7QgYW4uTSdNORrs8fGQleU8FhGppgIi3J9ZHs+IT0fAD9fTcNnvCNoeR+9WV/PNyp9o8mC0E+hBQc59dDTExWloRkSqNWP9oIfaq1cvu379+ip57WsfHcoXjebBj8C7QBFceeWVLFu2jAYNGjg99KASv+OKixXsIlItGGM2WGt7lbevxo65JyfDpff9kV0XzCP4p2bEtJtEp5dqc9ZZZzFkyJCjwR4TU/qJMTHquYtItVftwz0lJ4WzGxydi24tvPUW/Omleyjo9wb19zVj1wvbadEktPQTS46xHxmKOfIYFPAiUq1V6zH3GWtm0H1mdzanbAYgIQH694c7/3w/Bf1eIyS9KXue+/GXwQ5OcIeGlh5jj4tzHoeGKthFpFqr1mPuP6b/SO+/9abIFnFvnVXEje9CfvgDFP52JqEHmrBt8o8nXjqg7Lx2zXMXkWrieGPuJ+y5G2NeN8akGGP+W6KtqTHmH8aYbe59E7fdGGNeNMZsN8ZsNMZcVHn/jF+KaBbBnKtWkplhmJJwLQ2u+4Mb7KEVC3an6OM/FhGphioyLPM3oG+ZtseAFdbacGCF+xigHxDu3oYDsyqnzPINHTqb/hf3p3BOLUxwCsnnv03jA43ZOkmXvRORwHbCE6rW2i+NMe3LNA8Eervbc4FVwFi3fZ51xnq+McaEGmNaWmv3VVrFJXTr1pp27a7g4ouhIO0AyWHJLJ6wWIt9iUjAO9XZMmElAns/EOZutwb2lDhur9v2i3A3xgzH6d3Trl27UypizJgbGDPmhlN6rohITXbas2XcXvpJn5W11s621vay1vZq0aLF6ZYhIiIlnGq4JxtjWgK49ylueyLQtsRxbdw2ERE5g0413D8EhrrbQ4GlJdrvdGfNXAocqKrxdhERObYTjrkbY97BOXna3BizF5gEPAssNMYMA3YDN7uHfwr0B7YDucDdVVCziIicQEVmy9x2jF19yjnWAg+cblEiInJ6qvXyAyIiUj6Fu4hIDaRwFxGpgfxi4TBjTCrOiVkvNQfSPK7hZKnmqlfd6gXVfKb4Q83nWmvL/aKQX4S7PzDGrD/W6mr+SjVXvepWL6jmM8Xfa9awjIhIDaRwFxGpgRTuR832uoBToJqrXnWrF1TzmeLXNWvMXUSkBlLPXUSkBlK4i4jUQAEb7saYXcaYTcaY74wx6922cq8N6zVjTKRb55GbzxjzsDEm1hiTWKK9v8d1+u31dk+y5ueMMT+4dS0xxoS67e2NMXkl3u9X/KjmY34WjDHj3Pd5qzHmej+q+d0S9e4yxnzntnv+Phtj2hpjvjDGfG+M2WyMiXbb/frzXIq1NiBvwC6geZm26cBj7vZjwDSv6yyn7mCcq1+dC8QCj3pdU4nargIuAv57ovcUZ/XQZYABLgXW+lHN1wG13O1pJWpuX/I4P3ufy/0sAF2B/wB1gQ7ADiDYH2ous/95YKK/vM9AS+Aid7sR8KP7Xvr157nkLWB77scwEOeasLj3v/OulGPqA+yw1nr9jd5fsNZ+CWSUaT7We/rz9Xattd8AoUcuAHMmlVeztXa5tbbQffgNzkVn/MYx3udjGQgssNYestbuxFmO++IqK+4YjlezMcbgLBv+zhkt6jistfustd+62weBLTiXDPXrz3NJgRzuFlhujNngXs8Vjn1tWH9yK6X/Ezzo/hn4ur8MI5Vxstfb9Td/xOmRHdHBGPN/xpjVxpgrvSrqGMr7LFSH9/lKINlau61Em9+8z8aY9sCFwFqq0ec5kMP9CmvtRUA/4AFjzFUld1rnby2/midqjKkDDADec5tmAZ2AHjgXIX/em8oqxh/f0+MxxowHCoG33aZ9QDtr7YXAKGC+MaaxV/WVUa0+C2XcRukOi9+8z8aYhsD7wMPWWl/Jff7+eQ7YcLfWJrr3KcASnD9Vj3VtWH/RD/jWWpsMYK1NttYWWWuLgb/iwZ/bFVAtr7drjLkLuBG43f1PjDu0ke5ub8AZv47wrMgSjvNZ8Pf3uRbwv8C7R9r85X02xtTGCfa3rbWL3eZq83kOyHA3xjQwxjQ6so1zAu2/HPvasP6iVA+nzJjeIJx/g7+pdtfbNcb0BcYAA6y1uSXaWxhjgt3tjkA48JM3VZZ2nM/Ch8Ctxpi6xpgOODX/+0zXdxz/A/xgrd17pMEf3mf3PMAcYIu1dkaJXdXn8+z1GV0vbkBHnBkE/wE2A+Pd9mbACmAb8DnQ1OtaS9TcAEgHQkq0vQlsAjbifLhaelzjOzh/Uh/GGXMcdqz3FGdWwcs4vbJNQC8/qnk7zvjpd+7tFffYwe7n5TvgW+C3flTzMT8LwHj3fd4K9POXmt32vwH3lTnW8/cZuAJnyGVjic9Bf3//PJe8afkBEZEaKCCHZUREajqFu4hIDaRwFxGpgRTuIiI1kMJdRKQGUriLiNRACncRkRro/wG5agbec7nuLAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] diff --git a/docs/user/advanced_examples/QuantizedLogisticRegression.ipynb b/docs/user/advanced_examples/QuantizedLogisticRegression.ipynb index 61fa0b204..ee48a14e4 100644 --- a/docs/user/advanced_examples/QuantizedLogisticRegression.ipynb +++ b/docs/user/advanced_examples/QuantizedLogisticRegression.ipynb @@ -65,8 +65,34 @@ "metadata": {}, "outputs": [], "source": [ - "x = torch.tensor([[1, 1], [1, 2], [2, 1], [4, 1], [3, 2], [4, 2]]).float()\n", - "y = torch.tensor([[0], [0], [0], [1], [1], [1]]).float()" + "x = torch.tensor(\n", + " [\n", + " [1, 1],\n", + " [1, 1.5],\n", + " [1.5, 1.2],\n", + " [1, 2],\n", + " [2, 1],\n", + " [4, 1],\n", + " [4, 1.5],\n", + " [3.5, 1.8],\n", + " [3, 2],\n", + " [4, 2],\n", + " ]\n", + ").float()\n", + "y = torch.tensor(\n", + " [\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [0],\n", + " [1],\n", + " [1],\n", + " [1],\n", + " [1],\n", + " [1],\n", + " ]\n", + ").float()" ] }, { @@ -96,7 +122,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAPTklEQVR4nO3df4zkd13H8efruPPHpcgZbqO117v1D1ABKbQr1ED0lCgHmBJjTagVbCO5RKsup4mNEOkpaaIhchQbOC6lOdT1wNAGSgNGImAlhJo9LO2VCmmEKweNt7S5omBMznv7x3eW7q27O7N3szuzn30+ksnO9/v93Hxf/XTvtd/5zMxtqgpJ0sa3ZdQBJEnDYaFLUiMsdElqhIUuSY2w0CWpEVtHdeKdO3fW5OTkqE4vSRvS8ePHv1lVE0sdG1mhT05OMjs7O6rTS9KGlOTkcsdccpGkRljoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSI9ov9MW/M9XfoSqpUX0LPcnlST6V5ItJHk4yvcSYJHlXkkeTPJjkyrWJu0oHD8KBA0+XeFW3ffDgKFNJQzczA5OTsGVL93VmZtSJ2jeOcz7IFfpZ4A+q6nnA1cBNSZ63aMyrgOf0bvuB9ww15YWogjNn4Lbbni71Awe67TNnvFJXM2ZmYP9+OHmy+7Y+ebLbHoeCadW4znlqlcWW5CPA7VX1iQX73gt8uqqO9ba/BOytqseXe5ypqala838PfWGJz5uehkOHIFnbc0vrZHKyK5TF9uyBr351vdNsDqOc8yTHq2pqqWOrWkNPMgm8GLh/0aHLgK8t2D7V27f4z+9PMptkdm5ubjWnvjBJV94LWeZqzGOPrW6/Lt64zvnAhZ7kEuAu4E1V9a0LOVlVHamqqaqamphY8jcoDdf8FfpCC9fUpQbs3r26/bp44zrnAxV6km10ZT5TVXcvMeTrwOULtnf19o3OwuWW6Wk4d677unBNXWrArbfC9u3n79u+vduvtTGucz7Iu1wCvA94pKrescywe4A39N7tcjXw1Err5+sigR07zl8zP3So296xw2UXNeP66+HIkW79Num+HjnS7dfaGNc57/uiaJKXA/8MPASc6+1+M7AboKoO90r/dmAf8B3gxqpa8RXPdXlRtAt4fnkv3pakDWSlF0W39vvDVfUZYMUGrO6nwk0XFm+NLS5vy1xSo9r/pKgkbRIWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUiL6FnuTOJKeTnFjm+LOSfDTJF5I8nOTG4ceUJPUzyBX6UWDfCsdvAr5YVVcAe4G/SPI9Fx9NkrQafQu9qu4DnlxpCPDMJAEu6Y09O5x4kqRBDWMN/XbgJ4BvAA8B01V1bqmBSfYnmU0yOzc3N4RTS5LmDaPQXwk8APwI8CLg9iQ/sNTAqjpSVVNVNTUxMTGEU0uS5g2j0G8E7q7Oo8BXgB8fwuNKklZhGIX+GPAKgCQ/BPwY8O9DeFxJ0ips7TcgyTG6d6/sTHIKuAXYBlBVh4G3AUeTPAQEuLmqvrlmiSVJS+pb6FV1XZ/j3wB+cWiJJEkXxE+KSlIjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmN6FvoSe5McjrJiRXG7E3yQJKHk/zTcCNKkgYxyBX6UWDfcgeT7ADeDVxTVc8HfnUoySRJq9K30KvqPuDJFYb8GnB3VT3WG396SNkkSaswjDX05wI/mOTTSY4necNyA5PsTzKbZHZubm4Ip5YkzRtGoW8FrgJeA7wS+OMkz11qYFUdqaqpqpqamJgYwqklSfO2DuExTgFPVNW3gW8nuQ+4AvjyEB5bkjSgYVyhfwR4eZKtSbYDLwUeGcLjSpJWoe8VepJjwF5gZ5JTwC3ANoCqOlxVjyT5e+BB4BxwR1Ut+xZHSdLa6FvoVXXdAGPeDrx9KIkkSRfET4pKUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY3oW+hJ7kxyOsmJPuN+KsnZJNcOL54kaVCDXKEfBfatNCDJM4A/B/5hCJkkSRegb6FX1X3Ak32G/S5wF3B6GKEkSat30WvoSS4Dfhl4zwBj9yeZTTI7Nzd3saeWJC0wjBdF3wncXFXn+g2sqiNVNVVVUxMTE0M4tSRp3tYhPMYU8IEkADuBVyc5W1UfHsJjS5IGdNGFXlU/On8/yVHgXstcktZf30JPcgzYC+xMcgq4BdgGUFWH1zSdJGlgfQu9qq4b9MGq6oaLSiNJumB+UlSSGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJakTfQk9yZ5LTSU4sc/z6JA8meSjJZ5NcMfyYkqR+BrlCPwrsW+H4V4CfraqfBN4GHBlCLknSKm3tN6Cq7ksyucLxzy7Y/Bywawi5JEmrNOw19N8EPr7cwST7k8wmmZ2bmxvyqSVpcxtaoSf5ObpCv3m5MVV1pKqmqmpqYmJiWKeWJDHAkssgkrwQuAN4VVU9MYzHlCStzkVfoSfZDdwNvL6qvnzxkSRJF6LvFXqSY8BeYGeSU8AtwDaAqjoMvBV4NvDuJABnq2pqrQJLkpY2yLtcrutz/I3AG4eWSJJ0QfykqCQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUiPYLvWrlbQ2fcy6NRN9CT3JnktNJTixzPEneleTRJA8muXL4MS/QwYNw4MDThVLVbR88OMpUbXPOtUnMzMDkJGzZ0n2dmRl1osGu0I8C+1Y4/irgOb3bfuA9Fx9rCKrgzBm47banC+bAgW77zBmvGteCc65NYmYG9u+Hkye7b+uTJ7vtkZd6VfW9AZPAiWWOvRe4bsH2l4BL+z3mVVddVWvu3Lmq6emqbs672/R0t19rwznXJrBnz/nf4vO3PXvW/tzAbC3Tq6kBrpqSTAL3VtULljh2L/BnVfWZ3vY/AjdX1ewSY/fTXcWze/fuq06ePHkBP4JWqap7TjTv3DlI1v68m5lzrsZt2bL0E86k+3ZfS0mOV9XUkrnW9tTnq6ojVTVVVVMTExPrccLuKf9CC9d3NXzOuTaB3btXt3+9DKPQvw5cvmB7V2/faC1cv52e7n5sTk+fv76r4XLOtUnceits337+vu3bu/2jtHUIj3EP8DtJPgC8FHiqqh4fwuNenAR27OgK5dChbvvQoe7Yjh0uAawF51ybxPXXd1/f8hZ47LHuyvzWW5/ePyp919CTHAP2AjuB/wBuAbYBVNXhJAFup3snzHeAG5daP19samqqZmf7Drt4VecXyeJtDZ9zLq2ZldbQ+16hV9V1fY4XcNMFZlt7i4vEYll7zrk0Eu1/UlSSNgkLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJasRAv7FoTU6czAHr8CuLvmsn8M11PN8wbdTsGzU3bNzsGzU3bNzs6517T1Ut+RuCRlbo6y3J7HL/5OS426jZN2pu2LjZN2pu2LjZxym3Sy6S1AgLXZIasZkK/cioA1yEjZp9o+aGjZt9o+aGjZt9bHJvmjV0SWrdZrpCl6SmWeiS1IimCj3JnUlOJzmxzPEkeVeSR5M8mOTK9c64nAGy703yVJIHere3rnfGpSS5PMmnknwxycNJppcYM3bzPmDucZ3z70vyL0m+0Mv+J0uM+d4kH+zN+f1JJkcQdXGmQXLfkGRuwZy/cRRZl5PkGUn+Ncm9Sxwb/ZxXVTM34GeAK4ETyxx/NfBxIMDVwP2jzryK7HuBe0edc4lclwJX9u4/E/gy8Lxxn/cBc4/rnAe4pHd/G3A/cPWiMb8NHO7dfx3wwQ2S+wbg9lFnXeG/4feBv13q+2Ic5rypK/Squg94coUhrwX+qjqfA3YkuXR90q1sgOxjqaoer6rP9+7/J/AIcNmiYWM37wPmHku9efyv3ua23m3xuxteC7y/d/9DwCuSZJ0iLmnA3GMryS7gNcAdywwZ+Zw3VegDuAz42oLtU2yQv8Q9P917uvrxJM8fdZjFek8xX0x35bXQWM/7CrlhTOe899T/AeA08ImqWnbOq+os8BTw7HUNuYQBcgP8Sm9p7kNJLl/fhCt6J/CHwLlljo98zjdboW9kn6f7NxyuAP4S+PBo45wvySXAXcCbqupbo84zqD65x3bOq+p/q+pFwC7gJUleMOJIAxkg90eByap6IfAJnr7iHakkvwScrqrjo86yks1W6F8HFv7E39XbN/aq6lvzT1er6mPAtiQ7RxwLgCTb6EpxpqruXmLIWM57v9zjPOfzquoM8Clg36JD353zJFuBZwFPrGu4FSyXu6qeqKr/6W3eAVy1ztGW8zLgmiRfBT4A/HySv1k0ZuRzvtkK/R7gDb13XVwNPFVVj4861CCS/PD8elySl9D9vxv5X9BepvcBj1TVO5YZNnbzPkjuMZ7ziSQ7eve/H/gF4N8WDbsH+I3e/WuBT1bv1bpRGST3otdWrqF7bWPkquqPqmpXVU3SveD5yar69UXDRj7nW9fzZGstyTG6dybsTHIKuIXuhReq6jDwMbp3XDwKfAe4cTRJ/78Bsl8L/FaSs8B/A68b9V/QnpcBrwce6q2NArwZ2A1jPe+D5B7XOb8UeH+SZ9D9kPm7qro3yZ8Cs1V1D90Pq79O8ijdi+2vG13c7xok9+8luQY4S5f7hpGlHcC4zbkf/ZekRmy2JRdJapaFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhrxf09l6LOTuZAtAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAARD0lEQVR4nO3df4zkd13H8ddrufPHpsgab6O1173xD1ABKbQj1ED0lCgHmBIDJq0n2MZmE626rCY20mhXySUaIsthI8emNIc6XjHQQGmokQhYCaFmD0t7baVppHtcabilzRbljMm5b//4znKzw+zM7O539jvznucjmcx8ftx83/109zXf+czMjiNCAIDRN1F1AQCAchDoAJAEgQ4ASRDoAJAEgQ4ASeyr6sAHDhyIWq1W1eEBYCSdPn36mxEx3WmsskCv1WpaXl6u6vAAMJJsr2w1xpYLACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEvkDvf07U/kOVQBJ9Qx021fa/qztx2w/anuuwxzbfr/tJ20/bPvqwZS7TQsL0vz8pRCPKNoLC1VWBZSu0ZBqNWliorhuNKquKL9hXPN+ztAvSvqDiHippGsl3WL7pW1z3ijpxc3LrKQPlFrlTkRIa2vS8eOXQn1+vmivrXGmjjQaDWl2VlpZKX6sV1aK9jAETFbDuuaObQab7U9IuiMiPt3S90FJn4uIU832VyQdjohntrqfer0eA/976K0hvmFuTlpclOzBHhvYI7VaESjtDh2Snnpqr6sZD1Wuue3TEVHvNLatPXTbNUmvkvRg29AVkr7W0j7X7Gv/97O2l20vr66ubufQO2MX4d2KMEcyZ89urx+7N6xr3neg275M0sckvTMivrWTg0XEUkTUI6I+Pd3xG5TKtXGG3qp1Tx1IYGZme/3YvWFd874C3fZ+FWHeiIh7Okx5WtKVLe2Dzb7qtG63zM1J6+vFdeueOpDAsWPS5OTmvsnJoh+DMaxr3s+7XCzpQ5Iej4j3bjHtXknvaL7b5VpJz3fbP98TtjQ1tXnPfHGxaE9Nse2CNI4elZaWiv1bu7heWir6MRjDuuY9XxS1/TpJ/yrpEUnrze53SZqRpIg40Qz9OyQdkXRB0k0R0fUVzz15UbQocHN4t7cBYIR0e1F0X69/HBGfl9Q1AaN4VLhlZ+UNWHt4E+YAksr/SVEAGBMEOgAkQaADQBIEOgAkQaADQBIEOgAkQaADQBIEOgAkQaADQBIEOgAkQaADQBIEOgAkQaADQBIEOgAkQaADQBIEOgAkQaADQBIEOgAkQaADQBIEOgAkQaADQBIEOgAkQaADQBIEOgAkQaADQBIEOgAkQaADQBIEOgAk0TPQbd9l+7ztM1uMv8j2J21/2fajtm8qv0wAWTUaUq0mTUwU141G1RWNrn7O0E9KOtJl/BZJj0XEVZIOS/pL29+z+9IAZNdoSLOz0sqKFFFcz84S6jvVM9Aj4gFJz3WbIumFti3psubci+WUByCz226TLlzY3HfhQtGP7StjD/0OST8p6euSHpE0FxHrnSbanrW9bHt5dXW1hEMDGGVnz26vH92VEehvkPSQpB+V9EpJd9j+gU4TI2IpIuoRUZ+eni7h0ABG2czM9vrRXRmBfpOke6LwpKSvSvqJEu4XQHLHjkmTk5v7JieLfmxfGYF+VtLrJcn2D0v6cUn/WcL9Akju6FFpaUk6dEiyi+ulpaIf27ev1wTbp1S8e+WA7XOSbpe0X5Ii4oSkd0s6afsRSZZ0a0R8c2AVA0jl6FECvCw9Az0ibugx/nVJv1RaRQCAHeGTogCQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQRM9At32X7fO2z3SZc9j2Q7Yftf0v5ZYIAOhHP2foJyUd2WrQ9pSkv5Z0XUS8TNKvllIZAGBbegZ6RDwg6bkuU35N0j0RcbY5/3xJtQEAtqGMPfSXSPpB25+zfdr2O7aaaHvW9rLt5dXV1RIODQDYUEag75N0jaQ3S3qDpD+2/ZJOEyNiKSLqEVGfnp4u4dAAgA37SriPc5KejYhvS/q27QckXSXpiRLuGwDQpzLO0D8h6XW299melPQaSY+XcL8AgG3oeYZu+5Skw5IO2D4n6XZJ+yUpIk5ExOO2/1HSw5LWJd0ZEVu+xREAMBg9Az0ibuhjznskvaeUigAAO8InRQEgCQIdAJIg0AEgCQIdAJIg0AEgCQIdAJIg0AEgCQIdAJLIH+gR3dsAkETuQF9YkObnL4V4RNFeWKiyKgAJNBpSrSZNTBTXjUbVFWUO9AhpbU06fvxSqM/PF+21Nc7UAexYoyHNzkorK0WUrKwU7apD3VFRsNXr9VheXh7sQVpDfMPcnLS4KNmDPTaAtGq1IsTbHTokPfXUYI9t+3RE1DuOpQ50qQj1iZYnIuvrhDmAXZmY6Pwk3y4iZpC6BXreLRfp0hl6q9Y9dQDYgZmZ7fXvlbyB3rrdMjdXPGzOzW3eUweAHTh2TJqc3Nw3OVn0V6mMr6AbTrY0NbV5z3xxsRibmmLbBcCOHT1aXN92m3T2bHFmfuzYpf6qjMceemt4t7cBYISM7x669N3hTZgDSCp/oAPAmCDQASAJAh0AkiDQASAJAh0AkiDQASAJAh0AkiDQASAJAh0AkugZ6Lbvsn3e9pke837a9kXbbyuvPABAv/o5Qz8p6Ui3CbZfIOkvJP1TCTUBAHagZ6BHxAOSnusx7XclfUzS+TKKAgBs36730G1fIelXJH2gj7mztpdtL6+uru720ACAFmW8KPo+SbdGRM8vXoqIpYioR0R9enq6hEMDADaU8QUXdUl3u/iztAckvcn2xYj4eAn3DQDo064DPSJ+bOO27ZOS7iPMAWDv9Qx026ckHZZ0wPY5SbdL2i9JEXFioNUBAPrWM9Aj4oZ+7ywibtxVNQCAHeOTogCQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6ACQBIEOAEkQ6MMsonsbAFr0DHTbd9k+b/vMFuNHbT9s+xHbX7B9VflljqGFBWl+/lKIRxTthYUqqwIwxPo5Qz8p6UiX8a9K+rmI+ClJ75a0VEJd4y1CWluTjh+/FOrz80V7bY0zdQAd7es1ISIesF3rMv6FluYXJR0soa7xZkuLi8Xt48eLiyTNzRX9dnW1ARhaZe+h/6ak+7catD1re9n28urqasmHTqY11DcQ5gC6KC3Qbf+8ikC/das5EbEUEfWIqE9PT5d16Jw2tllate6pA0CbUgLd9isk3SnpLRHxbBn3OdZa98zn5qT19eK6dU8dANr03EPvxfaMpHskvT0inth9SZAtTU1t3jPf2H6ZmmLbBUBHjh5ne7ZPSTos6YCkb0i6XdJ+SYqIE7bvlPRWSSvNf3IxIuq9Dlyv12N5eXnnlY+DiM3h3d4GMHZsn94qY/t5l8sNPcZvlnTzDmtDN+3hTZgD6IJPigJAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEvkDPaJ7G+VjzYFK9Ax023fZPm/7zBbjtv1+20/aftj21eWXuUMLC9L8/KVAiSjaCwtVVpUba44x0WhItZo0MVFcNxpVV9TfGfpJSUe6jL9R0oubl1lJH9h9WSWIkNbWpOPHLwXM/HzRXlvjrHEQWHOMiUZDmp2VVlaKH+uVlaJdeahHRM+LpJqkM1uMfVDSDS3tr0i6vNd9XnPNNTFw6+sRc3MRxZoXl7m5oh+DwZpjDBw6tPlHfONy6NDgjy1pObbIVUcfZ022a5Lui4iXdxi7T9KfR8Tnm+1/lnRrRCx3mDur4ixeMzMz16ysrOzgIWibIornRBvW1yV78McdZ6w5kpuY6PyE0y5+3AfJ9umIqHesa7CH3iwiliKiHhH16enpvThg8ZS/Vev+LsrHmmMMzMxsr3+vlBHoT0u6sqV9sNlXrdb927m54mFzbm7z/i7KxZpjTBw7Jk1Obu6bnCz6q7SvhPu4V9Lv2L5b0mskPR8Rz5Rwv7tjS1NTRaAsLhbtxcVibGqKLYBBYM0xJo4eLa5vu006e7Y4Mz927FJ/VXruods+JemwpAOSviHpdkn7JSkiTti2pDtUvBPmgqSbOu2ft6vX67G83HPa7kVsDpL2NsrHmgMD020PvecZekTc0GM8JN2yw9oGrz1ICJbBY82BSuT/pCgAjAkCHQCSINABIAkCHQCSINABIAkCHQCSINABIAkCHQCSINABIAkCHQCSINABIAkCHQCS6OsbiwZyYHtV0h58ZdF3HJD0zT08XplGtfZRrVsa3dpHtW5pdGvf67oPRUTHbwiqLND3mu3lrf7k5LAb1dpHtW5pdGsf1bql0a19mOpmywUAkiDQASCJcQr0paoL2IVRrX1U65ZGt/ZRrVsa3dqHpu6x2UMHgOzG6QwdAFIj0AEgiVSBbvsu2+dtn9li3Lbfb/tJ2w/bvnqva9xKH7Uftv287Yealz/Z6xo7sX2l7c/afsz2o7bnOswZunXvs+5hXfPvs/1vtr/crP1PO8z5Xtsfaa75g7ZrFZTaXlM/dd9oe7VlzW+uotat2H6B7X+3fV+HserXPCLSXCT9rKSrJZ3ZYvxNku6XZEnXSnqw6pq3UfthSfdVXWeHui6XdHXz9gslPSHppcO+7n3WPaxrbkmXNW/vl/SgpGvb5vy2pBPN29dL+siI1H2jpDuqrrXLf8PvS/r7Tj8Xw7Dmqc7QI+IBSc91mfIWSX8ThS9KmrJ9+d5U110ftQ+liHgmIr7UvP1fkh6XdEXbtKFb9z7rHkrNdfzvZnN/89L+7oa3SPpw8/ZHJb3etveoxI76rHto2T4o6c2S7txiSuVrnirQ+3CFpK+1tM9pRH6Jm36m+XT1ftsvq7qYds2nmK9ScebVaqjXvUvd0pCuefOp/0OSzkv6dERsueYRcVHS85J+aE+L7KCPuiXprc2tuY/avnJvK+zqfZL+UNL6FuOVr/m4Bfoo+5KKv+FwlaS/kvTxasvZzPZlkj4m6Z0R8a2q6+lXj7qHds0j4v8i4pWSDkp6te2XV1xSX/qo+5OSahHxCkmf1qUz3krZ/mVJ5yPidNW1dDNugf60pNZH/IPNvqEXEd/aeLoaEZ+StN/2gYrLkiTZ3q8iFBsRcU+HKUO57r3qHuY13xARa5I+K+lI29B31tz2PkkvkvTsnhbXxVZ1R8SzEfG/zeadkq7Z49K28lpJ19l+StLdkn7B9t+1zal8zcct0O+V9I7muy6ulfR8RDxTdVH9sP0jG/txtl+t4v9d5b+gzZo+JOnxiHjvFtOGbt37qXuI13za9lTz9vdL+kVJ/9E27V5Jv9G8/TZJn4nmq3VV6afuttdWrlPx2kblIuKPIuJgRNRUvOD5mYj49bZpla/5vr082KDZPqXinQkHbJ+TdLuKF14UESckfUrFOy6elHRB0k3VVPrd+qj9bZJ+y/ZFSf8j6fqqf0GbXivp7ZIeae6NStK7JM1IQ73u/dQ9rGt+uaQP236BigeZf4iI+2z/maTliLhXxYPV39p+UsWL7ddXV+539FP379m+TtJFFXXfWFm1fRi2Neej/wCQxLhtuQBAWgQ6ACRBoANAEgQ6ACRBoANAEgQ6ACRBoANAEv8P0TfHK2OLHtkAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -175,22 +201,42 @@ "name": "stdout", "output_type": "stream", "text": [ - "Epoch: 1 | Loss: 0.9555807113647461\n", - "Epoch: 101 | Loss: 0.12865914404392242\n", - "Epoch: 201 | Loss: 0.0773993730545044\n", - "Epoch: 301 | Loss: 0.05493553355336189\n", - "Epoch: 401 | Loss: 0.042454302310943604\n", - "Epoch: 501 | Loss: 0.034546975046396255\n", - "Epoch: 601 | Loss: 0.02910044603049755\n", - "Epoch: 701 | Loss: 0.02512541227042675\n", - "Epoch: 801 | Loss: 0.02209884487092495\n", - "Epoch: 901 | Loss: 0.019718701019883156\n", - "Epoch: 1001 | Loss: 0.017798559740185738\n", - "Epoch: 1101 | Loss: 0.016217226162552834\n", - "Epoch: 1201 | Loss: 0.014892562292516232\n", - "Epoch: 1301 | Loss: 0.013766967691481113\n", - "Epoch: 1401 | Loss: 0.012798796407878399\n", - "Epoch: 1501 | Loss: 0.011957273818552494\n" + "Epoch: 1 | Loss: 0.693336546421051\n", + "Epoch: 101 | Loss: 0.1125209778547287\n", + "Epoch: 201 | Loss: 0.07049673795700073\n", + "Epoch: 301 | Loss: 0.050856731832027435\n", + "Epoch: 401 | Loss: 0.039525073021650314\n", + "Epoch: 501 | Loss: 0.0322115495800972\n", + "Epoch: 601 | Loss: 0.027129750698804855\n", + "Epoch: 701 | Loss: 0.023406751453876495\n", + "Epoch: 801 | Loss: 0.02056846395134926\n", + "Epoch: 901 | Loss: 0.018336370587348938\n", + "Epoch: 1001 | Loss: 0.01653693988919258\n", + "Epoch: 1101 | Loss: 0.015056520700454712\n", + "Epoch: 1201 | Loss: 0.013817812316119671\n", + "Epoch: 1301 | Loss: 0.012766523286700249\n", + "Epoch: 1401 | Loss: 0.01186333317309618\n", + "Epoch: 1501 | Loss: 0.011079175397753716\n", + "Epoch: 1601 | Loss: 0.010392050258815289\n", + "Epoch: 1701 | Loss: 0.009785104542970657\n", + "Epoch: 1801 | Loss: 0.009245104156434536\n", + "Epoch: 1901 | Loss: 0.008761593140661716\n", + "Epoch: 2001 | Loss: 0.00832616537809372\n", + "Epoch: 2101 | Loss: 0.007932038977742195\n", + "Epoch: 2201 | Loss: 0.007573576178401709\n", + "Epoch: 2301 | Loss: 0.007246167398989201\n", + "Epoch: 2401 | Loss: 0.006945951841771603\n", + "Epoch: 2501 | Loss: 0.006669704802334309\n", + "Epoch: 2601 | Loss: 0.006414605770260096\n", + "Epoch: 2701 | Loss: 0.006178391166031361\n", + "Epoch: 2801 | Loss: 0.00595900509506464\n", + "Epoch: 2901 | Loss: 0.005754708778113127\n", + "Epoch: 3001 | Loss: 0.005564006045460701\n", + "Epoch: 3101 | Loss: 0.0053855921141803265\n", + "Epoch: 3201 | Loss: 0.005218283273279667\n", + "Epoch: 3301 | Loss: 0.005061114672571421\n", + "Epoch: 3401 | Loss: 0.004913175944238901\n", + "Epoch: 3501 | Loss: 0.004773670341819525\n" ] } ], @@ -200,7 +246,7 @@ "optimizer = torch.optim.SGD(model.parameters(), lr=1)\n", "criterion = torch.nn.BCELoss()\n", "\n", - "epochs = 1501\n", + "epochs = 3501\n", "for e in range(1, epochs + 1):\n", " optimizer.zero_grad()\n", "\n", @@ -253,7 +299,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUS0lEQVR4nO3df2zc933f8eebjhJlpCbZdNBRlhMXQr3pTDZtqtQZHCic7dlOWiQYlmHxtm42FgjY0mzFBqxYgcXY+tdQrGi2oDGM1HG9dk6HxlBNIWlmQPXUoo4GSolN0hoCR3YU0WewpnwMT5kv/vHeH3dUaIY/TtKJ3+OHzwcg+O77/fq+L38svfTl5773uchMJElb30DVASRJvWGhS1IhLHRJKoSFLkmFsNAlqRDvqOrEg4ODee2111Z1evWZ1157jXe+853s2rWLnTt3cs0111QdSepL3/rWt17JzPestq+yQr/22mv57Gc/W9Xp1Weee+453ve+9zE+Ps4tt9zCrl27qo4k9aXBwcHvrbXPKRdJKoSFLkmFsNAlqRAWuiQVwkJX31hYWOCVV16hXq9Tr9erjiNtOZXd5SItV6vVAJiYmGBsbIw77riDVqvF8PCwd7xIXbLQ1VdGR0eZmZlhdnaWO++8k3e9610AlrrUBadc1HdqtRrnz59nbm6ORqNRdRxpy7DQJakQFrokFcJCl6RCWOiSVIjyC33ld6b6HaqSCrXhbYsRcSPwKPBTQAIPZebnVxwTwOeBjwE/BO7LzFO9j3uJnnoKXnsN7r4bItpl/o1vwM6dMD5edTqpZ6am4NgxWFiA3bvh9tthbKzqVGXrxzHv5gr9DeDfZmYN+BDwmYiorTjmo8DPdH4dBr7Y05SXI7Nd5idOtEt8qcxPnGhv90pdhZiagokJaDTav60bjfbzqamqk5WrX8d8wyv0zKwD9c7jxYg4DdwAPLfssE8Aj2ZmAt+MiD0RMdL5d6sR0b4yh3aJnzjRfnzrrT++YpcKcOwYvP7627e9/np7e9VXjKXq1zG/pDn0iLgJ+HngxIpdNwDfX/b8XGfbyn//cERMRsTkhQsXLjHqZVhe6ksscxVmYeHStuvK9euYd13oETEEfBX4tcz8weWcLDMfysyDmXlwcHDwcl7iUk/YnmZZbmn6RSrE7t2Xtl1Xrl/HvKtCj4gdtMv8DzPz8VUOmQVuXPZ8X2dbdZbPmd96K3zuc+1/Lp9TV1+bn5/npZdeotlssri4WHWcvnX77bBjx9u37djR3q6ro1/HvJu7XAL4PeB0Zv72Goc9AfxqRHwFuBVYqHT+HNrTKjt3vn3OfGn6ZedOp1363PJFun70ox9x4MABwEW6VrM0Z9tvd1yUrF/HPHKDK9WI+DDw58AU8FZn828A7wXIzAc7pf8F4B7aty3en5mT673uvn37clO+JDrz7eW98rn63vT0NAcPHuQjH/kIu3btYmRkpOpIUmUGBwdPZubB1fZ1c5fLXwDrNmDn7pbPXF68q2xleVvmW87AwABzc3OcPHmScT8/IK2p/E+KStI2YaFLUiEsdEkqhIUuSYWw0CWpEBa6JBXCQpekQljoklQIC12SCmGhS1IhLHRtCWfPnqXZbNJqtVx5UVqDha6+V6vVGBgY4MyZM0xPT1Ov16nXq13MU+pHGy7OJfWDWq39NbYTExOMjY2xf/9+Wq0Ww8PDLqkrdVjo2lKW1klvNptce+21DA8PVx1J6htOuUhSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhIUuSYVwLRdtSS+88AJDQ0Ncd911NJtNhoaGXKRL256Fri1naeXFmZkZZmdnOXToEAcOHKDZbDIyMlJxOqk6Trloy6rVauzdu5cjR47w9NNPA/jlF9rWNiz0iHg4IuYiYnqN/bsjYiIinomImYi4v/cxpY01Go2qI0iV6uYK/RHgnnX2fwZ4LjPfD4wD/yUi3nnl0SRJl2LDQs/M48D59Q4BdkVEAEOdY9/oTTxJUrd68aboF4AngJeAXcA/zMy3VjswIg4DhwH27NnTg1NLkpb04k3Ru4FvA3uBnwO+EBF/fbUDM/OhzDyYmQcHBwd7cGpJ0pJeFPr9wOPZ9jzwAvC3evC6kqRL0ItCPwvcARARPwX8TeBMD15XknQJNpxDj4jHaN+9cn1EnAMeAHYAZOaDwG8Cj0TEFBDAr2fmK1ctsSRpVRsWembeu8H+l4C7epZIugzNZpOFhQX27dtXdRSpMn5SVFvewMAAZ86c4ZVXXqFer1Ov16uOJFXCtVy05S2t7TIxMcHY2Bj79++n1WoxPDzsgl3aVix0FWN0dJSZmRmazSaNRoPx8XELXduKUy4qzptvvll1BKkSFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhIUuSYWw0CWpEBa6JBXCQpekQriWi4pSq9WYnp5m9+7dLC4uAjA0NOSaLtoWLHQVZ2mRrtnZWQ4dOsSBAwdoNpuMjIxUHU26qpxyUZFqtRp79+7lyJEjPPnkk7RarYtX7FKpLHQVbWBggPn5eV5++eWqo0hXnYUuSYWw0CWpEBa6JBXCQpekQljoklQIC12SCmGhS1IhLHRJKoSFLkmF2LDQI+LhiJiLiOl1jhmPiG9HxExE/O/eRpQkdaObK/RHgHvW2hkRe4DfBT6embcA/6AnyaQeWVhY4NVXX2V+ft71XFS0DQs9M48D59c55B8Bj2fm2c7xcz3KJl2xWq1Go9Hg+PHjTE9PU6/XqdfrVceSropeLJ97M7AjIp4CdgGfz8xHVzswIg4DhwH27NnTg1NLG6vVagBMTEwwNjbGgQMHANdJV3l68aboO4BfAH4JuBv4DxFx82oHZuZDmXkwMw8ODg724NRS90ZHR5mammJubo5Go1F1HKnnenGFfg6Yz8wLwIWIOA68H/hOD15bktSlXlyh/wnw4Yh4R0T8NeBW4HQPXleSdAk2vEKPiMeAceD6iDgHPADsAMjMBzPzdET8KfAs8Bbwpcxc8xZHSdLVsWGhZ+a9XRzzW8Bv9SSRJOmy+ElRSSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXdtOs9lkYWGBZrNZdRSpp3rx0X9pyxgdHWVycpJWq8V1110HuEiXymGha9sZHR1lZmaG2dlZDh06xIEDB2g2m4yMjFQdTboiTrloW1paJ/3UqVM8/fTTVceResJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhIUuSYWw0CWpEBa6JBXCQte2dvbsWZrNJq1Wi8XFxarjSFfEQte2VavVGBgY4MyZMxw9epR6vU69Xq86lnTZXMtF21qtVgNgamrq4tourVaL4eFhF+zSluMVukR7wa5Go8EzzzzDyy+/XHUc6bJY6JJUCAtdkgphoUtSISx0SSqEhS5Jhdiw0CPi4YiYi4jpDY77YES8ERGf7F08SVK3urlCfwS4Z70DIuIa4D8D/6sHmSRJl2HDQs/M48D5DQ77LPBVYK4XoSRJl+6K59Aj4gbg7wFf7OLYwxExGRGTFy5cuNJTS5KW6cWbor8D/HpmvrXRgZn5UGYezMyDg4ODPTi1JGlJL9ZyOQh8JSIArgc+FhFvZOaRHry2VIlms+laLtpyrrjQM/Onlx5HxCPAUctcW1GtVmN6epqhoSGuu+46F+nSlrNhoUfEY8A4cH1EnAMeAHYAZOaDVzWdtMlGR0eZmZm5uPLi/v37aTabjIyMVB1N2tCGhZ6Z93b7Ypl53xWlkfrA0pK6R44cYXx8nPHxcRYXF71SV9/zk6LSBhqNRtURpK5Y6JJUCAtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIK0Yvlc6Vizc/P8+KLL/Lud78bwPVc1NcsdGkNy1de/O53v8tdd93lyovqaxa6tI6llRenpqZoNpt88IMfBLDU1ZecQ5e6MDAwwJtvvsncnN+Drv5loUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhIUudens2bM0m01arRb1er3qONJPcHEuqQtLi3RNTk7SarW46667aLVaDA8Pu6Su+saGV+gR8XBEzEXE9Br7/3FEPBsRUxHxlxHx/t7HlPrD0pK6X/7ylzl9+jTz8/MsLi5WHUsCuptyeQS4Z539LwAfycwx4DeBh3qQS+pbtVqNRqPBM888w8svv1x1HOmiDadcMvN4RNy0zv6/XPb0m8C+HuSSJF2iXr8p+s+Br6+1MyIOR8RkRExeuHChx6eWpO2tZ2+KRsTfoV3oH17rmMx8iM6UzL59+7JX55Yk9ajQI+JngS8BH83M+V68piTp0lzxlEtEvBd4HPiVzPzOlUeSJF2ODa/QI+IxYBy4PiLOAQ8AOwAy80Hgc8Aw8LsRAfBGZh68WoElSavr5i6XezfY/2ng0z1LJEm6LH70X5IKYaFLl2lhYYFXX33VT4uqb1jo0mVY+rTokSNHOHr0KPV63QW7VDkX55Iu09KCXTMzM8zOznLnnXcCMDQ05IJdqoRX6NIVqtVqnD9/nrm5ORqNRtVxtI1Z6JJUCAtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLPdJsNnnppZdoNptVR9E25eJcUg+Mjo4yOTlJq9Vi7969tFothoeHXaRLm8pCl3pkdHT04sqLhw4dYv/+/TSbTUZGRqqOpm3CKReph5bWST916hQnT56sOo62GQtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVIjyCz1z/efqPcdcqsSGH/2PiIeBXwbmMnN0lf0BfB74GPBD4L7MPNXroJflqafgtdfg7rshol0s3/gG7NwJ4+NVpyuTY65tYmoKjh2DhQXYvRtuvx3GxqrN1M0V+iPAPevs/yjwM51fh4EvXnmsHshsF8uJE+1CWSqWEyfa271q7D3H/KKzZ89WHUFX0dQUTExAo9H+bd1otJ9PTVWba8Mr9Mw8HhE3rXPIJ4BHMzOBb0bEnogYycx6r0Jeloj2VSK0C+XEifbjW2/98dWjessxB9rruUxPT/Pss8+yZ88eV14s0LFj8Prrb9/2+uvt7VVepfdiDv0G4PvLnp/rbPsJEXE4IiYjYvLChQs9OPUGlhfMkm1ULJVwzIH2youNRoMjR45w9OhR6vU69XqdxcXFqqOpBxYWLm37ZtnUN0Uz86HMPJiZBwcHBzfjhO0f+ZdbmgrQ1eGYX1Sr1S4uqfv444/zve99r+pI6pHduy9t+2bpxXros8CNy57v62yr1vL526Uf+Zeew7a8arzqHHNtE7ff3p4zXz7tsmNHe3uVelHoTwC/GhFfAW4FFiqfP4d2cezc+fb526WpgJ07LZarwTHXNrE0T95vd7l0c9viY8A4cH1EnAMeAHYAZOaDwNdo37L4PO3bFu+/WmEv2fh4+6pxqUiWCsZiuXocc20TY2PVF/hK3dzlcu8G+xP4TM8S9drKIrFYrj7HXKpE+Z8UlaRtwkKXpEJY6JJUCAtdkgphoUubYGFhgQsXLtBsNquOooJZ6NJVVqvVOH/+PKdPn6bRaPDiiy+6BICuil58sEjSBpaWAJidneW2227j5ptvptlsMjIyUnU0FcQrdGmT1Go19u7dy8TEBCdPnqTRaHilrp6y0CWpEBa6JBXCQpekQljoklSIyIq+eCAi/grYzBX/rwde2cTz9dJWzb5Vc8PWzb5Vc8PWzb7Zud+Xme9ZbUdlhb7ZImIyMw9WneNybNXsWzU3bN3sWzU3bN3s/ZTbKRdJKoSFLkmF2E6F/lDVAa7AVs2+VXPD1s2+VXPD1s3eN7m3zRy6JJVuO12hS1LRLHRJKkRRhR4RD0fEXERMr7E/IuK/RsTzEfFsRHxgszOupYvs4xGxEBHf7vz63GZnXE1E3BgRfxYRz0XETET861WO6btx7zJ3v475zoj4PxHxTCf7f1zlmHdFxB91xvxERNxUQdSVmbrJfV9E/NWyMf90FVnXEhHXRMS3IuLoKvuqH/PMLOYXcAj4ADC9xv6PAV8HAvgQcKLqzJeQfRw4WnXOVXKNAB/oPN4FfAeo9fu4d5m7X8c8gKHO4x3ACeBDK475l8CDncefAv5oi+S+D/hC1VnX+W/4N8D/WO33RT+MeVFX6Jl5HDi/ziGfAB7Ntm8CeyKiLxak7iJ7X8rMemae6jxeBE4DN6w4rO/GvcvcfakzjktffbSj82vl3Q2fAH6/8/iPgTsiIjYp4qq6zN23ImIf8EvAl9Y4pPIxL6rQu3AD8P1lz8+xRf4Qd/ztzo+rX4+IW6oOs1LnR8yfp33ltVxfj/s6uaFPx7zzo/+3gTngycxcc8wz8w1gARje1JCr6CI3wN/vTM39cUTcuLkJ1/U7wL8D3lpjf+Vjvt0KfSs7RXsNh/cD/w04Um2ct4uIIeCrwK9l5g+qztOtDXL37Zhn5puZ+XPAPuAXI2K04khd6SL3BHBTZv4s8CQ/vuKtVET8MjCXmSerzrKe7Vbos8Dyv/H3dbb1vcz8wdKPq5n5NWBHRFxfcSwAImIH7VL8w8x8fJVD+nLcN8rdz2O+JDMbwJ8B96zYdXHMI+IdwG5gflPDrWOt3Jk5n5mtztMvAb+wydHWchvw8Yh4EfgKcHtE/MGKYyof8+1W6E8A/7Rz18WHgIXMrFcdqhsR8TeW5uMi4hdp/7+r/A9oJ9PvAacz87fXOKzvxr2b3H085u+JiD2dx+8G/i7wf1cc9gTwzzqPPwkcy867dVXpJveK91Y+Tvu9jcpl5r/PzH2ZeRPtNzyPZeY/WXFY5WNe1JdER8RjtO9MuD4izgEP0H7jhcx8EPga7Tsungd+CNxfTdKf1EX2TwL/IiLeAP4f8Kmq/4B23Ab8CjDVmRsF+A3gvdDX495N7n4d8xHg9yPiGtp/yfzPzDwaEf8JmMzMJ2j/ZfXfI+J52m+2f6q6uBd1k/tfRcTHgTdo576vsrRd6Lcx96P/klSI7TblIknFstAlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSIf4/BHC1F0kwG+cAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVhklEQVR4nO3dcWycd33H8ffXqVdnducUBzGnadcJ0Y3DpgEc3KlTenPUpHSo1TSm0W2wVkORttINbdLQ+KPVxl8TG4INQRSVNhRYywSVV1tlKZXJsonVk9M2OTueUFuCiTnL4PYO37G4jvvdH89dYru272w/9nP3u89LsnL3PE98n/6afPLz7x7/bO6OiIjUv6akA4iISDxU6CIigVChi4gEQoUuIhIIFbqISCCuSuqFW1tb/dprr03q5aVGXbx4kR07dtDW1sbOnTvZsWMHO3bsSDqWSM144YUXfurub13pXGKFfu211/LAAw8k9fJSw86dO8cbb7xBOp0mnU7T1tbGNddck3QskZrQ2tr6w9XOaclFak4qlbr8OJfLJRdEpM6o0EVEAqFCFxEJhApdRCQQKnQRkUCo0EVEAqFCFxEJhApdRCQQKnQRkUCo0EVEAqFCFxEJRGJ7uYhUMjMzw/nz59m5cyeA9nMRqSD8QncHs9WfS03q6upibGyMyclJFhYWuOmmmygUCnR2diYdTaRmVSx0M7seeAx4G+DAMXf//LJrDPg8cCfwc+Bed38+/rjrdPIkXLwIhw9HJe4OJ05ASwuk00mnkwrKm3QNDAzQ09PDbbfdBqBSX0EmA0NDkM9Dezv09UF3d9KpwlaLY17NGvol4K/cPQXcAtxvZqll13wAeEfp4wjwpVhTboR7VObDw1GJl8t8eDg67p50QqlSU1MT09PTnD59OukoNSmTgYEByOWiP9a5XPQ8k0k6WbhqdcwrztDdPQtkS49nzWwcuA44t+iyu4HH3N2B58xsl5l1ln5vMsyimTlEJT48HD3u7b0yYxcJwNAQzM8vPTY/Hx1PesYYqlod83Xd5WJmNwLvAYaXnboO+NGi5xdKx5b//iNmNmJmI8VicZ1RN2BxqZepzCUw+fz6jsvm1eqYV13oZtYGfAv4hLv/bCMv5u7H3L3H3XtaW1s38inW+4LRMsti5eUXkUC0t6/vuGxerY55VYVuZs1EZf51d39yhUsmgesXPd9bOpacxWvmvb3w4IPRr4vX1EUC0NcHzc1LjzU3R8dla9TqmFdzl4sBXwbG3f2zq1z2FPBxM3sC6AXyia6fQ7Ss0tKydM28vPzS0qJlFwlGec221u64CFmtjnk196HfCnwEyJjZi6VjnwJuAHD3o8DTRLcsvkR02+J9sSfdiHR66X3n5VJXmUtguruTL5NGU4tjXs1dLv8FrNmApbtb7o8rVKyWl7fKXEQCpb1cREQCoUIXEQmECl1EJBAqdKkLExMTFAoF5ubmmJ2dTTqOSE1SoUvNS6VSNDU1MTIywuDgINlslmw22btiRWpR+NvnShDKOy+Wt9Q9cOAAc3NzdHR0aJ90kRLN0KWupFIpcrkcZ86cYWpqKuk4IjVFhS4iEggVuohIIFToIiKBUKGLiARChS4iEggVuohIIFToIiKBUKGLiARChS4iEggVuohIIFToUreKxSKFQiHpGCI1Q5tzSd1JpVKMjo7S1tbGnj17tEmXSIkKXepSV1fX5Z0Xb731Vm666SYKhQKdnZ1JRxNJjJZcpG6lUin27NnDwMAAp0+fBtAPv5CGpkKXYORyuaQjiCRKhS4iEggVuohIIFToIiKBUKGLiARChS4iEggVuohIICp+Y5GZPQJ8EJh2964VzrcDXwNuKH2+f3D3R+MOKiJhymRgaAjyeWhvh74+6O5OOlV9qmaGfhy4Y43z9wPn3P1mIA38o5n9wuajiUjoMhkYGIBcDtyjXwcGouOyfhUL3d1PAa+udQlwjZkZ0Fa69lI88UQkZENDMD+/9Nj8fHRc1i+OvVy+ADwF/Bi4Bvh9d39jpQvN7AhwBGDXrl0xvLSI1LN8fn3HZW1xvCl6GHgR2APsA75gZr+00oXufszde9y9p7W1NYaXFomcPXuW8+fPMzMzo/1c6kh7+/qOy9riKPT7gCc98hLwA+DXY/i8IlXp6uoil8vR39/P4OAg2WyWbDarYq8DfX3Q3Lz0WHNzdFzWL44llwngIPCfZvY24NeAV2L4vCJVS6VSAIyNjVEoFNi/fz+pVEp7pNe48t0susslHtXctvg40d0ru83sAvAQ0Azg7keBTwPHzSwDGPBJd//pliUWqWBhYYHp6enLJS+1rbtbBR6XioXu7vdUOP9j4FBsiUREZEP0naIiIoFQoYuIBEKFLiISCBW6iEggVOgiIoFQoYuIBEKFLiISCBW6iEggVOgiIoFQoUtwJiYmKBQKzM7Oks1mk44jsm3i2JxLpGaU928ZGRlhbm6OgwcPMjc3R0dHhzbqkuCp0CVIXV1djI2NMTk5yYEDB3jnO98JoFKXoGnJRYKVSqXI5XKcOXOGqamppOOIbDkVuohIIFToIiKBUKGLiARChS4iEggVuohIIFToIiKBUKGLiARChS4iEggVuohIIFToIiKBUKFL8PL5PMVikUKhkHQUkS2lzbkkaKlUitHRUZ599llef/117bwoQdMMXYLX1dVFLpejv7+fwcFBstms9kmXIGmGLg2hvE96JpOho6ODffv20dbWppm6BKXiDN3MHjGzaTMbXeOatJm9aGZjZvYf8UYUEZFqVLPkchy4Y7WTZrYL+CJwl7u/C/i9WJKJiMi6VCx0dz8FvLrGJX8APOnuE6Xrp2PKJiIi6xDHm6I3Adea2UkzO21mH13tQjM7YmYjZjZSLBZjeGkRESmL403Rq4D3AQeBncB/m9lz7v795Re6+zHgGMDevXs9htcWEZGSOAr9AjDj7kWgaGangJuBNxW6iIhsnTiWXP4N+E0zu8rMfhHoBcZj+LwiIrIOFWfoZvY4kAZ2m9kF4CGgGcDdj7r7uJn9O3AWeAN42N1XvcVRRES2RsVCd/d7qrjmM8BnYkkkIiIbom/9FxEJhApdGlI+n086gkjsVOjSUJqamjh79iyvvfaaNumS4GhzLmko5U26+vv76e7u5uDBg9pSV4KhQpeG1NXVxdjYGIVCgf3793P11Ver0KXuaclFGtrCwgLT09p+SMKgQhcRCYQKXUQkEOEXuvvaz0VEAhH2m6InT8LFi3D4MJhFZX7iBLS0QDqddDoRqWOZDAwNQT4P7e3Q1wfd3clmCneG7h6V+fBwVOLlMh8ejo5rpi4iG5TJwMAA5HJRleRy0fNMJtlc4c7QzaKZOUQlPjwcPe7tvTJjFxHZgKEhmJ9femx+Pjqe5Cw93Bk6LC31MpW5iGzSajtHJL2jRNiFXl5mWay8/CIiskHt7es7vl3CLfTFa+a9vfDgg9Gvi9fURUQ2oK8PmpuXHmtujo4nKew19JaWpWvm5eWXlhYtu4jIhpXXyWvtLpdwCx2iWxPdr5R3udRV5iKySd3dyRf4cuEuuZQtL2+VuYgEKvxCF1nDxMQEhUKBubk5Zmdnk44jsikqdGlYqVSKpqYmXnnlFQYHB/UDL6Tuhb2GLlJB+QdeZDIZJicnOXDggH7ghdQtzdBFiH7gRS6X48yZM0xNTSUdR2RDVOgiIoFQoYuIBEKFLiISCBW6iEggVOgiIoGoWOhm9oiZTZvZaIXr9pvZJTP7UHzxRESkWtXM0I8Dd6x1gZntAP4eeCaGTCIisgEVC93dTwGvVrjsAeBbwHQcoUREZP02vYZuZtcBvwN8qYprj5jZiJmNFIvFzb60iIgsEsebop8DPunub1S60N2PuXuPu/e0trbG8NIiIlIWx14uPcATFm1Luxu408wuuXt/DJ9bJBGFQkF7uUjd2XShu/uvlh+b2XFgUGUu9SiVSjE6OkpbWxtvectbtEmX1J2KhW5mjwNpYLeZXQAeApoB3P3olqYT2WZdXV2MjY1d3nnx7W9/O4VCgc7OzqSjiVRUsdDd/Z5qP5m737upNCI1oLylbn9/P+l0mnQ6zezsrGbqUvP0naIiFeRyuaQjiFRFhS4iEggVuohIIFToIiKBUKGLiARChS4iEggVuohIIFToIiKBUKGLiARChS4iEggVuohIIOLYPlckWDMzM5w/f56dO3cCaD8XqWkqdJFVLN558eWXX+bQoUPaeVFqmgpdZA3lnRczmQyFQoH9+/cDqNSlJmkNXaQKTU1NLCwsMD2tn4MutUuFLiISCBW6iEggVOgiIoFQoYuIBEKFLiISCBW6iEggVOgiIoFQoYuIBEKFLiISCBW6iEggVOgiVZqYmKBQKDA3N0c2m006jsibaHOuWuYOZqs/l21T3qRrZGSEubk5Dh06xNzcHB0dHdpSV2pGxRm6mT1iZtNmNrrK+T80s7NmljGz75nZzfHHbEAnT8KJE1GJQ/TriRPRcUlMeUvdRx99lPHxcWZmZpidnU06lghQ3ZLLceCONc7/ALjN3buBTwPHYsjV2Nzh4kUYHr5S6idORM8vXrxS8pKIVCpFLpfjzJkzTE1NJR1H5LKKSy7ufsrMblzj/PcWPX0O2BtDrsZmBocPR4+Hh6MPgN7e6LiWXURkBXG/KfonwLdXO2lmR8xsxMxGisVizC8dmMWlXqYyF5E1xFboZvZbRIX+ydWucfdj7t7j7j2tra1xvXSYysssiy1eUxcRWSaWu1zM7N3Aw8AH3H0mjs/Z0BavmZeXWcrPQTN1EVnRpgvdzG4AngQ+4u7f33wkwQxaWpaumZeXX1paVOYisqKKhW5mjwNpYLeZXQAeApoB3P0o8CDQAXzRoqK55O49WxW4YaTTS+87L5e6ylxEVlHNXS73VDj/MeBjsSWSK5aXt8pcRNagb/0XEQmECl1EJBAqdBGRQKjQRTYon89TLBYpFApJRxEBtNuiyIakUilGR0cZHx/n9ddf186LUhNU6CIbVN55cXJykpdffplDhw5RKBTo7OxMOpo0KBW6yCaU90nPZDJ0dHSwb98+2traNFOXRGgNXUQkECp0EZFAqNBFRAKhQhcRCYQKXUQkECp0EZFAqNBFRAKhQhcRCYQKXUQkECp0EZFAqNBFYpTP55OOIA1MhS4Sg6amJs6ePctrr71GNpslm80mHUkakApdJAapVIo9e/bQ39/PM888w+zsLOfPn2d2djbpaNJAtNuiSIzKW+oWCgX279/P1VdfrZ0XZdtohi6yBRYWFpienk46hjQYFbqISCBU6CIigVChi4gEQoUuIhIIFbqISCDCL3T3tZ9L/DTmIomoeB+6mT0CfBCYdveuFc4b8HngTuDnwL3u/nzcQTfk5Em4eBEOHwazqFhOnICWFkink04XJo25NIhMBoaGIJ+H9nbo64Pu7mQzVTNDPw7cscb5DwDvKH0cAb60+VgxcI+KZXg4KpRysQwPR8c1a4yfxlwaRCYDAwOQy0V/rHO56Hkmk2yuijN0dz9lZjeuccndwGPu7sBzZrbLzDrdPdnNLMyiWSJEhTI8HD3u7b0ye5R4acylQQwNwfz80mPz89HxJGfpcayhXwf8aNHzC6Vjb2JmR8xsxMxGisViDC9dweKCKVOxbC2NuTSA1TbVTHqzzW19U9Tdj7l7j7v3tLa2bscLRl/yL1ZeCpCtoTEHYGJigpmZGWZnZ7XzYoDa29d3fLvEsTnXJHD9oud7S8eStXj9tvwlf/k5aNa4FTTmQLTzIkAmk2FycpIDBw4wNzdHR0eHNuoKRF9ftGa+eNmluTk6nqQ4Cv0p4ONm9gTQC+QTXz+HqDhaWpau35aXAlpaGqJYtp3GfImuri7OnTvHqVOnuHDhArfffjuASj0A5XXyWrvLpZrbFh8H0sBuM7sAPAQ0A7j7UeBpolsWXyK6bfG+rQq7bul0NGssF0m5YBqsWLaVxnyJVCrFuXPnmJmZYWpqio6OjqQjSUy6u5Mv8OWqucvlngrnHbg/tkRxW14kDVos20pjLpKI8L9TVESkQajQRUQCoUIXEQmECl1EJBAqdBGRQKjQRUQCoUIXEQmECl1EJBAqdBGRQKjQRbZBPp+nWCxe3oFRZCuo0EW2WCqVIpfL8eyzzzI+Pk42m9WWurIlVOgi2yCVSrFnzx76+/t55plntE+6bAnzhH7wgJn9BPjhNr7kbuCn2/h6carX7PWaG+o3e73mhvrNvt25f8Xd37rSicQKfbuZ2Yi79ySdYyPqNXu95ob6zV6vuaF+s9dSbi25iIgEQoUuIhKIRir0Y0kH2IR6zV6vuaF+s9drbqjf7DWTu2HW0EVEQtdIM3QRkaCp0EVEAhFUoZvZI2Y2bWajq5w3M/snM3vJzM6a2Xu3O+NqqsieNrO8mb1Y+nhwuzOuxMyuN7Pvmtk5Mxszs79Y4ZqaG/cqc9fqmLeY2f+Y2ZlS9r9d4ZqrzewbpTEfNrMbE4i6PFM1ue81s58sGvOPJZF1NWa2w8xeMLPBFc4lP+buHswHcAB4LzC6yvk7gW8DBtwCDCedeR3Z08Bg0jlXyNUJvLf0+Brg+0Cq1se9yty1OuYGtJUeNwPDwC3Lrvkz4Gjp8YeBb9RJ7nuBLySddY3/hr8E/mWlPxe1MOZBzdDd/RTw6hqX3A085pHngF1m1rk96dZWRfaa5O5Zd3++9HgWGAeuW3ZZzY17lblrUmkcC6WnzaWP5Xc33A18pfT4m8BBM7NtiriiKnPXLDPbC/w28PAqlyQ+5kEVehWuA3606PkF6uQvcclvlL5c/baZvSvpMMuVvsR8D9HMa7GaHvc1ckONjnnpS/8XgWngO+6+6pi7+yUgD3Rsa8gVVJEb4HdLS3PfNLPrtzfhmj4H/DXwxirnEx/zRiv0evY80R4ONwP/DPQnG2cpM2sDvgV8wt1/lnSealXIXbNj7u4L7r4P2Au838y6Eo5UlSpyDwA3uvu7ge9wZcabKDP7IDDt7qeTzrKWRiv0SWDxv/h7S8dqnrv/rPzlqrs/DTSb2e6EYwFgZs1Epfh1d39yhUtqctwr5a7lMS9z9xzwXeCOZacuj7mZXQW0AzPbGm4Nq+V29xl3nys9fRh43zZHW82twF1mdh54Augzs68tuybxMW+0Qn8K+GjprotbgLy718Uepmb2y+X1ODN7P9H/u8T/gpYyfRkYd/fPrnJZzY17NblreMzfama7So93ArcD/7vssqeAPy49/hAw5KV365JSTe5l763cRfTeRuLc/W/cfa+730j0hueQu//RsssSH/OrtvPFtpqZPU50Z8JuM7sAPET0xgvufhR4muiOi5eAnwP3JZP0zarI/iHgT83sEvB/wIeT/gtacivwESBTWhsF+BRwA9T0uFeTu1bHvBP4ipntIPpH5l/dfdDM/g4YcfeniP6x+qqZvUT0ZvuHk4t7WTW5/9zM7gIuEeW+N7G0Vai1Mde3/ouIBKLRllxERIKlQhcRCYQKXUQkECp0EZFAqNBFRAKhQhcRCYQKXUQkEP8PBM9aszN9mZMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -291,9 +337,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "[[4.54124975]\n", - " [2.37628269]]\n", - "-14.683035850524902\n" + "[[5.28773165]\n", + " [2.6065383 ]]\n", + "-16.89045524597168\n" ] } ], @@ -603,7 +649,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAARf0lEQVR4nO3df2xdZ33H8fd3xCTM9ZLUAebFgS6Ibb0klB8p6QRKvaD+oEOtpjGNboO1Goq0lW5ok4bGH602/prQEGwIoqhUpRtrmaDq2qqsQwpdNLF6Mmlax+6EShkhoSjgYpOE1Ura7/641+Aa2/c6Ofa5fvx+SRb3nvP4nk8fkk+On3Oub2QmkqTV7+fqDiBJqoaFLkmFsNAlqRAWuiQVwkKXpEKsq+vAvb29uXnz5roOr0I9//zz9PT0sH79evr6+ujp6ak7klSpxx9//AeZ+cr59tVW6Js3b+bWW2+t6/Aq1Pj4OIODg2zfvp2hoSEGBgbqjiRVqre399sL7XPJRZIKYaFLUiEsdEkqhIUuSYWw0CWpEBa6JBXCQpekQljoklQIC12SCmGhS1IhLHRJKoSFLkmFKL/Q535mqp+hKqlQbX/bYkRsA+4GXg0kcCAzPzlnTACfBK4DfgzclJmHq4+7RI8+Cs8/D9dcAxHNMn/kEdiwAYaG6k4nVWZ0FA4ehKkp2LgR9u6FnTvrTlW2bpzzTs7QzwF/kZkN4ArglohozBnzLuD1ra99wGcqTXk+MptlPjzcLPGZMh8ebm73TF2FGB2FBx+EycnmH+vJyebz0dG6k5WrW+e87Rl6Zj4LPNt6fCoingK2AuOzht0A3J2ZCTwWEZsiYqD1vfWIaJ6ZQ7PEh4ebj3fv/ukZu1SAgwfh7NmXbjt7trm97jPGUnXrnC9pDT0iLgHeDAzP2bUV+M6s58db2+Z+/76IGImIkTNnziwx6nmYXeozLHMVZmpqadt14bp1zjsu9Ii4CPgS8KHM/NH5HCwzD2Tmrszc1dvbez4vsdQDNpdZZptZfpEKsXHj0rbrwnXrnHdU6BHRQ7PMP5+Z980z5ASwbdbzwda2+sxeM9+9G267rfm/s9fUpQLs3QtzPzq1p6e5XcujW+e8k7tcAvgs8FRmfnyBYQ8AH4yIe4HdwFSt6+fQXFbZsOGla+Yzyy8bNrjsomLMrNl22x0XJevWOe/kQ6LfDrwPGI2II61tHwFeA5CZ+4GHad6y+DTN2xZvrjzp+Rgaap6Jz5T3TKlb5irMzp31l8la041z3sldLv8JLNqArbtbbqkqVKXmlrdlLqlQ5b9TVJLWCAtdkgphoUtSITq5KCqtKseOHeNVr3oV09PTnDp1atGxfX19K5RKWn4WuorSaDQYHx9nZGSE6elpLr300gXHbtu2jYmJCfr7+y12FcFCV3EajebvjhsbG2N0kd+WdPHFF7Nnzx5e97rXcfr0aQYGBlYqorQsLHQVa6bYFzI+Ps7hw4eZnJxkyF+nrAJ4UVSSCmGhS1IhLHRJKoSFLkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhIUuSYWw0CWpEG0LPSLujIiTEXF0gf0bI+LBiHgiIsYi4ubqY0qS2unkDP0u4NpF9t8CjGfmZcAQ8HcR8fILjyZJWoq2hZ6Zh4DnFhsC9EVEABe1xp6rJp4kqVPrKniNTwEPAN8F+oDfzcwX5xsYEfuAfQCbNm2q4NCSpBlVXBS9BjgC/BLwJuBTEfEL8w3MzAOZuSszd/X29lZwaEnSjCoK/Wbgvmx6GvgW8GsVvK4kaQmqKPRjwDsBIuLVwK8Cz1TwupKkJWi7hh4R99C8e2VLRBwHbgd6ADJzP/BR4K6IGAUC+HBm/mDZEkuS5tW20DPzxjb7vwtcXVkiSdJ58Z2iklQIC12SCmGhS1IhLHRJKoSFLkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSIar4gAtp1Tp27Bjbt29nenqaU6dOLTq2r69vhVJJ58dC15rVaDQYHx/nySefZNOmTbz85Qt/FO62bds4ffo0AwMDK5hQWhoLXWtao9EA4P7771903MUXX8yePXuYnp6mv7/fs3V1JQtdAnbs2LHo/vHxcQ4fPszk5CRDQ0MWurqSF0UlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVIi2hR4Rd0bEyYg4usiYoYg4EhFjEfEf1UaUJHWikzP0u4BrF9oZEZuATwPXZ+YbgN+pJJkkaUnaFnpmHgKeW2TI7wH3Zeax1viTFWWTJC1BFWvovwJsjohHI+LrEfH+hQZGxL6IGImIkTNnzlRwaEnSjCo+4GId8FbgncArgP+KiMcy8xtzB2bmAeAAwODgYFZwbElSSxWFfhyYyMwzwJmIOARcBvxMoUuSlk8VSy7/CrwjItZFxM8Du4GnKnhdSdIStD1Dj4h7gCFgS0QcB24HegAyc39mPhUR/wY8CbwI3JGZC97iKElaHm0LPTNv7GDMx4CPVZJIknRefKeoJBXCQpekQljoklQIC12SCmGhS1IhLHRJKoSFLkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLHTp27FjdEaRFras7gLQaNBoNjh49ysTEBEeOHGF6enrR8evXr2dgYGCF0klNFrrUoR07djA2NsaJEyc4dOjQguO2bt3K1VdfzfT0NP39/fT19a1gSq1lFrq0BI1Go+2YsbExTp8+zeWXX8769estdK0Y19ClZfDCCy9w8uTJumNojbHQJakQFrokFaJtoUfEnRFxMiKOthl3eUSci4j3VBdPktSpTs7Q7wKuXWxARLwM+Fvg3yvIJEk6D20LPTMPAc+1GXYr8CXAq0CSVJMLXkOPiK3AbwGf6WDsvogYiYiRM2fOXOihJUmzVHFR9BPAhzPzxXYDM/NAZu7KzF29vb0VHFqSNKOKNxbtAu6NCIAtwHURcS4z76/gtSVJHbrgQs/MX555HBF3AQ9Z5pK08toWekTcAwwBWyLiOHA70AOQmfuXNZ0kqWNtCz0zb+z0xTLzpgtKI0k6b75TVJIKYaFLUiEsdEkqhIUuSYWw0CWpEBa6JBXCQpekQljoklQIC12SCmGhS1IhLHRJKoSFLkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqRNtCj4g7I+JkRBxdYP/vR8STETEaEV+LiMuqjylJaqeTM/S7gGsX2f8t4MrM3Al8FDhQQS5J0hKtazcgMw9FxCWL7P/arKePAYMV5JIkLVHbQl+iPwK+vNDOiNgH7APYtGlTxYeWusexY8fYuHEjp06dWvL3DgwMLEMirQWVFXpE/AbNQn/HQmMy8wCtJZnBwcGs6thSN2k0GgCMjY1x4sQJtm/f3vH3Dg4OMj09TX9/P319fcsVUYWqpNAj4o3AHcC7MnOiiteUVruZYj98+HDH3zMyMsLx48e56qqrACx1LckFF3pEvAa4D3hfZn7jwiNJZZkp9k6Mj48zMTHB9773Pfr7+5cxlUrUttAj4h5gCNgSEceB24EegMzcD9wG9AOfjgiAc5m5a7kCS5Lm18ldLje22f8B4AOVJZIknRffKSpJhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhIUuSYWw0CWpEBa6JBXCQpekQljoklQIC12SCmGhS1IhLHRJKoSFLkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFaL8Qs9c/Lmq55xLtVjXbkBE3Am8GziZmTvm2R/AJ4HrgB8DN2Xm4aqDnpdHH4Xnn4drroGIZrE88ghs2ABDQ3WnK5NzrjVidBQOHoSpKdi4EfbuhZ07683UyRn6XcC1i+x/F/D61tc+4DMXHqsCmc1iGR5uFspMsQwPN7d71lg951xrxOgoPPggTE42/1hPTjafj47Wm6vtGXpmHoqISxYZcgNwd2Ym8FhEbIqIgcx8tqqQ5yWieZYIzUIZHm4+3r37p2ePqpZzrjXi4EE4e/al286ebW6v8yy9ijX0rcB3Zj0/3tr2MyJiX0SMRMTImTNnKjh0G7MLZobFsrycc60BU1NL275SVvSiaGYeyMxdmbmrt7d3JQ7Y/JF/tpmlAC0P51xrwMaNS9u+UtouuXTgBLBt1vPB1rZ6zV6/nfmRf+Y5eNa4HJxzrRF79zbXzGcvu/T0NLfXqYpCfwD4YETcC+wGpmpfP4dmcWzY8NL125mlgA0bLJbl4JxrjZhZJ++2u1w6uW3xHmAI2BIRx4HbgR6AzNwPPEzzlsWnad62ePNyhV2yoaHmWeNMkcwUjMWyfJxzrRE7d9Zf4HN1cpfLjW32J3BLZYmqNrdILJbl55xLtSj/naKStEZY6JJUiCouikqq0NTUFD/84Q+ZmJjg9OnTi44dGBhYoVRaDSx0qYs0Gg3Gx8c5dOgQ3/zmN1m/fv2CY6+88kqmp6fp7++nr69vBVOqW1noUpdpNBoAjI2NLTrumWeeYc+ePVx66aUAlrosdKlbzRT7QsbHx3niiSfYvHkz/f39K5RK3cyLopJUCAtdkgphoUtSISx0SSqEhS5JhbDQJakQkTV98EBEfB/49goecgvwgxU8XpVWa/bVmhtWb/bVmhtWb/aVzv3azHzlfDtqK/SVFhEjmbmr7hznY7VmX625YfVmX625YfVm76bcLrlIUiEsdEkqxFoq9AN1B7gAqzX7as0Nqzf7as0Nqzd71+ReM2voklS6tXSGLklFs9AlqRBFFXpE3BkRJyPi6AL7IyL+PiKejognI+ItK51xIR1kH4qIqYg40vq6baUzzicitkXEVyNiPCLGIuLP5hnTdfPeYe5unfMNEfHfEfFEK/tfzzNmfUR8oTXnwxFxSQ1R52bqJPdNEfH9WXP+gTqyLiQiXhYRj0fEQ/Psq3/OM7OYL2AP8Bbg6AL7rwO+DARwBTBcd+YlZB8CHqo75zy5BoC3tB73Ad8AGt0+7x3m7tY5D+Ci1uMeYBi4Ys6YPwH2tx6/F/jCKsl9E/CpurMu8t/w58A/z/fnohvmvKgz9Mw8BDy3yJAbgLuz6TFgU0R0xYcydpC9K2Xms5l5uPX4FPAUsHXOsK6b9w5zd6XWPM582GhP62vu3Q03AJ9rPf4i8M6IiBWKOK8Oc3etiBgEfhO4Y4Ehtc95UYXega3Ad2Y9P84q+Uvc8uutH1e/HBFvqDvMXK0fMd9M88xrtq6e90VyQ5fOeetH/yPASeArmbngnGfmOWAKqP1jjTrIDfDbraW5L0bEtpVNuKhPAH8JvLjA/trnfK0V+mp2mObvcLgM+Afg/nrjvFREXAR8CfhQZv6o7jydapO7a+c8M1/IzDcBg8DbImJHzZE60kHuB4FLMvONwFf46RlvrSLi3cDJzPx63VkWs9YK/QQw+1/8wda2rpeZP5r5cTUzHwZ6ImJLzbEAiIgemqX4+cy8b54hXTnv7XJ385zPyMxJ4KvAtXN2/WTOI2IdsBGYWNFwi1god2ZOZOZ06+kdwFtXONpC3g5cHxH/C9wL7I2If5ozpvY5X2uF/gDw/tZdF1cAU5n5bN2hOhERvzizHhcRb6P5/13tf0FbmT4LPJWZH19gWNfNeye5u3jOXxkRm1qPXwFcBfzPnGEPAH/Yevwe4GC2rtbVpZPcc66tXE/z2kbtMvOvMnMwMy+hecHzYGb+wZxhtc/5upU82HKLiHto3pmwJSKOA7fTvPBCZu4HHqZ5x8XTwI+Bm+tJ+rM6yP4e4I8j4hzwf8B76/4L2vJ24H3AaGttFOAjwGugq+e9k9zdOucDwOci4mU0/5H5l8x8KCL+BhjJzAdo/mP1jxHxNM2L7e+tL+5PdJL7TyPieuAczdw31Za2A9025771X5IKsdaWXCSpWBa6JBXCQpekQljoklQIC12SCmGhS1IhLHRJKsT/AyjtKP3GpE/PAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAATI0lEQVR4nO3df2xdZ33H8fd3rRuD49ltAyyLy7pWbKuxoUBKmJio52pLYfzQNKbRbbCioUgbsKFNGhp/tNr217QNwYZGFUFXGKwwQdU1CJYhmSyaWD2loatjd0LVGCFpJUOQTRJImrbf/XHuJY6xfa+da5/rx++XdOVznvP4nm+f2p88fs6590ZmIkna/H6s7gIkSZ1hoEtSIQx0SSqEgS5JhTDQJakQV9Z14r6+vrz66qvrOr1q8IMf/ID+/n6e//zn09PTwxVXXFF3SdKm87Wvfe07mfmCpY7VFuhXX301733ve+s6vWpw7NgxxsbGuPnmmxkaGqK/v7/ukqRNp6+v75vLHXPJRZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFKD/QF39mqp+hKqlQLd9tMSKuAz4JvAhIYH9mfnhRnwA+DLwB+D5wZ2Ye7Xy5q3ToEJw7B3v3QkQV5gcPQm8vjI3VXZ3UMVNTMDEB8/MwMADj4zA6WndVZevGMW9nhv4M8MeZOQy8Bnh3RAwv6vN64CWNxz7gox2tci0yqzCfnKxCvBnmk5NVuzN1FWJqCg4cgLm56sd6bq7an5qqu7JydeuYt5yhZ+ZTwFON7dMR8TiwC5hZ0O0twCczM4GHI2IwInY2vrceEdXMHKoQn5ystvfsuThjlwowMQEXLlzaduFC1V73jLFU3Trmq1pDj4jrgVcAk4sO7QK+tWD/RKNt8ffvi4gjEXHk7Nmzqyx1DRaGepNhrsLMz6+uXZevW8e87UCPiO3A54H3Zeb31nKyzNyfmbszc3dfX99anmK1J6yWWRZqLr9IhRgYWF27Ll+3jnlbgR4RPVRh/unMfGCJLieB6xbsDzXa6rNwzXzPHrjrrurrwjV1qQDj49DTc2lbT0/VrvXRrWPezl0uAXwceDwzP7hMt4eA90TEZ4A9wHyt6+dQLav09l66Zt5cfuntddlFxWiu2XbbHRcl69Yxb+dDol8LvB2YiohHG20fAF4MkJn3AF+kumXxCarbFt/Z8UrXYmysmok3w7sZ6oa5CjM6Wn+YbDXdOObt3OXyH8CKCdi4u+XdnSqqoxaHt2EuqVDlv1