From 6904ccfeff7cacef2bf4a3c01a76fcbbbde327f4 Mon Sep 17 00:00:00 2001 From: Ben Date: Fri, 24 Jun 2022 14:18:07 +0100 Subject: [PATCH] pep8 --- generate_data.py | 27 +++++++++++++++------------ 1 file changed, 15 insertions(+), 12 deletions(-) diff --git a/generate_data.py b/generate_data.py index 26a0e933e..b45cd515b 100644 --- a/generate_data.py +++ b/generate_data.py @@ -14,7 +14,7 @@ def old_models(security_level, sd, logq=32): """ def evaluate_model(a, b, stddev=sd): - return (stddev - b)/a + return (stddev - b) / a models = dict() @@ -102,9 +102,11 @@ def automated_param_select_n(params, target_security=128): security_level = get_security_level(costs2, 2) z = inequality(security_level, target_security) - # we keep n > 2 * target_security as a rough baseline for mitm security (on binary key guessing) + # we keep n > 2 * target_security as a rough baseline for mitm security + # (on binary key guessing) while z * security_level < z * target_security: - # TODO: fill in this case! For n > 1024 we only need to consider every 256 (optimization) + # TODO: fill in this case! For n > 1024 we only need to consider every + # 256 (optimization) params = params.updated(n=params.n + z * 8) costs = estimate(params) security_level = get_security_level(costs, 2) @@ -121,12 +123,11 @@ def automated_param_select_n(params, target_security=128): costs = estimate(params) security_level = get_security_level(costs, 2) - print("the finalised parameters are n = {}, log2(sd) = {}, log2(q) = {}, with a security level of {}-bits".format(params.n, - log2( - params.Xe.stddev), - log2( - params.q), - security_level)) + print( + "the finalised parameters are n = {}, log2(sd) = {}, log2(q) = {}, with a security level of {}-bits".format( + params.n, log2( + params.Xe.stddev), log2( + params.q), security_level)) if security_level < target_security: params.updated(n=None) @@ -134,7 +135,8 @@ def automated_param_select_n(params, target_security=128): return params, security_level -def generate_parameter_matrix(params_in, sd_range, target_security_levels=[128], name="default_name"): +def generate_parameter_matrix(params_in, sd_range, target_security_levels=[ + 128], name="default_name"): """ :param params_in: a initial set of LWE parameters :param sd_range: a tuple (sd_min, sd_max) giving the values of sd for which to generate parameters @@ -152,7 +154,7 @@ def generate_parameter_matrix(params_in, sd_range, target_security_levels=[128], try: results = load("{}.sobj".format(name)) - except: + except BaseException: results = dict() results["{}".format(lam)] = [] @@ -163,7 +165,8 @@ def generate_parameter_matrix(params_in, sd_range, target_security_levels=[128], return results -def generate_zama_curves64(sd_range=[2, 58], target_security_levels=[128], name="default_name"): +def generate_zama_curves64(sd_range=[2, 58], target_security_levels=[ + 128], name="default_name"): """ The top level function which we use to run the experiment