JUkrYIA12SCmGgS1Ih2rkoKnXMqVOnePLJJxkcHFzV9/X3969PQVJBDHRtmJGREaYab3bx9NNPc9VVV7X9vTfeeCPXXnutwS6twEDXhhoZGWF6evqHwd6Oa665hqeffpobb7yRM2fOsHPnznWsUNq8DHRtuOHhxW/WubKZmRmOHj3K3NwcY77tsbQsL4pKUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFeLKVh0i4l7gjcBsZo4scXwA+BTw4sbz/XVm/kOnC5VUpqkpmJiA+XkYGIDxcRgdrbuqzamdGfp9wO0rHH83MJOZLwfGgL+JiKsuvzRJpZuaggMHYG4OMquvBw5U7Vq9loGemYeB767UBeiPiAC2N/o+05nyJJVsYgIuXLi07cKFql2r13LJpQ0fAR4CngT6gd/IzOeW6hgR+4B9AIODgx04taTNbH5+de1aWScuiu4FHgV+ErgZ+EhE/PhSHTNzf2buzszdfX19HTi1pM1sYGB17VpZJwL9ncADWXkC+Abwcx14XkmFGx+Hnp5L23p6qnatXicC/ThwG0BEvAj4WeB/O/C8kgo3OgpvehMMDkJE9fVNb/Iul7Vq57bF+6nuXtkRESeAu4EegMy8B/gL4L6ImAICeH9mfmfdKpZUlNFRA7xTWgZ6Zt7R4viTwC93rCJJ0pr4SlFJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQnfiAC2ndHT9+nBtuuIHz589z+vTpFfv29/dvUFVSdzHQ1fWGh4eZmZnhscceY3BwkKuuWv4ja6+77jrOnDnD9u3bDXZtOQa6NoXh4WEAHnzwwRX7XXPNNbzuda/jpptuApyta2sx0LWpjIyMrHh8ZmaGo0ePMjc3x9jYmIGuLcWLopJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqRMtAj4h7I2I2Io6t0GcsIh6NiOmI+PfOlihJakc7M/T7gNuXOxgRg8DfA2/OzJcCv96RyiRJq9Iy0DPzMPDdFbr8JvBAZh5v9J/tUG2SpFXoxBr6zwBXR8ShiHgkIt6xXMeI2BcRRyLiyNmzZztwaklSUyc+4OJK4FXAbcDzgP+MiIcz8+uLO2bmfmA/wNDQUHbg3JKkhk4E+gngVGaeBc5GxGHg5cCPBLokaf10YsnlX4BfiIgrI+L5wB7g8Q48ryRpFVrO0CPifmAM2BERJ4C7gR6AzLwnMx+PiH8FHgOeAz6Wmcve4ihJWh8tAz0z72ijz18Bf9WRiiRJa+IrRSWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFKD/QM1fel6RCdOLNubrXoUNw7hzs3QsRVZgfPAi9vTA2Vnd1kjaxqSmYmID5eRgYgPFxGB2tt6ZyZ+iZVZhPTlYh3gzzycmq3Zm6pDWamoIDB2BuroqSublqf2qq3rrKnaFHVDNzqEJ8crLa3rPn4oxdktZgYgIuXLi07cKFqr3OWXq5M3S4NNSbDHNJl2l+fnXtG6XsQG8usyzUXH6RpDUaGFhd+0YpN9AXrpnv2QN33VV9XbimLklrMD4OPT2XtvX0VO11KnsNvbf30jXz5vJLb6/LLpLWrLlO3m13uZQb6FDdmph5MbyboW6YS7pMo6P1B/hi5S65NC0Ob8NcUqHKD3RJ2iIMdEkqhIGu4hw/frzuEqRalH1RVFvO8PAwx44d49SpUzz66KOcP39+xf7btm1j586dG1SdtL4MdBVnZGSE6elpTp48yeHDh5ftt2vXLm677TbOnz/PtddeS39//wZWKXWega4iDQ8Pt+wzPT3NmTNnuOWWW9i2bZuBrk3PNXRtac8++yyzs7N1lyF1hIEuSYUw0CWpEC0DPSLujYjZiDjWot8tEfFMRLy1c+VJktrVzgz9PuD2lTpExBXAXwL/1oGaJElr0DLQM/Mw8N0W3d4LfB7w6pIk1eSy19AjYhfwq8BH2+i7LyKORMSRs2fPXu6pJUkLdOKi6IeA92fmc606Zub+zNydmbv7+vo6cGpJUlMnXli0G/hMVG9LuwN4Q0Q8k5kPduC5JUltuuxAz8yfbm5HxH3AFwxzSdp4LQM9Iu4HxoAdEXECuBvoAcjMe9a1OklS21oGembe0e6TZeadl1WNJGnNfKWoJBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjo3Sxz5X1JWqBloEfEvRExGxHHljn+WxHxWERMRcRXI+LlnS9zCzp0CA4evBjimdX+oUN1ViWpi7UzQ78PuH2F498Abs3MUeAvgP0dqGtry4Rz52By8mKoHzxY7Z8750xd0pKubNUhMw9HxPUrHP/qgt2HgaEO1LW1RcDevdX25GT1ANizp2qPqK82SV2rZaCv0u8CX1ruYETsA/YBDA4OdvjUhWmGejPMwTBfB8ePH2dgYIDTp0+37Lt9+3b6+/s3oCppbToW6BHxi1SB/gvL9cnM/TSWZIaGhlw3WElzmWWhgwcN9Q4aHh4GYHp6mpMnT3LDDTes2P/WW2/lzJkz7Ny5cyPKk1atI4EeES8DPga8PjNPdeI5t7SFa+bNZZbmPhjqHdYM9qNHjy7b57nnnuPUqVPccsstAIa6utJlB3pEvBh4AHh7Zn798ksSEdDbe+maeXNNvbfXMF8nzWBfyszMDM8++yyzs7Mr9pPq1DLQI+J+YAzYEREngLuBHoDMvAe4C7gW+PuoguaZzNy9XgVvGWNj1Uy9Gd7NUDfMJS2jnbtc7mhx/F3AuzpWkS5aHN6GuaQV+EpRSSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQ5Qd65sr76jzHXKrFla06RMS9wBuB2cwcWeJ4AB8G3gB8H7gzM492utA1OXQIzp2DvXshogqWgwehtxfGxuqurkyOubaIqSmYmID5eRgYgPFxGB2tt6Z2Zuj3AbevcPz1wEsaj33ARy+/rA7IrIJlcrIKlGawTE5W7c4aO88x1xYxNQUHDsDcXPVjPTdX7U9N1VtXyxl6Zh6OiOtX6PIW4JOZmcDDETEYETsz86lOFbkmEdUsEapAmZystvfsuTh7VGc55toiJibgwoVL2y5cqNrrnKV3Yg19F/CtBfsnGm0/IiL2RcSRiDhy9uzZDpy6hYUB02SwrC/HXFvA/Pzq2jfKhl4Uzcz9mbk7M3f39fVtxAmrP/kXai4FaH045toCBgZW175RWi65tOEkcN2C/aFGW70Wrt82/+Rv7oOzxvXgmGuLGB+v1swXLrv09FTtdepEoD8EvCciPgPsAeZrXz+HKjh6ey9dv20uBfT2GizrwTHXFtFcJ++2u1zauW3xfmAM2BERJ4C7gR6AzLwH+CLVLYtPUN22+M71KnbVxsaqWWMzSJoBY7CsH8dcW8ToaP0Bvlg7d7nc0eJ4Au/uWEWdtjhIDJb155hLtSj/laKStEUY6JJUiE5cFJW2hOPHj/PCF76Q06dPt+y7fft2+vv7N6Aq6SIDXWrD8PAwAEeOHOH8+fNs27Zt2b5DQ0PcdNNNnDlzhp07d25UiZKBLq3GyMgI09PTK/Y5cuQIJ06c4NZbbwUw1LVhDHRplZqz9eXMzMwwOzvLI488wpjvMKkN5EVRSSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVIjImj54ICK+DXxzA0+5A/jOBp6vkzZr7Zu1bti8tW/WumHz1r7Rdf9UZr5gqQO1BfpGi4gjmbm77jrWYrPWvlnrhs1b+2atGzZv7d1Ut0suklQIA12SCrGVAn1/3QVchs1a+2atGzZv7Zu1bti8tXdN3VtmDV2SSreVZuiSVDQDXZIKUVSgR8S9ETEbEceWOR4R8bcR8UREPBYRr9zoGpfTRu1jETEfEY82HndtdI1LiYjrIuIrETETEdMR8YdL9Om6cW+z7m4d896I+K+I+O9G7X+2RJ9tEfHZxphPRsT1NZS6uKZ26r4zIr69YMzfVUety4mIKyLiaxHxhSWO1T/mmVnMA3gd8Erg2DLH3wB8CQjgNcBk3TWvovYx4At117lEXTuBVza2+4GvA8PdPu5t1t2tYx7A9sZ2DzAJvGZRn98H7mlsvw347Cap+07gI3XXusJ/wx8B/7TUz0U3jHlRM/TMPAx8d4UubwE+mZWHgcGI6IqPk2mj9q6UmU9l5tHG9mngcWDXom5dN+5t1t2VGuN4prHb03gsvrvhLcAnGtufA26LiNigEpfUZt1dKyKGgF8BPrZMl9rHvKhAb8Mu4FsL9k+wSX6JG36+8efqlyLipXUXs1jjT8xXUM28FurqcV+hbujSMW/86f8oMAt8OTOXHfPMfAaYB67d0CKX0EbdAL/WWJr7XERct7EVruhDwJ8Azy1zvPYx32qBvpkdpXoPh5cDfwc8WG85l4qI7cDngfdl5vfqrqddLeru2jHPzGcz82ZgCHh1RIzUXFJb2qj7AHB9Zr4M+DIXZ7y1iog3ArOZ+UjdtaxkqwX6SWDhv/hDjbaul5nfa/65mplfBHoiYkfNZQEQET1UofjpzHxgiS5dOe6t6u7mMW/KzDngK8Dtiw79cMwj4kpgADi1ocWtYLm6M/NUZp5v7H4MeNUGl7ac1wJvjoj/Az4DjEfEpxb1qX3Mt1qgPwS8o3HXxWuA+cx8qu6i2hERP9Fcj4uIV1P9v6v9F7RR08eBxzPzg8t067pxb6fuLh7zF0TEYGP7ecAvAf+zqNtDwO80tt8KTGTjal1d2ql70bWVN1Nd26hdZv5pZg5l5vVUFzwnMvO3F3Wrfcyv3MiTrbeIuJ/qzoQdEXECuJvqwguZeQ/wRao7Lp4Avg+8s55Kf1Qbtb8V+L2IeAb4AfC2un9BG14LvB2YaqyNAnwAeDF09bi3U3e3jvlO4BMRcQXVPzL/nJlfiIg/B45k5kNU/1j9Y0Q8QXWx/W31lftD7dT9BxHxZuAZqrrvrK3aNnTbmPvSf0kqxFZbcpGkYhnoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRD/D8Rw2iY8jIsvAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -807,7 +853,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAIbCAYAAABynTBtAAB/gUlEQVR4nO3dd3hU1dbA4d+khw5KDShFAtIEqSJNwYJIEaVKRwQEQcWrKHqxYVe8gtKl+CkdQRFULr1IkaI0L12KFCG0AOnr+2NnMglJIGVmzpT1+uTJmcKcNdu9s07ZxSYiglJKKeW75gZYHYFSSinlaprslFJK+TxNdkoppXxekJU7P3kSdu0yP0eOwIkT5rnTp+HCBUhKgsuXISEB8uSB0FAIC4NChaBkSYiIgFKlIDISqleHKlUgb14rv5F3OQnsSv45ApxIfu40cAFIAi4DCUAeIBQIAwoBJYEIoBQQCVQHqgBa/P5D26+1tP1mj81dHVQSE2HHDli92vysXw/nzjl3HzabaTiNG0OTJtCsGZQp49x9eKtEYAewOvlnPeDk4seGaTiNgSZAM0CL3zdo+7WWtt9cm+vSZBcXB8uXw3ffwaJFcObMjd8fEADFi0OxYlCkCAQGQv78EBQEV69CbCxcuwZRUeYo8tKlm8dw113Qvj089pg5evQnccBy4DtgEXCT4icAKA4UA4oAgUB+zOn/VSAWuAZEYY4is1D83AW0Bx7DHD0q76Ht11rafp3KNcnuwAGYOBGmToWzZ9O/HhhoKnHt2lCtGlStCpUqQYkSpmFk1dWrcPQo7NkDu3ebyykbNsDx4xm/v1YtGDAAunaFfPly9t28wQFgIjAVyKD4CcRU4tpANaAqUAkoQfaua18FjgJ7gN2YyykbgEyKn1rAAKAr4MPF7/W0/VpL269LODfZbdwIb78NS5fC9Z9arhy0awfNm0OjRlCwoLP2mt7Bg7BmjYlj6VKIjk77eoEC0L8/vPiiOQr1FRuBt4GlwPX/U8sB7YDmQCPAhcXPQWBNchxLgeuKnwJAf+BFzFGo8gzafq2l7del5iJO8NtvIg8/LGKaiOOnRAmR4cNFtm1zxl5y5to1kUWLRDp2FAkJSRtf3rwiL74oEhVlXXzO8JuIPCwiXPdTQkSGi4iFxS/XRGSRiHQUkRBJG19eEXlRRLy8+L2etl9raft1izm5Snbnz4sMGiQSGJi2Et57r8icOSJxcU4K00lOnRJ5912RkiXTxlusmMi0aSJJSVZHmD3nRWSQiARK2kp4r4jMEREPK345JSLvikhJSRtvMRGZJiJeVvxeT9uvtc6Ltl83ynmy+/FHkeLF01a6Jk1Eli93ZnyucfWqyGefpW80zZqJHDtmdXRZ86OIFJe0la6JiHhB8ctVEflM0jeaZiLiJcXv9bT9Wkvbr9tlP9nFxYmMHCkSEOCoZKVKiUyf7oLwXOzKFfNdQkMd36VgQXNU66niRGSkiASIo5KVEhEvLH65Iua7hIrjuxQUc1SrXEPbr7W0/Vome8kuKkqkcWNHxbLZRIYOFYmOdlF4brJnj0j9+mm/1zvvWB1VelEi0lgcFcsmIkNFxMuLX/aISH1J+708sPi9nrZfa2n7tVTWk93RoyJVq6a9Tr5kiStjc6+4OJGXX057xDtwoEhCgtWRGUdFpKqkvU7uQ8UvcSLysqQ94h0oIh5S/F5P26+1tP1aLmvJ7uRJkQoVHJWoenXvuTaeXd99JxIe7viu/fpZf+P7pIhUEEclqi4efW08V74TkXBxfNd+4vE3vj2etl9rY9L26xFunuwuXBCpWdNReZo2Nb24fNm6dSJFiji+84gR1sVyQURqiqPyNBXTi8uXrRORIuL4zhYWv9fT9qvt1908tP3ePNm1beuoNA0aeP/1/azauNGM47F/91mzrImjrTgqTQPx/uv7WbVRzDge+3e3qPi9nrZfbb9W8MD2O+eGS/yMG2fmxAOoXBkWL/afWcnr14d58xzTH/Xvb2Z2d6dxmDnxACoDi/HtWclTqw/MwzH9UX/MzO4q67T9avu1iie230yT3ZEjMGyY2Q4Lgzlz4JZb3BSVh3j4YXj9dbN98SL07eu+fR8BkoufMGAO4GfFz8NAcvFzEXBj8Xs9bb/afq3mae0302Q3YoSZoRzg/fc9d8bxHTt20KpVKwoVKkT+/Plp0aIF69evd9rnjxgB995rtlesMEfH7jACM0M5wPu4f8bx+Ph4Ro8eTe3atcmfPz/FihWjZcuW/PDDD4i4ZVUowJRDcvGzAnN0rG7OW9ovwJIlS4iMjCQoO7NIZ5G2X22/KTK6uLltmxmrAiLVqnlO993rbdy4UcLDw6VTp07y999/yz///CP9+vWToKAg+fnnn522n23bHF2aq1Z1fe+ubWLGqiAi1cT93Xejo6OlUaNGUqNGDVm9erVcvXpV/vrrL3niiScEkJ07d7o1nm3i6NJcVTymd5fH8pb2e+DAAWndurXUqFFDChQoIIGBgS7Zj7Zfbb+SWQeVfv0cN3YXL3Z3TFmTmJgoVatWlZIlS8rVq1dTnk9ISJBKlSpJmTJlJCYmxmn7e/JJR5msXOm0j81QP3Hc2LWi+AcOHCgFChSQU6dOpXk+OjpaQkND3d5YRESeFEeZrHT73r2LN7RfEZEuXbrIe++9J/Hx8RIREeGyZCei7VfE79tv+mR39apIoUKmUpQvb/0YlcysXLlSAHn22WfTvfbGG28IIPPmzXPa/jZtcjSW7t2d9rHpXBWRQmIqRXlx/1HQqVOnJDAwUAYOHOjmPd/YJnE0FhcWv9fzlvYrImkOUl2d7LT9WssD2m/63pjLlsGFC2a7b1+w2dx4TTUbVqxYAUCdOnXSvWZ/bvny5U7bX716jvseCxdCYqLTPjqNZcCF5O2+gLuL//vvvycxMZFGjRq5ec83Vg/HfY+FgIuK3+t5S/sFCA8Pd9u+tP1ayxPab7pkt26dY/uRR5yzk0aNGmGz2VJ+unXrBkCLFi3SPH/B3kqz4M8//wSgdOnS6V6LiIgAYN++fbkPPhV7eVy+DH/84dSPTpGq+HFS8WfLtm3bAChcuDDDhg2jTJkyhISEcPvttzNkyBCioqIsiMqwl8dlwEXF7/W8pf1aQduvf7ffdMlu0ybzO18+5/XgWrduHTt27CBv3rzcddddTJgwAYAff/yR+vXrM3PmTESEQoUKZfkz7Q0rbwYDh/LlM4vGnz9/Ptexp9awoWN740anfnSK5OInH+7vwQVw8uRJAPr06cPp06dZvXo1Z86c4e233+arr77innvu4eLFixZEBqmKHxcVv9fzlvZrBW2//t1+0yW748fN78hICAx03o7uuusupk6dyu+//06PHj0QEfr370/z5s3p3Lmz83YEKV1rbU6+hlOlimPbXk7OZv/YSMCJxZ9lMTExgLnENG3aNMqXL0+hQoXo0aMHr7zyCvv27eOTTz6xIDJIVfy4qPi9ni+0X1fR9uvf7Tddsjt71vwuWtT5O+vQoQMjRoxgwYIFNGrUiHPnzvH222/n6LPsR5FXrlxJ95r9OWcfaaYelGsvJ2ezf6wLij9L7GfKLVq0SDfuqXXr1gD8/PPPbo8L0g7KdVHxez1vab9W0Pbr3+03XbKzD0R11b3jt99+m/r167NhwwY6dOhAQMANZyzLVOXKlQE4nsEh2okTJwCIjIzMeaAZSH3FNIMc6xT2gajuu3WfVtmyZQG4JYPpNooVKwbAP//8486QUqS+YO2i4vd63tJ+raDt17/bb7qaWriw+e3k210pVq1axcWLF6levTrPPPMMv//+e44+57777gNg69at6V6zP9e8efOcB5qBc+cc266aeim5+HFR8d+UvReX/dp/amfOnAGgePHibo3JLlXx+93US1nlLe3XCtp+/bv9pkt29kpw+rTzd3b48GH69u3L/Pnz+f777wkPD6dt27Y5OtJo2rQpVapUYd68eSnXqQESExOZNWsWZcqUoVWrVs4Mn+S6AkCRIk796BT2SuCC4s+SRx55hIiICH766ac05Qrwww8/ANCuXTsLIoNUxY+Lit/reUv7tYK2Xz9vv9ePvGvXzgy8DAgwa2E5y+XLl6VGjRqyaNGilOdWrVolwcHB0qRJE4mLi8v2Z/76668SFhYmnTt3lpMnT8rZs2elf//+EhQUJD/99JPzgk82aZJjYOrs2U7/eBERaSdm4GWAmLWwrLB06VIJCgqStm3byr59++T8+fMyY8YMyZs3r9SvXz/NYGB3miSOgakuKn6v503tNzVXDyoX0fbr5+03/QwqH33kqBDOml5y0KBBAqT87Ny5U/755580zwHy9ttvZ/uzt23bJi1btpQCBQpIvnz55P7775d169Y5J/Dr9O7tKJujR12yC/lIHBXCebN7Zt+GDRvkoYcekoIFC0pISIhUrlxZ3njjDcsaiohIb3GUjYuK3+t5U/v94Ycf0n2G/WfSpEnOCT4Vbb9+3X7n2ETSToG9ebNZCwrMDAyTJ7v63NI7xMRARARERUG5cnDokGv2sxmzFhSYGRi0+I0YIAKIAsoBLip+r6ftN2Pafq3lAe13brp7dnXrmjE6ALNnQ3S0u2PyTAsXmoYC0L276/ZTFzNGB2A2oMVvLMQ0FAAXFr/X0/abMW2/1lqI9e03XbKz2aBXL7MdHQ3/+Y+bI/JASUnw4Ydm22aDnj1dty8b0Ct5OxrQ4ockILn4sQEuLH6vp+03PW2/1vKU9pvhIJn+/R1dmD/8MG0vJldLPddeZj9vvPGG+wICZsyA7dvNdqdOUL68a/fXH0cX5g9J24vJH80AkoufToCLi9/raftNS9uvtTym/WZ2Ny/1je727d13F9HTnDolUry4KYeQEJEDB9yz39Q3uv24+OWUiBQXUw4hIuKm4vd62n4Nbb/W8qD2m36JH7vBgyF5khIWLIBJk9yVfj1HUhI8+aRjzNLzz0OFCu7Z92AgufhZAPhh8ZMEPIljzNLzgJuK3+tp+9X2azWPa783SoV//CESFuY4KnJWV2Zv8dxzjqPj2rVFYmPdu/8/RCRMHEdFflb88pw4jo5ri4ibi9/rafvV9mslD2u/mZ/ZgVkixH5jNy4OOnSADGbn8klvvQWffWa2CxeGWbMgJMS9MVTHcWM3DugA+Enx8xbwWfJ2YWAW4Obi93rafs22tl/388j2m5WUOGyY4wgpXz4RF0xO4jGSkkRGjnR83/BwkTVrrI1pmDiOkPKJiA8XvySJyEhxfN9wEbG4+L2etl9rY9L26xHSz6CSkaQkkZ49HRUoNFRk+nQXh2aBK1dEunRxfM+QEJFUsyNZJklEeoqjAoWKiA8Wv1wRkS7i+J4hIuIBxe/1tP1aS9uvR8hashNJf8QEIt27i1y+7MLw3GjPHpHq1dMeAS9danVUDtcfMSEi3UXER4pf9ohIdUl7BOxBxe/1tP1aS9uv5bKe7OxGjxYJCnJUqooVRX75xQWhuUlMjMioUeZyh/07lSkjsn271ZFlbLSIBImjUlUUES8ufokRkVFiLnfYv1MZEdluYUy+TNuvtUaLtl+LZD/ZiYisXy9y++1pjxI7dBA5fNi50bnajz+KREam/R5t24qcO2d1ZDe2XkRul7RHiR1E5LB1IeXIjyISKWm/R1sR8fDi93rafq2l7dcSOUt2IiJRUSI9eojYbI6KFhws8tRTIocOOTNG51u6VKRBg7SNpFAhkXHjzOUebxAlIj1ExCaOihYsIk+JiIcXvywVkQaStpEUEpFxYi73KNfT9mstbb9ul/NkZ7dmTdpr5fa1tFq0EJkzRyQhwRlx5t7FiyITJojUrJk2VvtR7alTVkeYM2sk7bVyxKyl1UJE5oiIhxS/XBSRCSJSU9LGaj+q9dLi93rafq2l7ddtcp/sRETi40WmTRO54470FbFsWZF//Utk40b3H3VFR4vMnSvSubNI3rxp47LZRFq3FvntN/fG5ArxIjJNRO6Q9BWxrIj8S0Q2ivuPuqJFZK6IdBaRvNfFZROR1iLiA8Xv9bT9Wkvbr1ukX88uNxISYOZMGDvWrKt1vYgIuP9+aNIEGjeGSpWctWcjNha2bIHVq2HtWlizBq5dS/ue0FB4/HF44QWoXdu5+7daAjATGItZV+t6EcD9QBOgMeDk4icW2AKsBtYCa4Drip9Q4HHgBcDHit/rafu1lrZfl5rr1GSX2vbtMHEizJsHZ89m/J4CBaBKFTPTQ2QklCwJZcpA8eLmtbAwyJvXzHwQHQ3x8XDpkvk5dszMeffXX7BnD+zaBfv3mwZrJAEHgYoAVKsGPXpA795w662u+MaeZTswEZgHZFL8FACqYGZ6iARKAmWA4smvhQF5MTMfRAPxwKXkn2OYOe/+AvYAu4D9mAabkWpAD6A34AfF7/Wsb79pafsF9u1zLFaItt9scl2ys0tMNEdqCxbAzz/DgQOu3JtDYOBHBAR8xPDhe+nW7ZbUdcSvJGKO1BYAPwNuKn6CMQtZtgba41jQUnkXq9pvcLBZiLZ1a2jfHr9vvx/Nm8fPXbog//uf69cowifbr+uT3fX+/ts0ng0bzNHczp1w7lzuPjMgAMqWNUeYNWuaSyxVq16iTp0qPPDAA0ydOtUZofuEvzGNZwPmaG4nkFL8R47Af/9rlnIODc3yZwYAZTFHmDUxl1gaYI4qlW9xTvs9CCwDBgAZt98GDcxZoYKLFy9StWpVHn74Yd6aPDnz9ptDftJ+3Z/sMnLqFBw6BCdPwokT5vLG5cvmGv7Vq+Z3/vwQFAT58plLJBER5rJJRARUrJhxw1iwYAGPP/44v/zyCw888ID7v5iXOAUcAmZMnMjUF17ghQsXuBIURCxwFXMtPz8QBOTDXCKJwFw2icBcKPaxhqGyIbvt9+TJ75k1qx0zZ56jUqXCmbZfZTz99NN899137N27l1szuIZrb78ngROYy5OXQdtvWp6R7Fypffv2bN++nV27dpFXW9QN9evXj/3797Nq1SqrQ1E+7MyZMxQvXlwPQrNg7dq1NG3alG+//ZbOnTtbHY43m3vDJX58wRdffMGFCxd45513rA7F423atIn69etbHYbyccWKFeP2229nc0ZdPlWK2NhYBgwYwMMPP6yJzgl8PtmVLFmSUaNG8fHHH7N9+3arw/FYV65cYe/evdStW9fqUJQfqFevnia7m3j33Xc5cuQIX3zxhdWh+ASfT3YAAwYMoEGDBvTv35/ExESrw/FIv/32GwkJCdSrV8/qUJQfqFu3Lhs3brQ6DI/1v//9jw8++IBRo0ZRrlw5q8PxCX6R7AICApg8eTJ//PEHY8aMsTocj7R582ZKlCjBbbfdZnUoyg/Ur1+fM2fOcPToUatD8ThJSUk89dRT1KhRg2effdbqcHyGXyQ7gEqVKvHSSy8xYsQIDh8+bHU4HmfLli16Vqfcpk6dOgQFBemlzAyMHz+ejRs3MmHCBAIDA60Ox2f4TbIDGDFiBGXLlmXQoEFWh+JxNm3apMlOuU2ePHmoUqWKJrvrnDx5khEjRvDiiy9Sq1Ytq8PxKX6V7EJDQxk/fjw//fQTs2bNsjocj2G/nKTJTrmTdlJJb9CgQRQqVIjXXnvN6lB8jl8lO4DGjRvz1FNP8eyzz3I2s0n//MzGjRux2WzUqVPH6lCUH6lbt25KxygFixcv5rvvvmPixIk6JtgF/C7ZAXz00UeEhoYyfPhwq0PxCFu2bCEyMpLChQtbHYryI/Xr108Z8uLvLl26xMCBA+nZs6cOtHcRv0x2BQsWZPTo0Xz11VcsX77c6nAsp/frlBWqVatG3rx52bRpk9WhWG748OHExMTw0UcfWR2Kz/LLZAfQoUMH2rRpw8CBA7l2/aJZfkRE+O233zTZKbcLDAzk7rvvZsuWLVaHYqlNmzYxYcIEPvvsM4oWLWp1OD7Lb5MdwJdffsmZM2cYNWqU1aFYZt++fZw/f16TnbKEv3dSiYuLo2/fvjzwwAM8+eSTVofj0/w62ZUqVYq3336bDz74gB07dlgdjiU2b95MSEgId911l9WhKD9Ur149du7cyZUrV6wOxRLvv/8+hw8f5ssvv7Q6FJ/n18kOTFffevXq+e1UYlu2bKFmzZqEZmP9OqWcpV69eiQmJvrlvLX79u3jvffe46233qK8GxZk9Xd+n+wCAgKYMGECO3bs8MujK13pQFmpbNmyFC9e3O86qYgIAwcOpFKlSgwZMsTqcPyC3yc7ML3C/vWvf/HKK69w5MgRq8Nxm7i4OH7//Xdd6UBZqm7dun7XSWXSpEmsXr2aKVOmEBwcbHU4fkGTXbLXX3+d2267za+mEtuxYwexsbHaOUVZyt86qZw6dYrhw4fz/PPPU7t2bavD8Rua7JKFhoYybtw4li5dyty5c60Oxy02b95MwYIFqVixotWhKD9Wr149Dh8+zOnTp60OxS2effZZChQowMiRI60Oxa9oskuladOm9OnThyFDhnD+/Hmrw3E5+0oHAQFaDZR16tati81m84tLmUuWLGHevHl88cUX5MuXz+pw/Ir+lbvOJ598QkBAAC+//LLVobicdk5RnqBIkSLccccdPp/sLl++zIABA+jWrRutWrWyOhy/o8nuOgULFuTTTz9l8uTJrFixwupwXObixYvs379fO6coj+AP9+1effVVrl69yieffGJ1KH5Jk10GOnXqROvWrRk4cCAxMTFWh+MSmzdvJikpSZOd8gj2ZCciVofiEps3b2bcuHF8+umnFCtWzOpw/JImu0yMGTOGkydP8u677zr1c3fs2EGrVq0oVKgQ+fPnp0WLFqxfv96p+8iKzZs3c9ttt1GyZMksvX/JkiVERkYSFBTk4siUP6pXrx5RUVEcPHgwW//OU9rTjSQkJNC/f3+aNGlC9+7dM32ftjHX0mSXidtuuy1lKrHdu3c75TM3bdpEw4YNyZ8/P3v37uXw4cOUL1+eZs2a8csvvzhlH1ll75xyMwcPHqRNmza88sorftNbTrlfrVq1CA0Nzdbgck9qTzfywQcf8L///Y9JkyZhs9nSva5tzE1EZSoxMVHuueceqV+/viQmJub6s6pWrSolS5aUq1evpjyfkJAglSpVkjJlykhMTExuQ86yUqVKyYcffnjT93Xp0kXee+89iY+Pl4iICAkMDHRDdMof1alTR4YOHZql93pae8rMvn37JCwsTD744INM36NtzC3m6JndDdinEtu2bRvjx4/P1WetWbOG3bt388QTTxAeHp7yfGBgIF26dOHYsWMsXrw4tyFnydGjR/n777+zdGY3ZcoUhg8frpdWlMtlp5OKJ7WnzEjylGCRkZE8//zzmb5P25h7aLK7ierVqzNs2DBeeeUVjh8/nuPPsffsrFOnTrrX7M+5ayHZzZs3ExAQwN13333T96b+Q6KUK9WrV4/t27cTFxd30/d6UnvKzFdffcXKlSuZMGHCDacE0zbmHprssuCNN96gZMmSDBgwIMef8eeffwJQunTpdK9FREQAZhZ0d9iyZQtVq1Ylf/78btmfUllRr149YmJi+OOPP276Xk9qTxk5e/Ysw4cPZ+jQoTRo0MCyOJSDJrssCA0NZfz48SxZsoQFCxbk6DMuXLgAQN68edO9Zp9JwV2ztmzevFnnw1Qep3LlyhQqVChLlzI9qT1lZPDgweTJk4e33nrLshhUWprssqhZs2b07NmTQYMGpTQ0Z5HksUUZ9dRytqSkJLZt26bJTnkcm81G7dq1cz2TijvbU0aWLl3K7NmzGTt2rE4J5kE02WXDJ598QlJSEq+88kq2/22hQoUAMlyR2f6c/T2utHv3bi5duqTJTnmkevXqZWn4gae0p+tdvXqVQYMG0aVLF1q3bu32/avMabLLhiJFijB69GgmTpzIunXrsvVvK1euDJBhJ5cTJ04AEBkZmfsgb2Lz5s3kyZOHatWquXxfSmVXvXr1+PPPP2969cRT2tP1Xn31VS5evMjo0aPdvm91Y5rssqlr1660atWKp556KltTid13330AbN26Nd1r9ueaN2/unCBvYMuWLdx9993azVl5pPr16yMiGbaT1DylPaW2ZcsWxo4dy8cff0zx4sXdum91czYRH52MzoWOHj1K1apVefHFF7O8JlVSUhLVq1fnwoULHDx4kLCwMAASExOpXr060dHR7Nu3L+V5V6lVqxbNmzfn448/zva/LV26NKdOnSIhIcEFkSlllClThmeeeeaGtws8pT3ZJSQkUK9ePQoUKMDKlStzfL9Q25jLzNUzuxy47bbbePPNN3n33XfZs2dPlv5NQEAAU6ZMISoqit69e3Pq1CnOnTvHoEGD2L9/P5MmTXJ5w7x27Rq7d+/WyZ+VR6tXr95NO6l4QntK7eOPP2bPnj2MHz/eso4x6sY02eXQ0KFDqVGjBn379iUpKSlL/6ZBgwZs2LCBixcvUqlSJcqWLcv+/ftZtWoVDz30kIsjNpd34uPjs9U5ZfHixdhsNmw2GydOnCAxMTHl8eTJk10YrfJX9erVY+PGjTd9n9Xtye7IkSO88847jBw5MuVeYnZoG3MPvYyZC3/88Qd16tRhzJgx9O/f3+pwburTTz/l/fff58yZM1aHolSmVq5cyf3338+xY8cyHDTuaR588EFOnTrF1q1bbzhTirKUXsbMjRo1avDcc8/x0ksvpfQA82RZXelAKSvVqVOHwMBAr1jMddq0aSxfvvymU4Ip62myy6U333yTokWLMnToUKtDualNmzZpslMeL3/+/FSuXDnXg8td7ezZs7z00ksMHjyYe+65x+pw1E1ossul8PBwJk2axIIFC1i4cKHV4WTqn3/+4fDhw5rslFeoX79+tta2s8Jzzz1HWFgY77zzjtWhqCzQZOcE9913H926deOZZ55x+lRizrJ582ZsNpv2xFReoW7duvz2228kJiZaHUqGfv75Z7755hvGjBmjE6p7CU12TjJ69GgSExN57bXXrA4lQ1u2bKFChQrccsstVoei1E3Vq1ePy5cvp6xu4EmuXr3KM888Q8eOHWnbtq3V4ags0mTnJLfccgsff/wx48aNY/369VaHk46udKC8SfXq1QkPD/fITir//ve/OXfunE4J5mU02TlR9+7dadGiBU899RSxsbFWh5NCRLQnpvIqwcHB1KpVy+M6qfz+++98/vnnfPzxx5QqVcrqcFQ2aLJzsokTJ3Ls2DE+/PBDq0NJcfDgQc6ePavJTnkVT+ukkpiYSN++fbnnnnvo27ev1eGobNJk52S33347I0eOZNSoUezdu9fqcABzCTM4OJiaNWtaHYpSWVa3bl127tzJtWvXrA4FMPfld+3apVOCeSlNdi7w/PPPU61aNQYMGIAnTFCzZcsWatSoQXh4uNWhKJVl9erVIz4+nu3bt1sdCn/99Rdvvvkmr732GnfeeafV4agc0GTnAkFBQUyZMoUNGzZ4xNx22jlFeaMKFSpQrFgxj+ikMmjQIEqXLs2//vUvq0NROaTJzkXuuusuhgwZwr/+9S9LpxKzHxlrslPeqE6dOpYnu//7v/9j6dKlTJ48mdDQUEtjUTmnyc6F3n77bW655Raef/55y2L4448/uHbtmiY75ZXq1q1rabI7d+4cw4YNY+DAgdx7772WxaFyT5OdC+XJk4cvv/ySuXPnsmjRIpfvb9++fezatSvNrBObN29OmWtQKW9Tr149Dh06xNmzZ1Oeu3LlCmvXriU6Otrl+3/hhRcIDAzUKcF8gC7x4wZPPvkkq1atYs+ePRQsWDDd6yLilN5dM2bMoGfPnoSHh1O7dm0aNmzIjh07iI6O9siB7krdzKlTpyhVqhTPP/88ly5dYt26dezbtw8R4fLly+TNm9dl+165ciXNmzdnwYIFtGvXzmX7UW4xV5OdG5w9e5YqVarQuXNnPv/885TnT548yZAhQxg+fDi1a9fO9X7Wrl1LkyZNUh4HBQWRmJiIiHDrrbfSoEED7rnnHurXr0+9evV0Tj/lcY4dO8avv/7K5s2b2bBhA9u3bycmJobAwEACAgKIj48HoEiRIpw7d84p+3zjjTcAePXVVwkJCQHg2rVrVK9enZo1azJv3jyn7EdZai6i3GLq1KkSEBAg69evl8TERPniiy8kb968Ashnn33mlH0cO3ZMgEx/AgICJDAwUIKCgmTXrl1O2adSzjRq1CgBJDg4+IZ1+e6773baPuvXry+A3HnnnbJp0yYREXnppZekQIECcvz4caftR1lqjp7ZuYmI8OCDDxIXF0dMTAy//fYbSUlJBAQE8Nhjjznl6DEpKYmwsLCUo9+MBAUF8dxzz/HRRx/len9KOVtcXBx33nknf/31V6YrHgQEBNCxY0dmzpyZ6/3FxsaSP39+4uPjCQoKIikpib59+/LNN9/wySefMGDAgFzvQ3kEXancXRISEqhXrx4bNmxg27ZtJCUlASZBrVq1yin7CAgIoGTJkpm+brPZuOWWWxg5cqRT9qeUs4WEhDBhwoQbLu0THBxM+fLlnbK/LVu2pBwcJiQkkJSUxLRp0wgPD6do0aJO2YfyDJrs3GDdunVUq1aNDz74gISEBBISEtK8fu7cOQ4dOuSUfVWoUCHT10SEsWPHki9fPqfsSylXaNGiBU888QTBwcEZvp6YmEi5cuWcsq9169al2098fDznz5/niSeeoFWrVpaOk1XOo8nOhS5cuMDTTz9NkyZNOHTo0A0vy6xbt84p+6xYsWKGfySCg4O57777eOKJJ5yyH6VcacyYMSmdRa6XkJDgtDO7tWvXZtgu7VdefvnlF+68806++uorj5j6T+WcJjsXCgoKIioqChFJdzaXWmBgoNOGBpQrVy7DYQwiwrhx45yyD6VcrUSJErz55psEBGT8J8oZZ3Yiwtq1a1MSW0aSkpK4du0acXFxOvmzl9Nk50L58uVj3rx5TJgwgcDAQAIDAzN8X3x8PCtWrHDKPsuVK5eug0pQUBCvvPIKlSpVcso+lHKHoUOHUrly5XTtJiAggNKlS+f683fv3s3ly5czfT0kJIRbb72VNWvWaEcVH6DJzg2efvppVqxYQcGCBTO9D3Hw4EH++eefXO+rXLlyaS63BAQEUKxYMV5++eVcf7ZS7hQUFMSECRPSnXmVKFEi03aUHevWrcv0ADQwMJC7776b33//nXvuuSfX+1LW02TnJk2aNOH333+nRo0amTawjRs35no/11/eSUpKYsKECS6daUIpV2nUqBHdunVLk9ycdb9u3bp1mV6a7NOnD2vWrKFEiRJO2ZeyniY7NypdujTr16+nd+/e6V4LDg52yn27okWLpqxbFxwczKOPPsqjjz6a689Vyioff/wxYWFhgDnbi4yMdMrnrly5Ms299KCgIIKDg5k6dSoTJ050ytmj8hya7NwsNDSUSZMmMX36dEJCQggKCgLMYFpn3bcrU6YMYC5hjhkzximfqZRVihUrxnvvvUdAQAAi4pTOKSdOnODvv/9OeRwcHEypUqX47bff6NWrV64/X3kenUHFQtu2baN169b8888/xMfHExwczKVLl1KOYjl5EnbtMj9HjsCJE+a506fhwgVISoLLlyEhAfLkgdBQCAvj0cuX+TE6mndr1eKVBx+EyEioXh2qVAG9nJllJ4FdyT9HgBPJz50GLgBJwGUgAcgDhAJhQCGgJBABlAIigepAFUBLPxtS1f+kw4ep8/XXbL9wgf8rXpwnExIyrf8UKgQlS0JEBJQqlWH9nzVrFl27dkVECAgIoEWLFsyaNYvChQtb+509iI/Vf50I2mpnzpzh8ccfTxlnt2bQIBofOwbr10MOJ7odCiwBdgNpRirZbKbhN24MTZpAs2aQfBbo7xKBHcDq5J/1gHOmGXawYRp+Y6AJ0AzQ0k+WmAg7dsDq1eYng/q/CWgIrE3+nW2p6v+Qv/5izLJl2Gw2Xn/9dUaOHJnpMAd/4Af1X5OdpeLiYPlyEubP518zZ/LZ1au8C7yS2fsDAqB4cShWDIoUgcBAyJ8fgoLg6lWIjYVr1xh94AB3Xr7Mw1ev3jyGu+6C9u3hscfM0a8fiQOWA98Bi4AzN3l/AFAcKAYUAQKB/EAQcBWIBa4BUZij4EtZiOEuoD3wGObo168k13+++w4WLYIzN/k/EBDA02FhvFm2LCWLF8+0/hMVZa6CXMr8/8BdwCFgZrlyPNqrl9Z/fL7+a7KzxIEDMHEiTJ0KqRalnIWpeLMDA00Sql0bqlWDqlWhUiUoUcI07Js4e/Yst956q/kDcPQo7NkDu3ebS0IbNsDx4xn/w1q1YMAA6NoVfHhKsQPARGAqcDaD1wMxjbA2UA2oClQCSmAadlZdBY4CezBn2buADUAmpU8tYADQFfDd0ifT+p/iBvU/6tIlChcunLUB3pnU/0vHj9MQmAvcmfr9Wv8Bn63/muzcauNGePttWLoUri/2cuWgXTuO1qjBbY89Bhks8uo0Bw/CmjUmjqVL4foVnwsUgP794cUXzVmkj9gIvA0sxawTk1o5oB3QHGgEuLD0OQisSY5jKXD9etsFgP7Ai5ijaJ+RhfpP8+bQqJFL63/U1q2EbtlC3hUrtP4n84P6r+vZucVvv4k8/LCIaeKOnxIlRIYPF9m2zbrYrl0TWbRIpGNHkZCQtPHlzSvy4osiUVHWxecEv4nIwyLCdT8lRGS4iFhY+nJNRBaJSEcRCZG08eUVkRdFxLtLX7T+W0zrv4iIzNFk50rnz4sMGiQSGJi2Ed17r8icOSJxcVZHmNapUyLvvitSsmTaeIsVE5k2TSQpyeoIs+W8iAwSkUBJ24juFZE5IuJhpS+nRORdESkpaeMtJiLTRMS7Sl+0/lvsvGj9T0WTncv8+KNI8eJpG02TJiLLl1sd2c1dvSry2WfpG32zZiLHjlkdXZb8KCLFJW2jaSIiXlD6clVEPpP0jb6ZiHhH6YvWf4tp/U9Hk53TxcWJjBwpEhDgaCSlSolMn251ZNl35Yr5LqGhju9SsKA5KvdQcSIyUkQCxNFISomIF5a+XBHzXULF8V0Kijkq91ha/y2l9T9TmuycKipKpHFjR8Ow2USGDhWJjrY6stzZs0ekfv203+udd6yOKp0oEWksjoZhE5GhIuLlpS97RKS+pP1enlf6ovXfYlr/b0iTndMcPSpStWra6/xLllgdlfPExYm8/HLaI/aBA0USEqyOTEREjopIVUl7nd+HSl/iRORlSXvEPlBEPKP0Reu/xbT+35QmO6c4eVKkQgVHI6he3Wuu7Wfbd9+JhIc7vmu/fpbfuD8pIhXE0Qiqixfd28qm70QkXBzftZ94QMcVrf+WhqT1P0s02eXahQsiNWs6Kn/TpqYXmi9bt06kSBHHdx4xwrJQLohITXFU/qZieqH5snUiUkQc39m60het/1r/3S6H9V+TXa61beuo9A0aeP/9iazauNGMQ7J/91mzLAmjrTgqfQPx/vsTWbVRzDgk+3e3pvRF67/Wf0vkoP7P8d+ZT51h3Dgzpx9A5cqweLH/rCpQvz7Mm+eYvqx/f7MygxuNw8zpB1AZWIz/rCpQH5iHY/qm/piZ6d1K67/Wf4vkpP5rssupI0dg2DCzHRYGc+bALbdYGpLbPfwwvP662b54Efr2dduujwDJpU8YMAfws9LnYSC59LkIuK/00foPWv8tlt36r8kup0aMMDOsA7z/vt/NmJ5ixAi4916zvWKFObp3x24xM6wDvI/7Vgw4f/4848eP5/7776dIkSKEh4dTsWJFnnzySX7//Xc3ReEwAkgufVZgju7ds2Ot/4Df1f/UlixZQmRkZMoC1FbIVv137ZVVH7VtmxlrAyLVqlna/bh+/frSqlUry/YvIqY87F2yq1Z1ee+0bWLG2iAi1cS93e/79u0rQUFB8tlnn8nJkyflypUrsmbNGqlSpYoEBgbKd99958ZojG3i6JJdVdzQO1Prf1p+VP9FRA4cOCCtW7eWGjVqSIECBSQwMNDNEaSVxfqv9+xyZNw4x6zt779vliTxZ7VqQZcuZnv3brP4pguNwzFr+/uYJUncqU+fPgwdOpQSJUqQJ08eGjduzLfffktiYiIvvfSSm6MxS6Mklz67MYtvupTW/7T8rP6//vrrNGzYkK1bt5I/f3437z29rNZ/XeInu65dg1Kl4MIFKF/erM2VlbW1XKRBgwbceuutLHbT5ZNMbd5sbtoDdO8OM2a4ZDfXgFLABaA8Zm0u60o/rTx58hAbG0tCQkLW1ltzos2Ym/YA3QHXlD5a/zPjR/X/2rVrhIeHA1C6dGlOnTpFQkKCm6NIKwv1f66e2WXXsmWmoYO5IW1hQ/co9eo57tssXAiJiS7ZzTJMQwdzQ9pTSv/KlStcu3aNatWquT3RAdTDcd9mIeCa0kfrf2b8qP7bE50nyUr912SXXevWObYfecS6ODyRvTwuX4Y//nDJLlKVPp5U+nPnzgVgxIgRlsVgL4/LgGtKH63/N+LH9d8T3Kz+a7LLrk2bzO98+fy3B1pmGjZ0bG/c6JJdJJc++bCmB1pGTp8+zfDhw3nqqafo2LGjZXGkKn1cU/po/b8RP63/nuJm9d+6PqPe6vhx8zsy0u035oOCgkjM5PLI9ZfOihcvzqlTp9wRlkOVKo5tezk5mf1TI3H/jfmMnDt3jocffphmzZoxfvx4S2NJVfq4pvTR+n8jflj/PcnN6r8mu+w6e9b8LlrU7bvO6Cawx9ygh7SDiu3l5GT2T3V/6ad35coVHnroIapUqcKMGTMItLhXYupBxa4pfbT+34if1X9Pc7P6r5cxs8s+kNYDb9JaLvVUUVeuuGQX9oG0Vpd+QkICHTp0ICIigunTp1ue6CDtVFGuKX20/t+IH9V/T3Sz+q/JLrsKFza/z5+3Ng5PdO6cY9tFU0cllz5Wl37//v2JjY1lzpw5aWaQuOOOO9joovs1N5Oq9F03dZTW/8z5Uf33RDer/5rsssteiU+ftjYOT3TmjGO7SBGX7MJeia0s/TfeeIPdu3ezaNEiQkNDLYwkrVSlj2tKH63/N+In9d9T3az+a7LLrkqVzO99+8zkr8phyxbH9p13umQXyaXPPszkr+42bdo03nzzTTZt2kT+/Pmx2Wxpfg4ePGhBVEaq0sc1pY/W/xvxg/rvyW5W/zXZZZd90tekJEc3bGVs2ODYvucel+zCPulrEo5u2O40b948C/aaNalKH9eUPlr/b8QP6j/A4sWLUw7uTpw4QWJiYsrjyZMnWxTVzeu/TheWXamnBerbFyz8n+tRYmIgIgKioqBcOTh0yCW7ST0tUF9AS9+IASKAKKAc4JrSR+t/ZrT+WyoL9V+nC8u2unXNGCOA2bMhOtraeDzFwoWmoYOZG9BF6mLGGAHMBrT0jYWYhg5mbkCX0fqfMa3/llrIzeu/JrvsstmgVy+zHR0N//mPpeF4hKQk+PBDs22zQc+eLtuVDeiVvB0NaOmbS1rJpY8NcF3po/U/I1r/LZXV+q/JLif693d0wf7ww7S9sPzRjBmwfbvZ7tTJzIbvQv1xdMH+kLS9sPzRDCC59OmEmQ3fpbT+p6X131JZrf+a7HKiSBF49VWzfekSDBxobTxWOn0ahg832yEh8M47Lt9lESC59LkE+HHpcxpILn1CANeXPlr/U9P6b6ns1H9Ndjk1eDBUrmy2FyyASZOsjccKSUnw5JOOMVfPPw8VKrhl14OB5NJnAeCHpU8S8CSOMVfPA+4pfbT+g9Z/i2W7/rtn4XQf9ccfImFhIiASEiLy889WR+Rezz1nvjuI1K4tEhvr1t3/ISJhIoKIhIiIn5W+PCfmuyMitUXEvaUvWv+1/lsqm/V/jp7Z5Ub16o4b03Fx0KEDbN1qbUzu8tZb8NlnZrtwYZg1y1zGcaPqOG5MxwEdAD8pfd4CPkveLgzMwlzGcSut/2Zb67/b5aj+uz7/+oFhwxxHePnyifz0k9URuU5SksjIkY7vGx4usmaNpSENE8cRXj4R8eHSlyQRGSmO7xsuItaWvmj91/rvNrmo/3M02TlDUpJIz56OBhAaKjJ9utVROd+VKyJduji+Z0iIyKJFVkclSSLSUxwNIFREfLD05YqIdBHH9wwREetLX7T+W0zrf5ZosnOa64/4QKR7d5HLl62OzDn27BGpXj3tEfzSpVZHleL6Iz5EpLuI+Ejpyx4RqS5pj+A9p/RF67/FtP7flCY7pxs9WiQoyNEoKlYU+eUXq6PKuZgYkVGjzOUa+3cqU0Zk+3arI8vQaBEJEkejqCgiXlz6EiMio8RcrrF/pzIist3CmG5I67+lRovW/0xosnOJ9etFbr897VFuhw4ihw9bHVn2/PijSGRk2u/Rtq3IuXNWR3ZD60Xkdkl7lNtBRA5bF1KO/CgikZL2e7QVEc8ufdH6bzGt/xnSZOcyUVEiPXqI2GyOhhIcLPLUUyKHDlkd3Y0tXSrSoEHaRl6okMi4ceZylReIEpEeImITR0MJFpGnRMTDS1+WikgDSdvIC4nIODGXq7yC1n9Laf1PR5Ody61Zk/ZaP4gEBIi0aCEyZ45IQoLVERoXL4pMmCBSs2baWO1H5adOWR1hjqyRtNf6EZEAEWkhInNExENKXy6KyAQRqSlpY7UflXtn6YvWf4tp/U+hyc4t4uNFpk0TueOO9A2pbFmRf/1LZONG9x81RkeLzJ0r0rmzSN68aeOy2URatxb57Tf3xuQC8SIyTUTukPQNqayI/EtENor7z5qiRWSuiHQWkbzXxWUTkdYi4v2lL1r/Lab1X0RE5uh6du6UkAAzZ8LYsWZdsOtFRMD990OTJtC4sWNVaGeJjTWrKa9eDWvXwpo1cO0aAAeAcCAiNBQefxxeeAFq13bu/i2WAMwExmLWBbteBHA/0ARojGNVaGeJxaymvBpYC6wBrl33nlDgceAFwLdKH4+u/yn8qf7/+ivcfbf5zvh8/Z+ryc4q27fDxIkwbx6cPZvxewoUgCpVzEwVkZFQsiSUKQPFi5vXwsIgb14zc0N0NMTHm4l5L12CY8fMnH1//QV79sCuXbB/v/mDk4EmefNypVAh1mzYQN7bbnPhF/cM24GJwDwgk9KnAFAFM1NFJFASKAMUT34tDMiLmbkhGojHTMx7CTiGmbPvL2APsAvYj/mDk5FqQA+gN3Brrr6Zl/Cw+k+1atCjB/TuDbf6/v+Brzdtos999xH6/vtcGTIkw/f4WP3XZGe5xERzpLlgAfz8Mxw44J79BgebhThbt4b27TkSEkL9+vWpW7cuixYtIjAw0D1xWCwRc6S5APgZc4brDsGYhThbA+1xLMjpdzyk/qcsSOsHTpw4Qf369alevTqLFi9mXWCgP9R/TXYe5++/TePfsMEcje7cCefO5e4zAwKgbFlzhFyzprlE1KCBOSpOZf369TRv3pwhQ4bwoX3OQz/zNyb5bcAcje4Eblj6hw7Bf/8LTz+d6VsCgLKYI+SamEtEDTBHxeo62az/h4D/ApmXPlmu//7g8uXLNGrUiISEBDZs2EDBggXTvJ7t+p8FHlL/Ndl5hVOnzB/VkyfhxAlzeebyZXMP4upV8zt/fggKgnz5zCWeiAhz2SciAipWzHLDnjNnDp07d+bLL79kwIABLv5i3uEU5o/qSeAE5vLMZcw9iL1z5rC2Uyf6iBAE5MNc4onAXPaJACqiiS1XblD/5+zdS6e1a5E+fZxS/31ZYmIijz32GFu2bGHTpk3clsXbFTeq/1eTf+cHT6//c4OsjkBlQYkS5scNOnbsyK5duxgyZAgVK1akefPmbtmvJyuR/JOROZib7VPcF47/uVH9nzPHdDaZov8Hbub5559n2bJlrFy5MsuJDm5c/72JJjuVzptvvsmhQ4fo0KEDv/76K5Wc3StOKeVWkydPZuzYsXzzzTc0aNDA6nAsoevZqXRsNhuTJ0+mcuXKPPLII/zzzz9Wh6SUyqFffvmFgQMH8s4779ClSxerw7GMJjuVobCwML7//ntsNhuPP/44sbGxVoeklMqmvXv30qlTJ5544gleeeUVq8OxlCY7lalbb72V77//np07d9K/f3+rw1FKZcPZs2dp06YN1apVY9q0adhsNqtDspQmO3VDVapUYdasWXzzzTe8//77VoejlMqCmJgY2rZtS2JiIgsWLCA0eZYUf6YdVNRNPfTQQ3z55Zf079+fsmXL0rlzZ6tDUkplQkTo168fu3btYsOGDRQtWtTqkDyCJjuVJf369eOPP/6gT58+lCtXjvr161sdklIqA2+++SazZ89myZIlVK1a1epwPIZexlRZ9tlnn9G8eXPatWvH0aNHrQ5HKXWduXPn8tZbb/Gf//yHFi1aWB2OR9Fkp7IsMDCQb7/9lmLFivHII49w8eJFq0NSSiXbsmULvXr14oUXXmDgwIFWh+NxNNmpbMmfPz/ff/89Z8+epUuXLiQmJlodklJ+78iRI7Ru3ZpmzZrxwQcfWB2OR9Jkp7Lt9ttvZ/HixaxevZqXXnrJ6nCU8muXL1+mTZs2lCxZktmzZ/vNiiXZpR1UVI7UqVOHadOm0alTJ+644w69bKKUBRITE+natStnz55l06ZN5MuXz+qQPJYmO5VjHTp0YO/evQwZMoQ77riDBx54wOqQlPIrQ4cOZfny5axatYoyZcpYHY5H02SncuX111/nwIEDPPHEE6xfv55q1apZHZJSfuHzzz/nyy+/ZObMmdSrV8/qcDye3rNTuWKfNPruu++mTZs2nDlzxuqQlPJ5P/30E8OGDeP999+nU6dOVofjFTTZqVwLCQlh3rx5BAYG0r59e500WikX2rNnD507d6Zbt27aQSwbNNkpp7jlllv44Ycf2L17Nz179kRErA5JKZ9z6tQpHnnkEWrUqMH48eOtDseraLJTTlO5cmVmz57N/PnzGTVqlNXhKOVTYmJieOyxxwgMDGT+/Pk6uXM2aQcV5VQPPvgg48ePp1+/fpQvX56uXbtaHZJSXk9E6Nu3L/v27ePXX3/VyZ1zQJOdcrq+ffuyc+dO+vbtS/ny5WnQoIHVISnl1f79738zd+5cli5dSmRkpNXheCW9jKlc4tNPP+XBBx+kdevWHDp0yOpwlPJas2fPZtSoUYwZM4bmzZtbHY7X0mSnXCIgIIBvvvmGiIgIWrdurZNGK5UD69evp2fPnrz00kv079/f6nC8miY75TL58uVjyZIlXLx4kc6dO5OQkOCS/ezYsYNWrVpRqFAh8ufPT4sWLVi/fr1L9pUbS5YsITIykqAgvXvgbt5SR1I7fPgw7du3p1WrVrz77ruZvk/rVdZoslMuVapUKRYtWsTatWsZNmyY0z9/06ZNNGzYkPz587N3714OHz5M+fLladasGb/88ovT95cTBw8epE2bNrzyyiucPn3a6nD8jjfUketdunSJNm3aULp0aWbMmEFAQPo/1VqvskmUcoN58+ZJQECAjB071mmfmZiYKFWrVpWSJUvK1atXU55PSEiQSpUqSZkyZSQmJsZp+8vI7Nmz5WbNqEuXLvLee+9JfHy8RERESGBgoEtj8ic3K39PqCPZFR8fLw888ICUKlVKjh07lun7tF5lyxw9s1Nu8fjjj/PWW28xdOhQFi9e7JTPXLNmDbt37+aJJ54gPDw85fnAwEC6dOnCsWPHnLav3JgyZQrDhw/Xy0wW8JY6ktqQIUNYt24dCxcupHTp0pm+T+tV9miyU24zYsQI+vTpQ9euXdm5c2euP2/FihWAWW7oevbnli9fnuv95FbqP7LKvbyljth9+umnTJgwgW+//Za6deve8L1ar7JHk51yqy+++II6derQpk2bXN9n+PPPPwEyPPqNiIgAYN++fbnah/Ju3lRHli5dyksvvcSHH35Iu3btrA7H52iyU24VHBzM3LlzCQ4O5tFHH+Xq1as5/qwLFy4AkDdv3nSv2RexPH/+fI4/X3k/b6kju3fvpnPnzvTs2dMlHbmUJjtlAfuk0QcPHqRXr14umTTa/pk2m83pn618g6fUkVOnTtGyZUtq1qzJuHHjLI3Fl2myU5aoVKkSCxcuZNGiRbz11ls5+oxChQoBcOXKlXSv2Z+zv0f5J0+vI9euXaNdu3bkyZOHhQsXEhISYlksvk678SjLNGnShHHjxvHUU09RoUIFunXrlq1/X7lyZQCOHz+e7rUTJ04A6DyCfs6T64iI0KdPHw4cOMCvv/5K4cKFLYnDX+iZnbJUnz59eOGFF+jXrx8bNmzI1r+97777ANi6dWu61+zP6VyC/s2T68irr77K/PnzmTt3LhUrVrQkBn+iyU5Z7sMPP+Thhx+mbdu2HDhwIMv/rmnTplSpUoV58+YRExOT8nxiYiKzZs2iTJkytGrVyhUhKy/hqXVk+vTpvP/++3zxxRcpCVm5liY7ZbmAgAC+/fZbypUrR5s2bVJ60GXl302ZMoWoqCh69+7NqVOnOHfuHIMGDWL//v1MmjSJsLAw1wavPJon1pG1a9fSv39/RowYQb9+/dy6b3+myU55hPDwcBYuXMjly5fp1KlTlieNbtCgARs2bODixYtUqlSJsmXLsn//flatWsVDDz3k4qizZvHixdhsNmw2GydOnCAxMTHl8eTJk60Oz+d5Uh05dOgQjz/+OI8++miOO2bZab3KHpu4ot+3Ujm0bds2mjRpQpcuXZg0aZLV4dzUnDlz6NSpk0uGT6ib86byj4qKomHDhuTLl4/Vq1dnOPZPucxcPbNTHuXuu+9mxowZfPXVV3z++edWh6OUU8THx9OxY0cuX77MokWLNNFZQJOd8jjt27fn3Xff5fnnn+f777+3Ohylcu3ZZ59l06ZNLFmyJGWaMuVeOs5OeaSXX36Zw4cP061bN9atW0eNGjWsDkmpHPnwww+ZNGkS3333HXfddZfV4fgtPbNTHmvMmDHUq1ePRx55JGUAsFLe5Mcff+TVV1/l008/pU2bNlaH49c02SmPFRwczJw5c8ibNy9t27bN1aTRSrnb9u3b6dSpE7169WLo0KFWh+P3NNkpj1akSBGWLl3K0aNH6dmzJ0lJSVaHpNRNnTx5krZt23Lvvfcyfvx4q8NRaLJTXqB8+fLMnz+fH374gZEjR1odjlI3ZJ/cOV++fMyePVtXEvcQ+n9BeYXGjRszfvx4+vTpQ2RkJN27d7c6JKXSSUpKomvXrhw8eJCNGzfqqhseRJOd8hq9evVi79699O3bl9KlS+ucgsrjvPzyyyxZsoSff/6ZO+64w+pwVCp6GVN5lffff5/27dvToUMH9u/fb3U4SqWYOnUqn3zyCZMnT6ZZs2ZWh6Ouo8lOeRWbzcbUqVOpUKECbdq04fz581aHpBRr1qxhwIABvP7663qJ3UNpslNexz5p9JUrV3jssceIi4uzOiTlxw4ePMjjjz9O27ZteeONN6wOR2VCk53ySiVLluT7779n69atPPPMM1aHo/xUVFQUjzzyCGXLlmXatGnYbDarQ1KZ0GSnvFbNmjWZPXs206ZNY/To0VaHo/xMfHw8HTp0IDY2lsWLF5MnTx6rQ1I3oL0xlVd75JFH+OCDD3jxxRcpX748bdu2ddm+jh07xl133UV8fHzKc0lJSQQFBZE/f/6U52w2G/Xr12fZsmUui8UfeVr5Dx48mC1btrBu3TqKFy/u0n2p3NNkp7zesGHDOHjwIN26dWPt2rXUrFnTJfspU6YMFSpUYOvWrenWT4uOjk7ZttlstGzZ0iUx+DNPKv/33nuPKVOmsHDhQp2k3EvoZUzlE/7zn//QoEEDWrVqxfHjxzN8z9GjR3O9nx49ehAYGHjT93Xq1CnX+1LpubP8jx07luHzCxYs4LXXXuOzzz7j0UcfzfV+lHtoslM+ITg4mPnz51O4cGHatm3LlStXUl4TEd566y3uvffeXM+t2alTpxt+RkBAAI0aNdI1y1zEXeW/fv16atWqxbp169I8v23bNnr06MGgQYMYPHhwrvah3EuTnfIZBQoU4IcffuDYsWP06NGDpKQkYmJiePLJJ3nzzTc5fvx4ru/jFCtWjKZNm2Z6dmGz2ejRo0eu9qEy567y/+qrr4iKiuK+++5jxowZAPz999+0bduWRo0a8emnn+Z6H8q9bHL9xW+lvNy6deto0aIFAwYMYMuWLWzatInExESCgoJo3749s2fPztXnT506laeeeirDM4ygoCBOnz5NkSJFcrUPlTlXl/+VK1coWrQo165dS3luwIAB/Prrr8THx7N+/Xqd89L7zNVkp3zSe++9x7vvvktsbGya3ntBQUGcPHmSW2+9NceffenSJYoWLZpuMHtgYCAtW7bkhx9+yPFnq5tzdflnlEwDAgIoWrQoK1eu5M4778zV5ytLzNXLmMrnLFu2LMNEZzdr1qxcfX6BAgVo2bJluqVbkpKS6NatW64+W92cq8t/4sSJ6Z5LSkoiKiqKjh07ZtoBSnk2TXbKp0ycOJGWLVty9erVDBNdYmIiEyZMyPV+unXrRmJiYprnQkNDtXeem7iq/Pfv38+mTZsyvEQaHx/P//73P2rXrs3WrVtztR/lfprslM944YUX6N+/P4mJiZn22BMRdu3axfbt23O1r0cffTTNjBnBwcG0b9+evHnz5upzVda4qvynTp16w8VW4+Pj+eeff2jSpIlOGuBlNNkpn/HUU0+lLK1yo7FYwcHBTJ06NVf7CgsL4/HHHyc4OBgwfwSffPLJXH2myjpXlH9iYiJTpkzJ8IqAXXBwMIGBgQwePJgGDRrkan/KvTTZKZ9RpUoVVq5cyffff0/JkiUzTXjx8fFMnz6d2NjYXO2va9euKX8YCxQoQIsWLXL1eSp7nF3+P/30E2fOnMnwtYAA86eyYcOG7Nixgw8++CDNFGXK82myUz6ndevW7Nu3j1GjRhEWFpZy9J9adHQ0ixYtytV+mjdvTuHChQHo3LkzISEhufo8lT3OLv8pU6ZkWFcCAwMpVqwY06dPZ9WqVVStWjVX+1HW0KEHyqcdP36cl19+mW+//ZagoCASEhIA8wfsvvvuu+F9l5OcZFfyf0c4wglOcJKTnOY0F7hAEklcHHyRpC+SCFsVRnjTcMIIoxCFKElJIoigFKWIJJLqVKcKVciL3tPLKneW/7lz5yhZsmSaS5ghISHYbDaGDx/O8OHDCQsLc9dXV86n4+yUf1i5ciUDBw5k//79KZ1XbDYbR44c4bbbbiORRHawg9XJ/61nPec4d/MPXg90AY5w0+skNmxEEkljGtOEJjSjGWUok8tv5husLv/Ro0fz0ksvkZCQQGBgIImJiTzyyCN88cUXlC1bNndfTnkCTXbKf8THxzNmzBhef/114uLiSEhIoPvb3Ql7LYxFLOIMGd+vsQsggOIUpxjFKEIRAgkkv+Tnr3F/UfKZksQSyzWuEUUUJzjBJS7dNKa7uIv2tOcxHqM61Z31Vb1CHHEsZznf8Z3l5T+9ynQO7T1EQEAAkZGRjBs3LqWzk/IJmuyU//n11K/0e7kfu7/eDbcBh4FUC0wHEshd3EVtalONalSlKpWoRAlKEJTBqlgikuEK1Ve5ylGOsoc97GY3u9jFBjZwnIwHJdeiFgMYQFe6ko98Tvq2nucAB5jIRKYylbOcTfe628v/N6AuBOQPoOOojowbOI5CQYWc9G2Vh9Bkp/zHRjbyNm+zlKUIAhuBIcAHUO6+crSjHc1pTiMaUZCCLovjIAdZwxqWJv8XTXSa1wtQgP7050VepBjFXBaHu6Ur/1TKYWH5PxsNscAooKjvlr+f02SnfN9WtvIar/ETP6V5vgQl6JnUk0ZHGvFoeWtmPokhhl/4hW/4hoUsJA7HfI95yctABvIqr1KYwpbE5ww3Kv9e9KIjHalFLUtiiyGG6Qems+KOFT5b/grQZKd82QUu8BqvMZ7xJOKYWupe7mUoQ2lHO4JJ39XcKqc5zVd8xRjGcJKTKc8Xoxgf8iE96IGN9JfrPJWWv/IgmuyUb1rCEvrQh9OcTnmuCU0YyUju534LI7u5a1xjIhP5gA/S/NFtRjO+5mtKU9rC6LJGy195mLmIUj4kTuJkpIyUAAkQkv8rJaVkuky3OrRsuyJXZKSMlFAJTfkuBaWgzJE5VoeWKS1/5aHm6Jmd8hnnOU9b2rKWtYAZVzWEIYxilFcP5t7LXnrTm01sAsz3epu3GcEIiyNLS8tfeTC9jKl8wzGO0ZKW7GY3YO6zTGMaLWlpcWTOEU88r/M6H/ERSZhB8QMZyBjGEEjmk167i5a/8nCa7JT3O8UpGtGIgxwEoDrVWcISn7y3spCFdKUr17gGQD/6MYEJlnac0PK3tvxVluhK5cq7XeQiLWmZ8oe2KU1Zwxqf/EML0I52LGMZRSgCwCQm8TqvWxaPlr+15a+yTs/slFdrRzsWYVYvaEAD/st/vfr+UFZtYhPNac4VrgAwi1l0opPb49Dyt7b8VZbpmZ3yXuMYl/KHtjKVWcxiv/hDC1Cf+sxjXsr0Wf3pzxGOuDUGLX9ry19ljyY75ZWOcIRhDAMgjDDmMIdbuMXiqNzrYR5OuYR2kYv0pa/b9q3lb235q+zTZKe80ghGpHQSeJ/3LV0xoEKFCnzzzTeW7HsEI7iXewFYwQoWs9ht+9Xyt678VfZpslNeZzvbmclMAKpRjcEMtjSesLAwQkNDLdl3IIGMYQwByU15OMPTTbLsbFr+DlaUv8oZTXbK64xjXMoflPd53+3jnGbPns2DDz7IH3/8AUBoaCihoaHExcXx6aefct999xEXF3eTT3GeWtSiC10A2M1uVrPapfvT8k/L3eWvckaTnfIq17jGXOYCUJ7yPMIjbo+hWbNmNG7cmNatW/PUU08RExPDsmXLqF69OmvXruXVV18lONi9ExwPYUjK9ld85bL9aPlnzF3lr3LBuqnKlMq+RbIoZZ7CUTLK0lhiYmKkR48eAsitt94qa9assTSe6lJdECS/5JcESXDJPrT8M+eO8lc5NkfP7JRXWce6lG0rzioAzpw5w3vvvUeVKlUICgrizjvvpEuXLvTp04c2bdrwyy+/IBYMX7WXx2Uu8wd/uGQfWv6Zc0f5q5zTZKe8in0y3nzks6wH4MqVK1mxYgXfffcdU6ZMISwsjAceeIDdu3fTtGlT3nvvPbfeM7JrSMOU7Y1sdMk+tPwz547yVzmnyU55leMcByCSSMsm4O3UqRPLli2jRo0aAMTGxhIbG0tISAjDhg1j5cqVlvQOrEKVlG17OTmbln/m3FH+Kuc02SmvcpazABSlqMWROMTGxhITE2N1GGkGddvLydm0/DPnjvJXORdkdQBKZYd9IHM44RZH4nDgwAGrQwBIM1WXfc5GZ9Pyz5w7yl/lnJ7ZKa9SmMKAWShUpXWOcynbrpq6S8s/c+4of5VzmuyUV7H/ETnNaYsj8TxnOJOybV+Cxtm0/DPnjvJXOafJTnmVSlQCYB/7uMhFi6PxLFvYkrJ9J3e6ZB9a/plzR/mrnNNkp7yKfdLdJJJSusErYwMbUrbv4R6X7EPLP3PuKH+Vc5rslFdpQpOU7TnMsTASzxJDTMracuUoRxnKuGQ/Wv4Zc1f5q5zTZKe8Sl3qEkkkALOZTTTRFkfkGRaykCiiAOhOd5ftR8s/Y+4qf5VzmuyUV7Fhoxe9AIgmmv/wH2sD8gBJJPEhHwKmfHrS02X70vJPz53lr3JOk53yOv3pn9IF/kM+TNMLzh/NYAbb2Q5AJzpRnvIu3Z+Wf1ruLn+VM5rslNcpQhFe5VUALnGJgQy0OCLrnOY0wxkOQAghvMM7Lt+nlr+DFeWvckaTnfJKgxlMZSoDsIAFTGKSxRG5XxJJPMmTKWPenud5KlDBLfvW8re2/FX22cSKtTCUcoKd7KQe9YghhhBC+IEfeJAHrQ7LbZ7neT7jMwBqU5sNbCCEELftX8vf2vJX2TJXz+yU16pO9ZSOAXHE0YEObGWrxVG5x1u8lfKHtjCFmcUst/+h1fL/DLCu/FX2aLJTXu1ZnmUYwwBz/6gZzfiZny2OynUE4Q3eYCQjATMh8yIWcQd3WBKPlr+15a+yTpOd8nof8VFKd+9oomlLW2Yww+KonO8qV3mSJ3mTNwHTIWIWs2hMY0vj0vK3tvxV1miyU17Pho2pTE052o4llp70pAc9fGbQ81720oAGzGQmYFYKX8Qi2tDG4si0/JV30GSnfIING2/wBqMZTVDyMo1f8zV3czfLWGZxdDkXSyzv8i61qc1OdgJQhjKsZS0P87DF0Tlo+StPp70xlc/ZwAa60pW/+CvluQ504EM+pCxlrQssm5awhOd5nn3sS3muLW35iq88egkZLX/lgbQ3pvI9DWnIdrbTgx7YsAEwl7lEEkk/+nGYwxZHeGM/8RP3cA+taJXyh7YQhRjHOL7jO4//Q6vlrzyRntkpn7aWtQxiUMolKIAAArif+3map2lPewIJtDBC4xKXmMUsxjGOHexI81oHOjCGMRSnuDXB5YKWv/IQczXZKZ+XQALf8A3v8A4HOJDmtbKUpQMdeJzHqUe9lDMRd7jCFZaylPnM5wd+4ApXUl6zYeNRHmUkI6lNbbfF5Apa/soDaLJT/iOBBGYyk7GMZTOb070eQQT3cz9NaEJjGqesyu0sscSyhS2sZjVrWcsa1nCNa2neE0ooj/M4L/CCz/2R1fJXFtJkp/zTdrYzkYnMYx5nOZvhewpQgCpUoTrViSSSkpSkDGUoTnEKUIAwwshLXkIIIZpo4onnUvJ/xzjGaU7zF3+xhz3sYhf72U8CCRnuqxrV6EEPetObW7nVlV/dI2j5KzfTZKf8WyKJrGY1C1jAz/yc7jKbU10ECprNYIKpS11a05r2tE9ZENXf3LD8U5WXs2n5+x1Ndkql9jd/s5rVbGADu9jFTnZyjnO5+swAAsg3KB9hB8IY+PNAGtOYBjQgL3mdFLXvsJf/8jPLmVZ+GnkX5uVSi0u5+swAAihLWapTnZrU1PL3T5rslLqZU5ziEIc4yUlOcILTnOYyl4kllqtcJZZY8pOfIILIRz4KUIAIIihJSSKIoCIVWbl4JW3atGHPnj1UrlzZ6q/k8d5++21Gjx7N8ePHuZTnUq7LXxOb39Nkp5Q7JCUlUbFiRVq1asXnn39udTgeLSEhgXLlytG1a1c++OADq8NRvkEHlSvlDgEBAQwcOJBp06Zx6VLuLsv5ugULFvD3338zYMAAq0NRPkSTnVJu8tRTT5GUlMTXX39tdSge7YsvvqB169aUK1fO6lCUD9Fkp5SbFCpUiK5du/LFF1+gdw8ytmvXLtauXcvgwYOtDkX5GE12SrnRkCFD+PPPP1m+fLnVoXikzz//nDvuuIPmzZtbHYryMZrslHKjatWq0bhxY8aOHWt1KB7nwoULfPvttwwdOhSbzX3Thin/oMlOKTcbNGgQP/zwA4cPe/bs/+42efJkAgIC6N69u9WhKB+kyU4pN2vfvj2lSpVi/PjxVofiMZKSkhg3bhy9evWiQIECVoejfJAmO6XcLCgoiKeffppJkyZx9epVq8PxCEuWLOHw4cM888wzVoeifJQmO6UsMGDAAK5du8asWbOsDsUjjB07lgceeEBnl1Euo8lOKQsULVqUJ554gjFjxlgdiuX279/PsmXLdLiBcilNdkpZZNCgQezYsYP169dbHYqlxo4dS5kyZXjkkUesDkX5ME12SlmkQYMG1K1b16+HIURHRzN9+nQGDx5MYGCg1eEoH6bJTikLDRo0iPnz53PixAmrQ7HEjBkziIuLo3fv3laHonycJjulLNS5c2eKFCnCpEmTrA7FEuPGjePJJ5/klltusToU5eM02SllodDQUPr27cvEiROJi4uzOhy3Wr58Obt27dLVDZRbaLJTymLPPPMMZ8+eZf78+VaH4lZjx46lcePG1K5d2+pQlB/QZKeUxSIiImjdurVfdVQ5evQoP/zwgw43UG6jyU4pDzB48GA2bNjAb7/9ZnUobvHll19SrFgxHnvsMatDUX5Ck51SHuC+++6jRo0ajBs3zupQXC42NpapU6cyYMAAgoODrQ5H+QlNdkp5iIEDB/LNN99w5swZq0NxqW+//ZYLFy7w9NNPWx2K8iOa7JTyED169CBPnjxMnTrV6lBc6ssvv6RDhw6UKFHC6lCUH9Fkp5SHyJMnDz179uTLL78kMTHR6nBcwn5fctCgQVaHovyMJjulPMjgwYM5fvw4P/zwQ44/Y8eOHbRq1YpChQqRP39+WrRo4THzb44dO5ZatWpxzz333PB9S5YsITIykqCgIDdFpnydJjulPEiFChV46KGH+OKLL3L07zdt2kTDhg3Jnz8/e/fu5fDhw5QvX55mzZrxyy+/ODna7Dl16hTz589nyJAhmb7n4MGDtGnThldeeYXTp0+7MTrl62wiIlYHoZRyWLJkCa1atWLnzp1Uq1Yty/8uKSmJGjVqEBUVxcGDBwkPDwcgMTGRqlWrcvXqVfbv309oaKirQr+hN998k7Fjx3Ls2DHCwsIyfE/Xrl2pUaMGL774ImXLluXUqVMkJCS4OVLlg+bqmZ1SHqZly5ZERkYyfvz4bP27NWvWsHv3bp544omURAcQGBhIly5dOHbsGIsXL3Z2uFkSHx/PpEmT6NevX6aJDmDKlCkMHz5cL18qp9Nkp5SHsdlsDBgwgOnTp3Px4sUs/7sVK1YAUKdOnXSv2Z9bvny5c4LMpvnz53Pq1KmbDjdInaSVciZNdkp5oN69eyMiTJ8+Pcv/5s8//wSgdOnS6V6LiIgAYN++fc4JMJvGjh1LmzZtKFu2rCX7V0qTnVIeqFChQnTr1o2xY8eSlJSUpX9z4cIFAPLmzZvutXz58gFw/vx5p8WYVfbV2HUeTGUlTXZKeaghQ4Zw4MAB/vvf/+b6s+z90Gw2W64/K7vGjh1LlSpVuO+++9y+b6XsNNkp5aGqVKlC06ZNs7waQqFChQC4cuVKutfsz9nf4y7nz59n5syZDB482JJEq5SdJjulPNjgwYP58ccfOXTo0E3fW7lyZQCOHz+e7rUTJ04AEBkZ6dwAb2LSpEkEBgby5JNPunW/Sl1Pk51SHqxdu3aUKVMmS6sh2C8Tbt26Nd1r9ueaN2/u3ABvICkpifHjx9OnTx8KFCjgtv0qlREdVK6Uh3v33Xf56KOPOH78eIadT+ySkpKoXr06Fy5c4ODBgynj2RITE6levTrR0dHs27fvhuPcnOn777+nXbt27N27l0qVKmX735cuXVoHlStn0UHlSnm6p59+mpiYGL799tsbvi8gIIApU6YQFRVF7969OXXqFOfOnWPQoEHs37+fSZMmuS3RgemY8tBDD+Uo0SnlbJrslPJwt956Kx07duTzzz+/6XsbNGjAhg0buHjxIpUqVaJs2bLs37+fVatW8dBDD7khWmP//v3897//zfZwg8WLF2Oz2bDZbJw4cYLExMSUx5MnT3ZRtMof6GVMpbzAtm3bqF27NmvWrKFx48ZWh3NTzz77LEuXLmXfvn0EBOgxtbKcXsZUyhvcfffd1K9fP8vDEKx0+fJlZsyYwTPPPKOJTnkMrYlKeYnBgwezYMGCDIcWeJLp06eTkJBAr169rA5FqRSa7JTyEh07duSWW25h4sSJVoeSKRHhiy++oFu3bhQpUsTqcJRKoclOKS8REhJCv379GD9+PLGxsVaHk6H//ve//PnnnwwaNMjqUJRKQ5OdUl5k4MCBXLhwgXnz5lkdSobGjh1L06ZNqVGjhtWhKJWGJjulvEipUqVo166dR3ZU+euvv/jxxx91dQPlkTTZKeVlBg8ezMaNG9myZYvVoaTxxRdfULx4cdq2bWt1KEqlo8lOKS/TpEkTatSowRdffGF1KCmuXbvGV199xcCBAwkODrY6HKXS0WSnlBcaPHgws2bN4syZM1aHAsC3337L5cuX6devn9WhKJUhTXZKeaFu3bqRN29epkyZYnUoAIwbN45OnTpRvHhxq0NRKkOa7JTyQuHh4fTu3Ztx48ZZvirAunXr2Lp1q3ZMUR5Nk51SXurZZ5/l77//5vvvv7c0jrFjx3L33XdTr149S+NQ6kY02SnlpW6//XZatmxp6TCEkydPsmDBAoYOHWpZDEplhSY7pbzY4MGDWblyJTt37rRk/+PHj6dQoUJ07NjRkv0rlVWa7JTyYg8++CCVKlXiyy+/THnu+PHjvPbaazz++ONO28/JkyepU6cO06ZNIyYmBoD4+HgmT57M008/7dZFYZXKCV3PTikv9/nnn/PKK68we/Zspk6dyqJFi0hMTKRixYrs27fPKfvYu3cvVapUwWazUaBAAQYOHEipUqV44YUXOHToEGXKlHHKfpRykblBVkeglMq5mJgYQkNDCQ8Pp3Xr1gQFBZGYmAjAhQsXnLaf8+fPA2ZVg4sXL/Lpp58SHx9PuXLl2LFjB6VLl8Zmszltf0o5m17GVMoLHTp0iOHDh1OiRAkGDRpEVFQUQJphCJcvX3ba/uzJzi4uLg4R4ejRo7Rp04YKFSrwn//8h+joaKftUyln0suYSnmZZcuW8fDDD2Oz2VLO4jITGxtLSEhIrvf57bff0r17d5KSkjJ83WazISLcfvvt7Ny5k/z58+d6n0o50Vw9s1PKyzzwwAMMGzaMrBynOutS5oULFwgMDLzhe0JCQvj666810SmPpMlOKS/0wQcf0KNHj5smIGclu6ioKAICMv9zYbPZmDlzJo0bN3bK/pRyNk12Snkhm83G5MmTadWqFUFBmfczc+aZXWZnkjabjQkTJtC+fXun7EspV9Bkp5SXCgwMZNasWdSpUyfThHd9x5KcunDhQob362w2G++88w5PPfWUU/ajlKtoslPKi4WHh/PTTz9RsWLFdOvI2Ww2p53ZnT9/Pt2E0wEBAQwYMIBXX33VKftQypU02Snl5QoWLMiyZcsoWrRomjO8oKAgpyW7f/75J83joKAgnnjiCUvn5VQqOzTZKeUDIiIiWLVqFfnz50/ptBIQEOC0y5j2cXxgEl3Dhg2ZMWPGDTutKOVJtKYq5SMqVqzITz/9RHBwcMpsJhcvXnTKZ9vPEIODg6latSqLFy8mNDTUKZ+tlDvodGFK+ZB69eoxf/582rRpQ2xsLOd37oTRo+HIEThxAk6ehNOn4cIFSEqCy5chIQHy5IHQUAgLg0KFoGRJiIiAUqUgMpJLyWeIERER/PLLLzqWTnkdnUFFKV+QmAg7dsDq1bB6NV+vWEHP6Gg6ArNy+dGCOSouAmwuX55y998PTZpAs2agE0Ar7zBXk51S3iouDpYvh+++g0WL4MyZNC9/DCwDfrY/ERAAxYtDsWJQpAgEBkL+/BAUBFevQmwsXLsGUVHmLPDSJQAuAbcBa4Aa18dw113Qvj089hhUr+7CL6tUrmiyU8rrHDgAEyfC1Klw9mz61wMDTRKqXZs58fF07NYNKlWCEiVMYsuqq1fh6FFOb9jAn+vX0zQ6GjZsgOPHM35/rVowYAB07Qr58uXsuynlGprslPIaGzfC22/D0qVwfbMtVw7atYPmzaFRIyhY0HVxHDwIa9aYOJYuhetXOihQAPr3hxdfNGeRSllPk51SHm/rVnjtNfjpp7TPlygBvXpBx47mrMoKMTHwyy/wzTewcKG5tGqXNy8MHAivvgqFC1sTn1KGJjulPNaFCybJjR9vOqDY3XsvDB1qzuSumzXFUqdPw1dfwZgxptenXbFi8OGH0KMH6AKvyhqa7JTySEuWQJ8+JoHYNWkCI0fC/fdbF1dWXLtm7il+8EHapNesGXz9NZQubVloym/penZKeZT4eHjjDWjd2pHoSpWC6dPNsAJPT3QA4eHmzPPAAZOc7YPPV62CatVg7lxLw1P+Sc/slPIU589D27awdq15bLPBkCEwapS5/+Wt9u6F3r1h0ybz2GYzHW1GjLA2LuVP9MxOKY9w7Bg0buxIdMWKwY8/wmefeXeiA7jzTvO9Xn7ZjPUTMfcin3km7b1IpVxIz+yUstqpU2a4wMGD5nH16uaenS/e21q40IzDu3bNPO7XDyZM0I4rytX0zE4pS128CC1bOhJd06ZmDJsvJjowPUiXLTMzuABMmgSvv25pSMo/aLJTyko9e5o5LQEaNDCXLgsVsjIi17v3XnPmar88O2oUzJ5tbUzK52myU8oq48aZOS0BKleGxYu9//5cVtWvD/PmOaYv69/frMyglItoslPKCkeOwLBhZjssDObMgVtusTQkt3v4YcclzIsXoW9fa+NRPk2TnVJWGDHC0Unj/ff9d8WAESPMZU2AFSvM2a1SLqC9MZVyt+3boXZt0wW/WjVzzy4w0JJQGjRowK233spiK5PM9u1Qp45ZTLZqVdi5U3tnKmfT3phKud24cY5VC95/37JE5zFq1YIuXcz27t1mphilnEyTnVLudO2aY7qs8uXhkUesjcdTDBni2P7qK+viUD5Lk51S7rRsmVnNAEyHDL1cZ9Sr57hvuXChzqyinE6TnVLutG6dY1vP6tKyl8fly/DHH9bGonyOJjul3Mk+GXK+fP7bAzMzDRs6tjdutC4O5ZOCrA5AKb9y/Lj5HRnp9o4pQUFBJGZyedB23eXU4sWLc+rUKXeE5VClimPbXk5KOYkmO6Xc6exZ87toUbfvOiEhId1zHjH0wC71oHp7OSnlJHoZUyl3sg8kDw+3Ng5PlHqqtCtXrItD+SRNdkq5U+HC5vf589bG4YnOnXNs+9vUacrlNNkp5U72P+KnT1sbhyc6c8axbV8CSCkn0WSnlDtVqmR+79tnJj9WDlu2OLbvvNO6OJRP0mSnlDvZJz1OSnIMQ1DGhg2O7XvusS4O5ZO0N6ZS7tSkiWN7zhx48EHrYgE2esp4tpgYx9p+5cpBmTLWxqN8jp7ZKeVOdeuaMXZgVueOjrY2Hk+xcCFERZnt7t0tDUX5Jk12SrmTzQa9epnt6Gj4z38sDccjJCXBhx+abZsNeva0Nh7lkzTZKeVu/fs7hiB8+GHaXoj+aMYMs6YdQKdOZjUIpZxMk51S7lakCLz6qtm+dAkGDrQ2HiudPg3Dh5vtkBB45x1r41E+S5OdUlYYPBgqVzbbCxbApEnWxmOFpCR48knHmMPnn4cKFayNSfksTXZKWSEszPTGDAszjwcPhl9+sTYmdxs2DJYvN9u1a8Nbb1kbj/JpmuyUskr16o6OGXFx0KEDbN1qbUzu8tZb8NlnZrtwYZg1y1zGVMpFNNkpZaVnnzVnOGDu3zVrBj//bGlILiUCb7wBI0eax+HhZnzdHXdYGpbyfZrslLLaRx85uttHR0PbtqaHoq+5etXco3vzTfM4JMSc0TVubG1cyi9oslPKajYbTJ3qONuJjTXJr0cP3xl0vncvNGgAM2eax/nymTO6Nm2sjUv5DU12SnkCm81c3hs9GoKSZ/H7+mu4+25YtszS0HIlNhbefdd0QNm50zxXpgysXQsPP2xtbMqvaLJTypM89xysXg23324e799v5s/s2BGOHLEysuxbsgRq1IARIxyL1rZtCzt2QM2aVkam/JAmO6U8TcOGZkaRHj3MGR/A3LlmTs1+/eDwYWvju5mffjKrFrRqZZYyAihUCMaNg+++07XqlCVsIiJWB6GUysTatTBokOMSIEBAANx/Pzz9NLRvD4GB1sVnd+mS6Wwybpw5c0utQwcYMwaKF7ckNKWAuZrslPJ0CQnwzTdmKq0DB9K+VrasSSaPPw716jnOBN3hyhVYuhTmz4cffjCP7Ww2ePRR0+mmdm33xaRUxjTZKeU1EhJMb8axY2Hz5vSvR0SYM74mTUx3fvuq6M4SG2tWE1+92pxxrlnjuBdnFxpqEu8LL2iSU55Ek51SXmn7dpg4EebNg7NnM35PgQJQpYqZqSUyEkqWND0hixc3r4WFQd68ZrxbdDTEx5vLkZcuwbFjZs7Kv/6CPXtg1y7TWSYhIeN9Vatm7jH27g233uq6761UzmiyU8qrJSaaM60FC8zMK9df5nSV4GCzEG3r1ua+oX1BWqU8kyY7pXzK33+b5Ldhgzkb27kTzp3L9O1/AouAl2/0mQEB5t5g9epmyEDjxmaAeN68Tg1dKRfSZKeUzzt1Cg4dgpMn4cQJc3ny8mWIjWXO3r10WrsW6dPHDGbPl89c4oyIMJc9IyKgYkVNbMrbzQ2yOgKllIuVKGF+MjJnjulsMmWKe2NSys10ULlSSimfp8lOKaWUz9Nkp5RSyudpslNKKeXzNNkppZTyeZrslFJK+TxNdkoppXyeJjullFI+T5OdUkopn6fJTimllM/TZKeUUsrnabJTSinl8zTZKaWU8nma7JRSSvk8TXZKKaV8niY7pZRSPk+TnVJKKZ+nyU4ppZTP02SnlFLK52myU0op5fM02SmllPJ5muyUUkr5PE12Sqmb2rFjB61ataJQoULkz5+fFi1asH79eqvDUirLNNkppW5o06ZNNGzYkPz587N3714OHz5M+fLladasGb/88ovV4SmVJTYREauDUEpZY86cOXTq1InM/gwkJSVRo0YNoqKiOHjwIOHh4QAkJiZStWpVrl69yv79+wkNDXVn2Epl11w9s1NKZWrNmjXs3r2bJ554IiXRAQQGBtKlSxeOHTvG4sWLLYxQqazRZKeUytSKFSsAqFOnTrrX7M8tX77crTEplROa7JRSmfrzzz8BKF26dLrXIiIiANi3b59bY1IqJzTZKaUydeHCBQDy5s2b7rV8+fIBcP78eXeGpFSOaLJTSuWIvVOLzWazOBKlbk6TnVIqU4UKFQLgypUr6V6zP2d/j1KeTJOdUipTlStXBuD48ePpXjtx4gQAkZGRbo1JqZzQZKeUytR9990HwNatW9O9Zn+uefPmbo1JqZzQZKeUylTTpk2pUqUK8+bNIyYmJuX5xMREZs2aRZkyZWjVqpWFESqVNZrslFKZCggIYMqUKURFRdG7d29OnTrFuXPnGDRoEPv372fSpEmEhYVZHaZSN6XJTil1Qw0aNGDDhg1cvHiRSpUqUbZsWfbv38+qVat46KGHrA5PqSwJsjoApZTnq1WrFkuWLLE6DKVyTM/slFJK+TxNdkoppXyeJjullFI+T5OdUkopn6fJTimllM/TZKeUUsrnabJTSinl8zTZKaWU8nma7JRSSvk8TXZKKaV8niY7pZRSPk+TnVJKKZ+nyU4ppZTP02SnlFLK5+kSP0r5iRMnTlC9enXi4+PTPJ8nTx7y58+f8thms3HPPffw888/uztEpVxGk51SfiIiIoI77riD3377DRHJ9H02m42WLVu6MTKlXE8vYyrlR3r06EFAwM2bfYcOHdwQjVLuo8lOKT/SqVOnG74eEBBAkyZNiIiIcFNESrmHJjul/EjRokVp1qwZgYGBGb5us9no3r27m6NSyvU02SnlZ7p3757pPTubzcZjjz3m5oiUcj1Ndkr5mccee4ygoPR904KCgmjZsiVFihSxICqlXEuTnVL+IAk4CeyEAvsL0Kp+K4IC0ya8xMREujXoBluB/cAlC+JUykVscqM+yEop7xEL7AF2AruAg5gEdxQ4DSQ43jqf+XSgA4Kj+YcTzlnOkoc8jjfmBcoAJYDSwJ1ANaA6UBawue7rKOVEc3WcnVLe6giwClgJbAYOkCah3UgrWpGHPFzhCgDBBPM4j6dNdABXgD+Tf66XH5P4GgFNgSbJzynlgfTMTilvcQ34Cfgek+D+usn7A4HiQARQEnOGVhQIA/JAr5m9mLllJnEJcQAseXYJLcu1hDggGjiOOTM8DvwNnM/C/moD9wOPA3Wy+wWVcpm5muyU8mRXgR+BecASTBLKyO1ATcyZVo3k35HccI6kX375hYceegiAggUL8s8//xAcHJz5P7gE7MZcJrVfKt1G5vf2ymKS3hNAffSSp7KSJjulPNJ+YAowCYjK4PWSmMuHLYAHgHLZ30VCQgLFixcnKiqKgQMH8uWXX2b/QxIxlzjXA/9N/snoDDAS6AP0A7Szp3I/TXZKeQwBFgFjgRXJj1O7C3OW9Dimo0hmEoHDmDOvI8AJ4FSq37HARSAJhlwcwpikMawJW0Pj8MbmEmc4UBAohemYEpG8HQlUBYrdYN8JybHPB74D/rnu9XxAN2AoUPkGn6OUc2myU8oj/AD8G9hx3fNlgKeBzsAdGfw7wfTAXIs5u9oF7MUktCzYwAY605kjHCEgqyORbsEkvbuBxsC9mHuD10sEVgMzgNlATKrXAoGumO+c0fdSyrk02SllqWXAa5jelHY2oDnwDNAGkxhSO43ppPIjsA44l8V92c/W8gAFzOdKfmHi0Yn0L9HfJMhrmKR0Nnk/MZl+WlqVgGZAW0wHldDrXj8LfAWMx5x12gUBPYA3MIldKdfQZKeUJU4CzwFzUj1nw1yiHInpYJLa38A3wEJgI2aQeEbK4BgLdyfmUmEpzD2+8Iz/iYhgs2XSeyQqOdZjmM4pe3GcPWbWMSU/8HDyd2lH2sSXhOls8ybmjNQuX/JzQ9CFx5QraLJTyq0E+Bp4nrQdT1oAH2AuDdolYnpgTk7+ff0YugDMfbzGmM4qjTBJzR2SMMlvDeby6RrMPcHr3QJ0x3RMqXLdv58PvA78L9XzNYAJQAPnh6z8miY7pdzmJPAkZoycXVXMpb1GqZ67hklwH2NmP0ktDHOJsy3mEmdG98qssh3TwWYR6e89grm8+SomfrsEYAzm3p19WEUg5tLu66S/hKtUzmiyU8otVmIS3cnkx+HAS8ArOC7zXQG+BD7B3C9L7R7M2VEHzCU/T3cQmJr88/d1r90DjABapXrub2A45qzXrhnwLe47W1W+TJOdUi4lwFvJP/b7bHWBmUCFVO+ZDfwLM1uJXR6gNzCA9PfwvEUC5hLsGMwYvNSaA5+T9vLmXExSv5j8uATmvmZj14apfJ4mO6VcJhHTo3JiqueexvzhD0l+vAsYjOmib5c/+d+9wI3HtHmbTcAoYDGOMYTBmO//BqaHKJhp0Dolvx/Mme//YcYYKpUzc3WJH6VcIQbzx9me6PIBCzCdL0Iwf+w/wcwfaU90QZjB1keA9/GtRAdmyrDvgd9w3KOMB0Zjpjr7Nfm52zFl0j/5cSzQBTN0Qakc0mSnlLPFAo9ihgkA3AosB+wLgJ8AHgRexDH4+z5MB4/P8P3ptO7G9N78P8ywCDBj75pghh8kYM7mxgNvJ7+eADyFmV1GqRzQy5hKOZMAPXF0tCiFWamgevLj34DWmGm7wKwXNxpzn8ofXcJcxkzdMeVhzH06+3JB0zDlk4A5PJ+NXtJU2aWXMZVyqhdx/OGOADbgSHQ/Ybrf2xNdHcyq4P6a6MDcp5uB6ZhiP6P9CWiIY9hFL8wlTBumk093zPRoSmWDJjulnGUS8GnydkFML8Tbkx9PxVzavJz8uCdmMHYldwbowZ7AdEiJTH68CzPn5sHkx92B95K3YzAzs1w/BlGpG9Bkp5QzHMD0ngTTw3AuZjYQMPfunsb0zrRhpgObiqNHpjLuwHRSaZr8+DjmXqY9qb2MmU4MzOwzT2LKVKks0GSnVG4lYJatsc8A8iFmjTmAnzHd6BMwie5LTDd7Xcg0Y0UwZdYy+fGx5G37ZNefYAalg5kE+2O3Rqe8mCY7pXLrPRxjwprjOPs4hlnGJi758fuYAeLqxkIx82Y2SX68B3MZUzDDM77G0Xnl35hLnkrdhCY7pXLjNOZMDqAwpudgAGb8WAcckz3/CzM9mMqacMyYPPvMMUtxnMVVAP6TvB2HmXJNqZvQZKdUbryF4/Llv4HSydsjcZztNcHRuUJlXUHMvU/7XKAjML1XwUyj1jB5ezGwyq2RKS+k4+yUyqlDmDXj4oCywJ+YS3AHMasZxGLuQW0HbrMmRJ8wCzODCpj7desx9zxXYyaLBjMjiw5HUJnTcXZK5dgEHPfj3sSxesEwHDOjfIImutzqjBloDqa35tzk7aY4OrKswxxUKJUJTXZK5UQiZvkZMHNY2s88NmHWcwMzLVYPN8flqz7BsYL5qzhWkHgu1XumuzMg5W002SmVEz/jWI6nO2ZsHZj5HO0+xCUtrGbNmthstiz/vPPOO+TLly/d8x9/nL7f/vHjxzP8jIULF6Z532uvvZbuPX/++afzv6xdFcx9OjCXiZclb7fAceb8fzjOqJW6jiY7pXJibqrtnsm/L6Z6vhJmajBX7X7uXEQk5ad/f7NEwNKlS9M836lTJwCio6PZvt1c52vbti0iwosvvpjuc0uXLo2IMHPmTABefvllRIR27dqled8777yDiNC0aVMmTZqEiFC5cmXXfWEwc2jaTUr+HYA52AAzFm+Fa0NQ3kuTnVI5sT75dzkcc18uwKw2Dma+Sx047lw1MAvfghmWYF/gtU2q92xwa0TKiwTd/C1KqTTOYqYHA0f3dzDL1th1ct3ud+zYkeX3zpo1y3WBWKETsAUzjnEDpoNKLcy4vGs41sRT6jp6ZqdUdv2KY6Xt+qmet3d9L4djvJ1yrsaptu1n18GYzkAAm9H5MlWGNNkplV2HUm3XTP59DscM/fe6NRr/UguzBiA4Bu2D4//DZeCMOwNS3kKTnVLZdS7VdrHk36dSPXeHG2PxN8E4lk1KXeZFU21HoVQ6muyUyq7Uyc6+4OjZVM/d6sZY/JG9fDMr89T/f5RKpslOqey6mGq7UPLvC6meK+y2SFwmMDAQgMTEG98AS0xMTHmv29gPMFKfwaUu8/NujEV5DU12SmVXnlTbV5N/50313BW8Xr58ZvblS5cu3fB9Fy5coECBAu4IycE+8Xa+DJ6DtP8vlEqmyU6p7Lol1fa5DJ5LfXnNS0VGRgKwe/fuTN8TGxvLgQMHqFixorvCMv5J/p3ZpcvU/y+USqbJTqnsKpJq2/5HNvUf3pNujMXJgoKC+PPPP6lQoQKVK1dm48aN7N+/P8P3zpkzh6JFi1KtWrUMX3cZe/lqslPZoMlOqewqmWrbngdK40iCG90bjquMHj2agIAAWrZsyYIFC4iKiiIxMZG///6bL7/8ksGDB/Ppp58SEODGPyMHcQwtqJ7qefv/hyDS9sxUKpmuZ6dUdu3DzH0JZr7GMcnbrTELiQZhOk/kd30o06ZNo3fv3umev3z5csp9NzD34K5cydrNxL1796bMc7lt2zZGjx7NunXrOHnyJCJCsWLFuOeee3juuedo2LDhTT7NyabhmBD6a6Bb8nYJzKrxtYBt7g1JeYW5muyUyi7BjK87C9QGfkt+/gNgePL2POBx94fm8zrimGz7MGbR3AOA/bbhM8AX7g9LeTxdvFWpbLMBDZK3/8DRIeUxHJM/T3Z3UH7gLGYCaIC7MIkOYHmq9zRAqQxpslMqJx5J/h2PYxHXSMzq2QC/AEfcHJOvm4pjvboBqZ63L9oaBDzg1oiUF9Fkp1ROdMXMtA9pV8jul/w7CRjp1oh82yXAvtZsPkz5g7l/au8Q1Apz706pDGiyUyonCuJYR20bZrZ9MPeUqiZvf41Zjkbl3igcvTCfA+zj2MfjWIGil3tDUt5FO6golVP/xXHZrAWwLHl7MaZnJph7SGvRlSNzYzdQB4jBnLntw/R0PY65dHwNKIW5bBxsTYjK42kHFaVyrAVwf/L2f5N/AB7FkQQ3Aq+5OS5fcgVzthyT/HgUjiEdb2ASHcC/0USnbkjP7JTKjY2Y1coFs6baZswf3WOYMV/nMDcLFmNW1VbZ0wvHPdE2wEJMj9ffMWd7CZhhB7vRZKduRM/slMqVBkC75O0dwFvJ22WAGZg/zElABxwra6us+TeORFcG+ApTnjGYweQJya+9gyY6dVOa7JTKrTE45mN8F1idvP0IjkHmVzBnJrvcG5rX+hR4O3k7DzAHRxkPx1GOLTEHEkrdhCY7pXIrAhiXvJ2Emc7K3nNwFPBU8nYU0BzY5NbovM97wIvJ28GYGVPsg8UXAp8nbxfHnPnZUOqmNNkp5QwdgB7J24cxY76iMX+IJwCdk187gxl4PsvdAXqBBMx0X69i7oEGYC4F2wfwb8FcvhRMuU5GJ31WWabJTilnGQfck7z9G9AJ8wfc/ke7T/JrscCTmN6ECSiAv4EHcZwhh2MuXdoPEg5ierna57J+M/mxUlmkyU4pZ8mDucxWIfnxEsxMH7GYy3FTgM8wrS4J8wf7XsxExv5sIVADWJn8+BbMdGv2ibT/xAzxsF8a7ge87sb4lE/QZKeUMxUDfsbcTwJzv6klZrorgKGYS5gFkx9vxqyc8AX+d5Z3GjO04DEci6/WwVyubJT8+DegCXA0+fEjwJfuC1H5Dk12SjlbBcwA81LJj1diOqacSn7cAbNaQpPkx5cw6+JVxyRKXxcP/AezJqB9aIENGIIZnlEu+bmlwH3AP8mP22KWTtLZaFQOaLJTyhWqARtwLPL6G+ZS3S/Jj28DVmB6a+ZJfu5P4GHMVGO+2GMzHrNyQVXM/JYXk5+/A7NMz3+AEEwHlA8w5RCd/J4emEQXjlI5oslOKVe5HVgD1E1+/A/mMtxbmHt2gZieh3tJO1ZsMaar/QOYhOjtcxxdwVx6rIjppLM/+fl8mGEGuzBncGDOfltgxtIlYs74XsGsUK5ndCoXdLowpVwtFniBtPea7sXM2F8t1XMrgRHAr9f9+0jMWL2emHuC3uI3zPCAmTjuWYI5e+uB6aBjv9QrwP9hxtfZO6IUxMya0t4dwSofN1eTnVLu8h3mzOZC8uMgzLiyUZizHLvlmCmwVl3370Mw3fPbYWZj8cQxZr8Di4D5mPuSqYUBfYGXMJdx7Q5gymFZqudqYYYe3OGySJV/0WSnlFsdBJ7GXJ60K4s5y3kSc2nTbhNmQPocHOPL7AIxE1A/CDQG6mHN/axTwDrM5drFmAH11yuHSfJPkXZx1X8w9+bG4liBPBgYhhmDGOqSiJV/0mSnlCXmAs9iut/blcPcq+pL2qR3CfgW03NxM+Z+3/VCMN3262A6gFQFqgCFnRSvAH8BezArDOzCdMDJbIxgPsyg7z6YnqipewdEYab8Gk3ay5uNMIPKU1/aVco5NNkpZZnzmLXuJmF6KtpVwQxF6IZj7Ta7k8D3mIHYK3GcEWWmGFASM39ncaA0kDf5JyTV7ytAHKb3YzwmCZ8BTiRvHyX92WVG+2qDGSLQAnPZMrX9mGT2FY6emGDu272NmVNU57lUrqHJTinLHcb00Pw/0g4sLwB0BwaQ8dnOVWAbZmzauuTf510aaVolMWdj9yb/rkX6/t0JmMub4zD35FL/tSmGOZMdgA4pUK6myU4pj/E/TGeVOaQ/Y6sOPJH8UyWTf5+ESZx7cFxuPIQ5G/wbx2rf2VEYc+ZVCjNmsCpwJyb53pLJv4nH3JOch+mUc+6610thBpAPxpxZKuV6muyU8jhnMPNoTsDcJ7teFcx4vaaYzikFM3hPRs5jEt81HJct7b/zYTqH2H8XwZy5XX8pMjOHMOv4rQR+xNyXS80GNMP0umyHjplT7qbJTimPlYiZTHom5lLg5QzeE4i5fNgYqIk546qKa3synsMMMdiFGUu3CjiWyXvLY85Ge2HOCJWyhiY7pbxCDPAT5tLgjzjG6mUkCDNbSWWgDI7LkKUxY/PyYO6RhSVvh+LomHIJk2TtZ4F/J/8cxyS0ncnP30hFzIoFT2AmuVbKeprslPI6iZh5NNdjJpxeTvrLhu5k76jSAjPFWbkbv10pC2iyU8rrJQL7MGddqX/+Sn7NWfJgzharYy6X1kjeLunEfSjlGprslPJZiZgxcscxlx6PYS5/RmN6e17FdFaJwQxzCAQKYYYPFMKMyyuBufxZCtNpRSnvNFf7RCnlqwJx3K9Tys/pEj9KKaV8niY7pZRSPi8IMyWtUkop5as2/j+OlP2jmx65gwAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -838,7 +884,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5385b79125e44bc493c7eaf5f8013b14", + "model_id": "7de68790a0584e96aa7e8e30a535275a", "version_major": 2, "version_minor": 0 }, @@ -878,7 +924,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUX0lEQVR4nO3df2xd533f8fdXNkW51J1oUUnHiEo1Ec2qa7JpbaXKkELmZEd2MufHsAyLt6Wz0UBAm2YrNmDF+keMrX8NxYpmCxpDSA03bed0aAzNDpIldlRPKDproBXXl7waAstdZdEy1DChQiozbUfP/rj3OhTDH5fUIc/lc98vgMi95zzk+fiJ9NHhc8+9J1JKSJK2vm1lB5AkFcNCl6RMWOiSlAkLXZIyYaFLUiZuLuvAfX196dZbby3r8MrUa6+9Rk9PD729vVQqFXp6esqOJBXqW9/61ndSSm9bal9phX7rrbfy6U9/uqzDK1P1ep2hoSEOHDjA2NgYg4ODZUeSCtXX1/fXy+1zyUWSMmGhq2vMzs6WHUHaUKUtuUib6dKlS8zPzzM9Pc3AwACVSqXsSFLhLHRlbXZ2lunpac6dO8f58+cBOHbsGHNzc66vKzsuuahrTE1NlR1B2lCeoStrlUqFSqVCb28vw8PDbN++3SUXZctCV1cYHBxk586dFrmy5pKLuoZlrtxZ6JKUCQtdkjJhoUtSJix0ScpE/oW++J6p3kNVUqZWvWwxIvYBXwR+EkjAiZTSZxeNCeCzwAeBHwAPpJTOFh93jZ55Bl57De65ByIaZf71r8OOHTA2VnY6qTC1Gpw6BVeuwK5dcPQojI6WnSpvnTjn7Zyhvwn8m5RSFXgv8KmIqC4a8wHgp5tfx4HPF5pyPVJqlPmZM40Sb5X5mTON7Z6pKxO1Gjz5JMzMNP5Yz8w0ntdqZSfLV6fO+apn6CmlS8Cl5uPZiDgH7AXqC4Z9BPhiSikBz0ZEf0QMNr+3HBGNM3NolPiZM43Hhw//6IxdysCpU/DGG9dve+ONxvayzxhz1alzvqY19IjYD/w8cGbRrr3AywueX2xuW/z9xyNiPCLGr169usao67Cw1Fssc2XmypW1bdeN69Q5b7vQI2In8GXg11NK31/PwVJKJ1JKh1JKh/r6+tbzI9Z6wMYyy0Kt5RcpE7t2rW27blynznlbhR4RPTTK/I9TSo8vMWQK2Lfg+VBzW3kWrpkfPgyf+UzjfxeuqUsZOHoUFt86taensV0bo1PnvJ2rXAL4feBcSul3lhn2BPBrEfEl4DBwpdT1c2gsq+zYcf2aeWv5ZccOl12UjdaabaddcZGzTp3zdj5t8X3AJ4BaRDzf3PabwDsBUkoPA1+lccniizQuW3yw8KTrMTbWOBNvlXer1C1zZWZ0tPwy6TadOOftXOXy58CKDdi8uuVTRYUq1OLytswlZSr/d4pKUpew0CUpExa6JGXCW9ApOxcuXODtb3878/PzzM7OrjjWuxgpJxa6slKtVqnX64yPjzM/P8/BgweXHbtv3z6mp6e9abSyYaErO9Vq47PjJicnqa3waUm7d+/myJEjDA8PMzc3x+Dg4GZFlDaEha5stYp9OfV6nbNnzzIzM8OYH6esDPiiqCRlwkKXpExY6JKUCQtdkjJhoUtSJix0ScqEhS5JmbDQJSkTFrokZcJCl6RMWOiSlAkLXZIyYaFLUiYsdHWNiYkJ6vV62TGkDWOhK3v1ep1XXnmFj370o9x2221MTEyUHUnaEH4eurJWr9fp7+/n7rvvplqtcvDgQXp7exkfH2fbNs9nlBcLXVlr3ZLu6aef5vXXX+f8+fPUajVGRkZcflF2LHRlr3XnopMnT7Jt2zZGRkZKTiRtDAtdXcMiV+5cRJSkTFjokpSJVQs9Ih6JiMsRseS1XhGxKyKejIi/jIjJiHiw+JiSpNW0c4b+KHDvCvs/BdRTSu8GxoD/FBHbbzyaJGktVi30lNJp4LsrDQEqERHAzubYN4uJJ0lqVxFXuXwOeAJ4BagA/ySldG2pgRFxHDgO0N/fX8ChJUktRbwoeg/wPPAO4OeAz0XE31pqYErpRErpUErpUF9fXwGHliS1FFHoDwKPp4YXgb8CfqaAnytJWoMiCv0CcBdARPwk8HeBlwr4uZKkNVh1DT0iHqNx9cqeiLgIPAT0AKSUHgZ+C3g0ImpAAL+RUvrOhiWWJC1p1UJPKd2/yv5XgGOFJZIkrYvvFJWkTFjokpQJC12SMmGhS1ImLHRJyoSFLkmZsNAlKRMWuiRlwkKXpExY6JKUCQtdkjJRxA0upC3rwoULHDhwgPn5eWZnZ1ccW6lUNimVtD4WurpWtVqlXq/zwgsv0N/fz/bty98Kd9++fczNzTE4OLiJCaW1sdDV1arVKgAnT55ccdzu3bs5cuQI8/PzDAwMeLaujmShS8DIyMhbj+v1OteuXbtue71e5+zZs8zMzDA2NmahqyNZ6NICExMTb52Nnz9/nlqtxrZtXjugrcFCl5rq9Tq7d+/m7rvvZnh4mOHhYXp7exkfH7fUtSVY6FJT60XSp59+mpdeeon5+XlqtRojIyPU6/Wy40mrstClBVovkrbOyheurUudzkKXlmCRaytyYVCSMmGhS1ImLHRJyoSFLkmZsNAlKRMWuiRlwkKXpEysWugR8UhEXI6IiRXGjEXE8xExGRH/s9iIkqR2tHOG/ihw73I7I6If+D3gwyml24B/XEgySdKarFroKaXTwHdXGPJPgcdTShea4y8XlE2StAZFrKG/C7g1Ip6JiOci4peWGxgRxyNiPCLGr169WsChJUktRXyWy83AHcBdwC3A/4qIZ1NK3148MKV0AjgBMDQ0lAo4tiSpqYhCvwhMp5SuAlcj4jTwbuDHCl2StHGKWHL578AvRsTNEfETwGHgXAE/V5K0BqueoUfEY8AYsCciLgIPAT0AKaWHU0rnIuJ/AC8A14AvpJSWvcRRkrQxVi30lNL9bYz5beC3C0kkSVoX3ykqSZmw0CUpExa6JGXCQpekTFjokpQJC12SMmGhS1ImLHRJyoSFLkmZsNAlKRMWuiRlwkKXCjQ7O8ulS5fKjqEuVcTnoUsCLl26xOzsLC+//DLz8/MMDAxQqVTKjqUuYqFLBWiV+Te+8Q1qtRqHDh3izjvvZG5ujsHBwbLjqUu45CIV5LnnnqNWq7Ft2zYuX77Mc889V3YkdRkLXZIy4ZKLVJA77riD6elppqamuP322zl48GDZkdRlLHSpAIODg+zcuZP77ruP119/ne3bt/uiqDadhS4VpFKpUKlUmJ2dtchVCtfQpYJZ5iqLhS616cKFC2VHkFbkkovUhmq1ysTEBNPT0zz//PPMz8+vOL63t9frz7XpLHSpTSMjI0xOTjI1NcXp06eXHbd3716OHTvmu0W16Sx0aQ2q1eqqYyYnJ5mbm+M973kPvb29Fro2jWvo0gb44Q9/yOXLl8uOoS5joUtSJix0ScrEqoUeEY9ExOWImFhl3Hsi4s2I+Fhx8SRJ7WrnDP1R4N6VBkTETcB/BL5RQCZJ0jqsWugppdPAd1cZ9mngy4CvAklSSW54DT0i9gL/EPh8G2OPR8R4RIxfvXr1Rg8tSVqgiBdFfxf4jZTStdUGppROpJQOpZQO9fX1FXBoSVJLEW8sOgR8KSIA9gAfjIg3U0onC/jZkqQ23XChp5T+TutxRDwKfMUyV67q9Tr9/f0AzMzMtPXOUWmzrFroEfEYMAbsiYiLwENAD0BK6eENTSd1kImJCUZHRxkeHmb//v1885vfpFarMTIyUnY0CWij0FNK97f7w1JKD9xQGmkLGB4evu55vV73TF0dwQ/nkto0MjJCrVZjamqKvXv3enaujmOhS2swMjJCvV5nZmbGMlfHsdClNXJ5RZ3KD+eSpExY6JKUCQtdkjJhoUtSJix0ScqEhS5JmbDQJSkTFrokZcJCl6RMWOiSlAkLXZIyYaFLUiYsdEnKhIUuSZmw0CUpExa6JGXCQpekTFjokpQJC12SMmGhS1ImLHRJyoSFLkmZsNAlKRMWuiRlYtVCj4hHIuJyREwss/+fRcQLEVGLiL+IiHcXH1OStJp2ztAfBe5dYf9fAXemlEaB3wJOFJBLkrRGN682IKV0OiL2r7D/LxY8fRYYKiCXJGmNVi30Nfpl4GvL7YyI48BxgP7+/oIPLXWOCxcusGvXLmZnZ9f8vYODgxuQSN2gsEKPiL9Po9B/cbkxKaUTNJdkhoaGUlHHljpJtVoFYHJykqmpKQ4cOND29w4NDTE/P8/AwACVSmWjIipThRR6RPws8AXgAyml6SJ+prTVtYr97NmzbX/P+Pg4Fy9e5P3vfz+Apa41ueFCj4h3Ao8Dn0gpffvGI0l5aRV7O+r1OtPT07z66qsMDAxsYCrlaNVCj4jHgDFgT0RcBB4CegBSSg8DnwEGgN+LCIA3U0qHNiqwJGlp7Vzlcv8q+z8JfLKwRJKkdfGdopKUCQtdkjJhoUtSJix0ScqEhS5JmbDQJSkTFrokZcJCl6RMWOiSlAkLXZIyYaFLHeTatWt+KJfWregbXEhah3q9Tn9/Px/60Id417veRaVS8aNztWYWulSyiYkJRkdHueuuu7jlllu8uYXWzSUXqUT1ev2txzfddBO9vb2WudbNM3SpRK2bX9RqNaampjhy5Ii3oNO6eYYudYCRkRFmZmY4efIkTz31FNPT0+u6wbS6m4UudYhqtcq2bdveugWdtFYWuiRlwkKXpExY6JKUCQtdkjJhoUtSJix0ScqEhS5JmbDQJSkTFrokZcJCl6RM5F/oKa38XMVzzqVSrPppixHxCHAfcDmlNLLE/gA+C3wQ+AHwQErpbNFB1+WZZ+C11+CeeyCiUSxf/zrs2AFjY2Wny5Nzri5Rq8GpU3DlCuzaBUePwuhouZnaOUN/FLh3hf0fAH66+XUc+PyNxypASo1iOXOmUSitYjlzprHds8biOefqErUaPPkkzMw0/ljPzDSe12rl5lr1DD2ldDoi9q8w5CPAF1NKCXg2IvojYjCldKmokOsS0ThLhEahnDnTeHz48I/OHlUs51xd4tQpeOON67e98UZje5ln6UWsoe8FXl7w/GJz24+JiOMRMR4R41evXi3g0KtYWDAtFsvGcs7VBa5cWdv2zbKpL4qmlE6klA6llA719fVtxgEbv/Iv1FoK0MZwztUFdu1a2/bNUsQt6KaAfQueDzW3lWvh+m3rV/7Wc/CscSM45+oSR4821swXLrv09DS2l6mIQn8C+LWI+BJwGLhS+vo5NIpjx47r129bSwE7dlgsG8E5V5dorZN32lUu7Vy2+BgwBuyJiIvAQ0APQErpYeCrNC5ZfJHGZYsPblTYNRsba5w1toqkVTAWy8ZxztUlRkfLL/DF2rnK5f5V9ifgU4UlKtriIrFYNp5zLpUi/3eKSlKXsNAlKRNFvCgqqUBXrlzhe9/7HtPT08zNza04dnBwcJNSaSuw0KUOUq1WqdfrnD59mvPnz9Pb27vs2DvvvJP5+XkGBgaoVCqbmFKdykKXOky1WgVgcnJyxXEvvfQSR44c4eDBgwCWuix0qVO1in2xer1Of38/R44cYXh4mN7eXstcgIUubSkTExOMjo5y7Ngxtm/f7nKLruNVLtIWUa/Xr3u+0vq6upNn6NIWsXBtfWpq6q3187m5Oa92EeAZurTlVKtV3vGOd3Dy5Emeeuop5ufnmZ2dLTuWOoCFLm1R27ZtY3p6mldffbXsKOoQFrokZSJSSTceiIi/Af56Ew+5B/jOJh6vSFs1+1bNDVs3+1bNDVs3+2bn/qmU0tuW2lFaoW+2iBhPKR0qO8d6bNXsWzU3bN3sWzU3bN3snZTbJRdJyoSFLkmZ6KZCP1F2gBuwVbNv1dywdbNv1dywdbN3TO6uWUOXpNx10xm6JGXNQpekTGRV6BHxSERcjoiJZfZHRPzniHgxIl6IiNs3O+Ny2sg+FhFXIuL55tdnNjvjUiJiX0T8WUTUI2IyIv7VEmM6bt7bzN2pc74jIv53RPxlM/u/X2JMb0T8SXPOz0TE/hKiLs7UTu4HIuJvFsz5J8vIupyIuCkivhURX1liX/lznlLK5gs4AtwOTCyz/4PA14AA3gucKTvzGrKPAV8pO+cSuQaB25uPK8C3gWqnz3ubuTt1zgPY2XzcA5wB3rtozK8CDzcffxz4ky2S+wHgc2VnXeG/4V8D/3WpPxedMOdZnaGnlE4D311hyEeAL6aGZ4H+iOiIj6lrI3tHSildSimdbT6eBc4BexcN67h5bzN3R2rOY+tmoz3Nr8VXN3wE+IPm4z8F7oqI2KSIS2ozd8eKiCHgHwBfWGZI6XOeVaG3YS/w8oLnF9kif4mb/l7z19WvRcRtZYdZrPkr5s/TOPNaqKPnfYXc0KFz3vzV/3ngMvBUSmnZOU8pvQlcAQY2NeQS2sgN8I+aS3N/GhH7Njfhin4X+LfAtWX2lz7n3VboW9lZGp/h8G7gvwAny41zvYjYCXwZ+PWU0vfLztOuVXJ37JynlH6YUvo5YAj4hYgYKTlSW9rI/SSwP6X0s8BT/OiMt1QRcR9wOaX0XNlZVtJthT4FLPwXf6i5reOllL7f+nU1pfRVoCci9pQcC4CI6KFRin+cUnp8iSEdOe+r5e7kOW9JKc0Afwbcu2jXW3MeETcDu4DpTQ23guVyp5SmU0rzzadfAO7Y5GjLeR/w4Yj4v8CXgKMR8UeLxpQ+591W6E8Av9S86uK9wJWU0qWyQ7UjIv52az0uIn6Bxv93pf8FbWb6feBcSul3lhnWcfPeTu4OnvO3RUR/8/EtwPuB/7No2BPAv2g+/hhwKjVfrStLO7kXvbbyYRqvbZQupfTvUkpDKaX9NF7wPJVS+ueLhpU+51ndgi4iHqNxZcKeiLgIPETjhRdSSg8DX6VxxcWLwA+AB8tJ+uPayP4x4Fci4k3g/wEfL/svaNP7gE8AtebaKMBvAu+Ejp73dnJ36pwPAn8QETfR+Efmv6WUvhIR/wEYTyk9QeMfqz+MiBdpvNj+8fLivqWd3P8yIj4MvEkj9wOlpW1Dp825b/2XpEx025KLJGXLQpekTFjokpQJC12SMmGhS1ImLHRJyoSFLkmZ+P8r6kFj3G0s5QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVi0lEQVR4nO3df2zc9X3H8ec7xI6LfbMhaTsTJ8uIyhZz19LWNEypiGdEQhk/Oq3TyrZ2oFWROspWbdKq9Q/Q1r+mblW7VW0UUZaydlDUIoYRXYLqZtHY8GRCytnHVBFKXTuWXIzs+tLEcZL3/vjeBcfYd2fn6/vefe71kKzc9/P95L5vPtivfPz5fu7O3B0REal/65IuQERE4qFAFxEJhAJdRCQQCnQRkUAo0EVEArE+qQu3trb6VVddldTlJQGnT58mlUpx5ZVX0tTUxBVXXJF0SSJ156WXXnrD3d+51LnEAv2qq67igQceSOrykoDh4WF6e3u54YYb6OrqIpVKJV2SSN1pbW396XLntOQiIhIIBbqISCAU6CIigVCgi4gEQoEuIhIIBbqISCAU6CIigVCgi4gEQoEuIhIIBbqISCAU6CIigVCgi4gEIvxAX/yZqfoMVREJVNl3WzSzLcCjwLsBBw64+1cW9THgK8DtwC+Be939WPzlrtCRI3DmDOzdC2ZRmB86BC0t0NubdHUisclmYWAAZmagvR36+iCTSbqqsNXimFcyQz8H/JW7dwM3AfebWfeiPh8B3lP42gd8PdYqV8M9CvPBwSjEi2E+OBi1a6Yugchmob8fpqejb+vp6eg4m026snDV6piXnaG7+wQwUXg8a2avAJuB3IJudwOPursDL5hZh5l1Fv5uMsyimTlEIT44GD3eufOtGbtIAAYGYH7+0rb5+ag96RljqGp1zFe0hm5m24D3A4OLTm0GfrbgeKzQtvjv7zOzITMbOnXq1ApLXYWFoV6kMJfAzMysrF0uX62OecWBbmZtwPeAz7r7L1ZzMXc/4O497t7T2tq6mqdY6QWjZZaFissvIoFob19Zu1y+Wh3zigLdzJqIwvzb7v7kEl3GgS0LjrsKbclZuGa+cyc8+GD058I1dZEA9PVBU9OlbU1NUbusjVod80p2uRjwDeAVd//SMt2eBj5jZo8DO4GZRNfPIVpWaWm5dM28uPzS0qJlFwlGcc221nZchKxWx7ySD4neBXwCyJrZ8ULb54GtAO6+H3iWaMviq0TbFu+LvdLV6O2NZuLF8C6GusJcApPJJB8mjaYWx7ySXS7/BZRMwMLulvvjKipWi8NbYS4igQr/laIiIg2ikiUXkaqZnZ0ln88D0NnZmXA1IvVFgS41Y2JigtnZWU6cOMG2bduYm5tj48aNpFKppEsTqQsKdKmqqakpTp48SUdHx9vaT58+zQ9+8AOy2SxXX301u3bt4rrrriOfz2u2LlIBBbpUTTqdJlt4s4uzZ8/S3Nx88dzp06d5/vnnmZ6eJp1OA9Df308mk2H79u2arYtUQIEuVZVOpxkZGbkY7IvPXXPNNW/rOz4evUZt+/btmq2LlKBAl6rr7l78Zp2l++ZyOY4dO8b09DS9ettjkWVp26KISCAU6CIigVCgi4gEQoEuIhIIBbqISCAU6CIigVCgi4gEQoEuIhIIBbqISCAU6CIigVCgi4gEQoEuIhIIBbqISCAU6CIigVCgi4gEQoEuIhIIBbqISCAU6CIigVCgi4gEQoEuIhIIBbqISCDWl+tgZo8AdwCT7p5e4nw78C1ga+H5/sHd/yXuQkUkTNksDAzAzAy0t0NfH2QySVdVnyqZoR8Ebitx/n4g5+7vA3qBfzSz5ssvTURCl81Cfz9MT4N79Gd/f9QuK1c20N39KPBmqS5AyswMaCv0PRdPeSISsoEBmJ+/tG1+PmqXlSu75FKBrwJPAyeBFPAH7n5hqY5mtg/YB9DR0RHDpUWkns3MrKxdSovjpuhe4DhwDXAD8FUz+5WlOrr7AXfvcfee1tbWGC4tIvWsvX1l7VJaHIF+H/CkR14FfgL8ZgzPKyKB6+uDpqZL25qaonZZuTgCfRS4BcDM3g38BvBaDM8rIoHLZODOO6GjA8yiP++8U7tcVquSbYuPEe1e2WRmY8BDQBOAu+8HvgAcNLMsYMDn3P2NNatYRIKSySjA41I20N39njLnTwJ7YqtIRERWRa8UFREJhAJdRCQQCnQRkUAo0EVEAqFAFxEJhAJdRCQQCnQRkUAo0EVEAqFAFxEJhAJdRCQQCnQRkUDE8QEXImtudHSUa6+9lrm5OWZnZ0v2TaVSVapKpLYo0KXmdXd3k8vlePnll+no6KC5efmPrN2yZQv5fJ62tjYFuzQcBbrUhe7ubgCeeuqpkv2uvvpqbr75Znbs2AFoti6NRYEudSWdTi97LpfLXXKcz+cV6NJQFOgShOHhYTKZDHv27KG5uZmNGzcqzKXhKNCl7g0PD9PT00MmkyGVStHZ2Zl0SSKJ0LZFCUJbWxvt7e20tbUlXYpIYhToEoR8Ps/MzEzSZYgkSoEudW/dunW89tprvPHGG0xMTDAxMZF0SSKJ0Bq61L3ilsb+/n4ymQzbt29nbm5ON0al4SjQJRjpdJqRkRHy+TzNzc1s2LBBgS4NRUsuEpzz588zOTmZdBkiVadAFxEJhAJdRCQQCnQRkUAo0EVEAlE20M3sETObNLPhEn16zey4mY2Y2X/GW6KIiFSikhn6QeC25U6aWQfwNeAud78e+P1YKhMRkRUpG+jufhR4s0SXPwSedPfRQn/tFxMRSUAca+jXAVeZ2REze9HMPrlcRzPbZ2ZDZjZ06tSpGC4tIiJFcbxSdD3wQeAW4B3A/5jZC+7+48Ud3f0AcACgq6vLY7i2iIgUxBHoY8CUu58CTpnZUeB9wNsCXURE1k4cSy7/DnzYzNab2ZXATuCVGJ5XRERWoOwM3cweA3qBTWY2BjwENAG4+353f8XM/gN4GbgAPOzuy25xFBGRtVE20N39ngr6fBH4YiwViYjIquiVoiIigVCgi4gEQoEuIhIIBbqISCD0EXQSnNHRUdrb25mdnQWgs7Mz4YpEqkOBLkEpfmB0NpsF0AdGS0NRoEuQih8YPT4+ztjYGLfeeiuAQl2CpkCXIOVyOTo6Orj55pvZsWMHGzZsUJhL8MIPdHcwW/5YgjM8PEwmk2HPnj2kUina2toU5tIQwg70I0fgzBnYuzcKcXc4dAhaWqC3N+nqZA3kcjm2bt16cc1cN0RlrWSzMDAAMzPQ3g59fZDJJFtTuNsW3aMwHxyMQrwY5oODUbvr3XtFZHWyWejvh+npKEqmp6Pjwr34xIQ7QzeLZuYQhfjgYPR45863ZuzSsGZnZ8nn85rBy6oMDMD8/KVt8/NRe5Kz9HBn6HBpqBcpzBvexMQEExMT5HI5Xn/99Yv71UUqNTOzsvZqCTvQi8ssCxWXX6QhTUxMMDs7y+HDh3niiSd47rnnmJqaYmJiIunSpI60t6+svVrCXXJZuGZeXGYpHoNm6g2qra2Nubk5tm/fDsDu3bsvtotUqq8vWjNfuOzS1BS1JyncQDeLdrMsXDMvLr+0tCjMG1QqlSKVSrFhw4aL+9O1ji4rVVwnr7VdLuEGOkRbExfuOy+GusK84SnE5XJlMskH+GJhr6HD28NbYS4igQo/0EVEGoQCXUQkEAp0Cc7o6GjSJYgkIuybotJwuru7GR4eZmpqiuPHjzM3N1eyv3a5SEgU6BKche+FfvTo0WX7bd68mVtuuUUfgCHBUKBLkIqfXFTKyMgI+XyeG2+8Ue+XLkHQGro0tPPnzzM5OZl0GSKxUKCLiARCgS4iEoiygW5mj5jZpJkNl+l3o5mdM7OPxVeeiIhUqpIZ+kHgtlIdzOwK4O+BwzHUJCIiq1A20N39KPBmmW4PAN8DdHdJRCQhl72Gbmabgd8Fvl5B331mNmRmQ6dOnbrcS4uIyAJx3BT9MvA5d79QrqO7H3D3HnfvaW1tjeHSIiJSFMcLi3qAxy16W9pNwO1mds7dn4rhuUVEpEKXHeju/uvFx2Z2EHhGYS4iUn1lA93MHgN6gU1mNgY8BDQBuPv+Na1OREQqVjbQ3f2eSp/M3e+9rGpERGTV9EpREZFAKNClYeRyuaRLEFlTCnRpCMPDw1x//fWcPHlSwS7B0vuhS9ByuRwdHR189KMfZceOHZw9e5bDhw+TzWZZt07zGQmLvqOlIZw4cYKzZ89y4sQJxsfHky5HZE1ohi5BK35yUTabZXx8nDfffJN169aRTqe19CLBUaBLQ0in0wBcc801CVcisna05CIiEggFuohIIBToIiKBUKCLiARCgS4iEggFuohIIBToIiKBUKCLiARCgS4iEggFuohIIBToIiKBUKCLiARCgS4iEggFuohIIBToIiKBUKCLiARCgS4Nq7u7m9HRUaamppienub1119ndnY26bJEVk2fWCQNLZ1OMzIywvj4OLt27eK6664jn8/T2dmZdGkiK6YZujS87u5upqenef755zlx4gRzc3OaqUtd0gy9lrmD2fLHEovh4WEymQx79uyhubmZjRs3kkqlki5LZMXKBrqZPQLcAUy6e3qJ838EfA4wYBb4tLv/KO5CG86RI3DmDOzdG4W4Oxw6BC0t0NubdHVByOVyXLhwgZ6eHnbv3k0qldJSi9S1SpZcDgK3lTj/E2C3u2eALwAHYqirsblHYT44GIV4McwHB6N296QrDMbWrVtpa2tTmEsQys7Q3f2omW0rcf6/Fxy+AHTFUFdjM4tm5hCF+OBg9Hjnzrdm7CIii8S9hv6nwPeXO2lm+4B9AB0dHTFfOjDFUC+GOSjM18Do6Cjt7e0V3QQtzuRFalVsgW5mv00U6B9ero+7H6CwJNPV1aV1g1KKyywLHTqkUI9Rd3c3wMVti9dee23J/rt379aWRqlpsQS6mb0XeBj4iLtPxfGcDW3hmnlxmaV4DAr1mBWD/dixY8v2uXDhAlNTU9x4440ACnWpSZcd6Ga2FXgS+IS7//jySxLMot0sC9fMi2vqLS0K8zVSDPal5HI5zp8/z+TkZMl+IkmqZNviY0AvsMnMxoCHgCYAd98PPAhsBL5mUdCcc/eetSq4YfT2XrrvvBjqCnMRWUYlu1zuKXP+U8CnYqtI3rI4vBXmIlKCXvovIhIIBbqISCAU6CIigVCgi4gEQoEuIhIIBbqISCAU6CIigVCgi4gEQoEuIhIIBbqISCAU6CIigVCgi4gEQoEuIhIIBbqISCAU6CIigVCgi4gEQoEuIhIIBbqISCAU6CIigVCgi4gEQoEuIhIIBbqISCAU6CIigVCgi4gEQoEuIhIIBbqISCAU6CIigQg/0N1LH0v8NOYiiVhfroOZPQLcAUy6e3qJ8wZ8Bbgd+CVwr7sfi7vQVTlyBM6cgb17wSwKlkOHoKUFenuTri5MGnNpENksDAzAzAy0t0NfH2QyydZUyQz9IHBbifMfAd5T+NoHfP3yy4qBexQsg4NRoBSDZXAwatesMX4ac2kQ2Sz098P0dPRtPT0dHWezydZVdobu7kfNbFuJLncDj7q7Ay+YWYeZdbr7RFxFropZNEuEKFAGB6PHO3e+NXuUeGnMpUEMDMD8/KVt8/NRe5Kz9DjW0DcDP1twPFZoexsz22dmQ2Y2dOrUqRguXcbCgClSsKwtjbk0gJmZlbVXS1Vvirr7AXfvcfee1tbWalww+pV/oeJSgKwNjbk0gPb2lbVXS9kllwqMA1sWHHcV2pK1cP22+Ct/8Rg0a1wLGnNpEH190Zr5wmWXpqaoPUlxBPrTwGfM7HFgJzCT+Po5RMHR0nLp+m1xKaClRcGyFjTm0iCK6+S1tsulkm2LjwG9wCYzGwMeApoA3H0/8CzRlsVXibYt3rdWxa5Yb280aywGSTFgFCxrR2MuDSKTST7AF6tkl8s9Zc47cH9sFcVtcZAoWNaexlwkEeG/UlREpEEo0EVEAhHHTVGRhjA6Osq73vUuZmdny/Zta2sjlUpVoSqRtyjQRSrQ3d0NwNDQEHNzc2zYsGHZvl1dXezYsYN8Pk9nZ2e1ShRRoIusRDqdZmRkpGSfoaEhxsbG2L17N4BCXapGgS6yQsXZ+nJyuRyTk5O8+OKL9OodJqWKdFNURCQQCnQRkUAo0EVEAqFAFxEJhAJdRCQQCnQRkUCYJ/TBA2b2c+CnVbzkJuCNKl4vTvVae73WDfVbe73WDfVbe7Xr/jV3f+dSJxIL9GozsyF370m6jtWo19rrtW6o39rrtW6o39prqW4tuYiIBEKBLiISiEYK9ANJF3AZ6rX2eq0b6rf2eq0b6rf2mqm7YdbQRURC10gzdBGRoCnQRUQCEVSgm9kjZjZpZsPLnDcz+ycze9XMXjazD1S7xuVUUHuvmc2Y2fHC14PVrnEpZrbFzH5oZjkzGzGzv1iiT82Ne4V11+qYt5jZ/5rZjwq1/+0SfTaY2XcKYz5oZtsSKHVxTZXUfa+Z/XzBmH8qiVqXY2ZXmNlLZvbMEueSH3N3D+YLuBn4ADC8zPnbge8DBtwEDCZd8wpq7wWeSbrOJerqBD5QeJwCfgx01/q4V1h3rY65AW2Fx03AIHDToj5/BuwvPP448J06qfte4KtJ11riv+EvgX9b6vuiFsY8qBm6ux8F3izR5W7gUY+8AHSYWU18nEwFtdckd59w92OFx7PAK8DmRd1qbtwrrLsmFcYxXzhsKnwt3t1wN/DNwuPvAreYmVWpxCVVWHfNMrMu4HeAh5fpkviYBxXoFdgM/GzB8Rh18kNc8FuFX1e/b2bXJ13MYoVfMd9PNPNaqKbHvUTdUKNjXvjV/zgwCTzn7suOubufA2aAjVUtcgkV1A3we4Wlue+a2ZbqVljSl4G/Bi4scz7xMW+0QK9nx4jew+F9wD8DTyVbzqXMrA34HvBZd/9F0vVUqkzdNTvm7n7e3W8AuoAPmVk64ZIqUkHd/cA2d38v8BxvzXgTZWZ3AJPu/mLStZTSaIE+Diz8F7+r0Fbz3P0XxV9X3f1ZoMnMNiVcFgBm1kQUit929yeX6FKT416u7loe8yJ3nwZ+CNy26NTFMTez9UA7MFXV4kpYrm53n3L3ucLhw8AHq1zacnYBd5nZ68DjQJ+ZfWtRn8THvNEC/Wngk4VdFzcBM+4+kXRRlTCzXy2ux5nZh4j+3yX+A1qo6RvAK+7+pWW61dy4V1J3DY/5O82so/D4HcCtwP8t6vY08CeFxx8DBrxwty4pldS96N7KXUT3NhLn7n/j7l3uvo3ohueAu//xom6Jj/n6al5srZnZY0Q7EzaZ2RjwENGNF9x9P/As0Y6LV4FfAvclU+nbVVD7x4BPm9k54DTw8aR/QAt2AZ8AsoW1UYDPA1uhpse9krprdcw7gW+a2RVE/8g84e7PmNnfAUPu/jTRP1b/amavEt1s/3hy5V5USd1/bmZ3AeeI6r43sWorUGtjrpf+i4gEotGWXEREgqVAFxEJhAJdRCQQCnQRkUAo0EVEAqFAFxEJhAJdRCQQ/w8//uc1nTL/1gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] diff --git a/script/progress_tracker_utils/measure.py b/script/progress_tracker_utils/measure.py index 006713d0b..17d466720 100644 --- a/script/progress_tracker_utils/measure.py +++ b/script/progress_tracker_utils/measure.py @@ -261,7 +261,8 @@ def main(): scripts = list(base.glob("*.py")) # Create a directory to store temporary scripts - os.makedirs(".benchmarks/scripts", exist_ok=True) + shutil.rmtree(".benchmarks/scripts", ignore_errors=True) + shutil.copytree(base, ".benchmarks/scripts") # Process each script under the base directory for path in scripts: