diff --git a/compiler/include/zamalang/Dialect/HLFHELinalg/IR/HLFHELinalgOps.td b/compiler/include/zamalang/Dialect/HLFHELinalg/IR/HLFHELinalgOps.td index 4fe4fd156..f3ccbed2c 100644 --- a/compiler/include/zamalang/Dialect/HLFHELinalg/IR/HLFHELinalgOps.td +++ b/compiler/include/zamalang/Dialect/HLFHELinalg/IR/HLFHELinalgOps.td @@ -197,7 +197,7 @@ def MulEintIntOp : HLFHELinalg_Op<"mul_eint_int", [TensorBroadcastingRules, Tens // [7,8,9] [3] [21,24,27] // // The dimension #1 of operand #2 is stretched as it is equals to 1. - "HLFHELinalg.mul_eint_int(%a0, %a1)" : (tensor<3x4x!HLFHE.eint<4>>, tensor<3x1xi5>) -> tensor<3x3x!HLFHE.eint<4>> + "HLFHELinalg.mul_eint_int"(%a0, %a1) : (tensor<3x3x!HLFHE.eint<4>>, tensor<3x1xi5>) -> tensor<3x3x!HLFHE.eint<4>> // Returns the multiplication of a 3x3 matrix of encrypted integers and a 1x3 matrix (a line) of integers. // @@ -206,10 +206,10 @@ def MulEintIntOp : HLFHELinalg_Op<"mul_eint_int", [TensorBroadcastingRules, Tens // [7,8,9] [8,10,12] // // The dimension #2 of operand #2 is stretched as it is equals to 1. - "HLFHELinalg.mul_eint_int(%a0, %a1)" : (tensor<3x4x!HLFHE.eint<4>>, tensor<1x3xi5>) -> tensor<3x3x!HLFHE.eint<4>> + "HLFHELinalg.mul_eint_int"(%a0, %a1) : (tensor<3x3x!HLFHE.eint<4>>, tensor<1x3xi5>) -> tensor<3x3x!HLFHE.eint<4>> // Same behavior than the previous one, but as the dimension #2 is missing of operand #2. - "HLFHELinalg.mul_eint_int(%a0, %a1)" : (tensor<3x4x!HLFHE.eint<4>>, tensor<3xi5>) -> tensor<4x4x4x!HLFHE.eint<4>> + "HLFHELinalg.mul_eint_int"(%a0, %a1) : (tensor<3x3x!HLFHE.eint<4>>, tensor<3xi5>) -> tensor<3x3x!HLFHE.eint<4>> ``` }]; diff --git a/compiler/lib/Conversion/HLFHETensorOpsToLinalg/TensorOpsToLinalg.cpp b/compiler/lib/Conversion/HLFHETensorOpsToLinalg/TensorOpsToLinalg.cpp index ac842e5f5..b03ade271 100644 --- a/compiler/lib/Conversion/HLFHETensorOpsToLinalg/TensorOpsToLinalg.cpp +++ b/compiler/lib/Conversion/HLFHETensorOpsToLinalg/TensorOpsToLinalg.cpp @@ -276,6 +276,10 @@ void HLFHETensorOpsToLinalg::runOnFunction() { HLFHELinalgOpToLinalgGeneric>( &getContext()); + patterns.insert< + HLFHELinalgOpToLinalgGeneric>( + &getContext()); if (mlir::applyPartialConversion(function, target, std::move(patterns)) .failed()) diff --git a/compiler/tests/unittest/end_to_end_jit_encrypted_tensor.cc b/compiler/tests/unittest/end_to_end_jit_encrypted_tensor.cc index 99a605f98..2aef85bc8 100644 --- a/compiler/tests/unittest/end_to_end_jit_encrypted_tensor.cc +++ b/compiler/tests/unittest/end_to_end_jit_encrypted_tensor.cc @@ -823,4 +823,222 @@ TEST(End2EndJit_HLFHELinalg, sub_int_eint_matrix_line_missing_dim) { << a0[i][j] - a1[0][j] << " got " << result[i][j] << "\n"; } } +} + +/////////////////////////////////////////////////////////////////////////////// +// HLFHELinalg mul_eint_int /////////////////////////////////////////////////// +/////////////////////////////////////////////////////////////////////////////// + +TEST(End2EndJit_HLFHELinalg, mul_eint_int_term_to_term) { + mlir::zamalang::CompilerEngine engine; + auto mlirStr = R"XXX( + // Returns the term to term multiplication of `%a0` with `%a1` + func @main(%a0: tensor<4x!HLFHE.eint<4>>, %a1: tensor<4xi5>) -> tensor<4x!HLFHE.eint<4>> { + %res = "HLFHELinalg.mul_eint_int"(%a0, %a1) : (tensor<4x!HLFHE.eint<4>>, tensor<4xi5>) -> tensor<4x!HLFHE.eint<4>> + return %res : tensor<4x!HLFHE.eint<4>> + } +)XXX"; + const uint8_t a0[4]{31, 6, 12, 9}; + const uint8_t a1[4]{2, 3, 2, 3}; + + ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints())); + + auto maybeArgument = engine.buildArgument(); + ASSERT_LLVM_ERROR(maybeArgument.takeError()); + auto argument = std::move(maybeArgument.get()); + // Set the %a0 and %a1 argument + ASSERT_LLVM_ERROR(argument->setArg(0, (uint8_t *)a0, 4)); + ASSERT_LLVM_ERROR(argument->setArg(1, (uint8_t *)a1, 4)); + // Invoke the function + ASSERT_LLVM_ERROR(engine.invoke(*argument)); + // Get and assert the result + uint64_t result[4]; + ASSERT_LLVM_ERROR(argument->getResult(0, (uint64_t *)result, 4)); + for (size_t i = 0; i < 4; i++) { + EXPECT_EQ(result[i], a0[i] * a1[i]) + << "result differ at pos " << i << ", expect " << a0[i] * a1[i] + << " got " << result[i]; + } +} + +TEST(End2EndJit_HLFHELinalg, mul_eint_int_term_to_term_broadcast) { + mlir::zamalang::CompilerEngine engine; + auto mlirStr = R"XXX( + // Returns the term to term multiplication of `%a0` with `%a1`, where dimensions equals to one are stretched. + func @main(%a0: tensor<4x1x4x!HLFHE.eint<4>>, %a1: tensor<1x4x4xi5>) -> tensor<4x4x4x!HLFHE.eint<4>> { + %res = "HLFHELinalg.mul_eint_int"(%a0, %a1) : (tensor<4x1x4x!HLFHE.eint<4>>, tensor<1x4x4xi5>) -> tensor<4x4x4x!HLFHE.eint<4>> + return %res : tensor<4x4x4x!HLFHE.eint<4>> + } +)XXX"; + const uint8_t a0[4][1][4]{ + {{1, 2, 3, 4}}, + {{5, 6, 7, 8}}, + {{9, 10, 11, 12}}, + {{13, 14, 15, 16}}, + }; + const uint8_t a1[1][4][4]{ + { + {1, 2, 0, 1}, + {2, 0, 1, 2}, + {0, 1, 2, 0}, + {1, 2, 0, 1}, + }, + }; + + ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints())); + + auto maybeArgument = engine.buildArgument(); + ASSERT_LLVM_ERROR(maybeArgument.takeError()); + auto argument = std::move(maybeArgument.get()); + // Set the %a0 and %a1 argument + ASSERT_LLVM_ERROR(argument->setArg(0, (uint8_t *)a0, {4, 1, 4})); + ASSERT_LLVM_ERROR(argument->setArg(1, (uint8_t *)a1, {1, 4, 4})); + // Invoke the function + ASSERT_LLVM_ERROR(engine.invoke(*argument)); + // Get and assert the result + uint64_t result[4][4][4]; + ASSERT_LLVM_ERROR(argument->getResult(0, (uint64_t *)result, 4 * 4 * 4)); + for (size_t i = 0; i < 4; i++) { + for (size_t j = 0; j < 4; j++) { + for (size_t k = 0; k < 4; k++) { + EXPECT_EQ(result[i][j][k], a0[i][0][k] * a1[0][j][k]) + << "result differ at pos " << i << ", expect " + << a0[i][0][k] * a1[0][j][k] << " got " << result[i]; + } + } + } +} + +TEST(End2EndJit_HLFHELinalg, mul_eint_int_matrix_column) { + mlir::zamalang::CompilerEngine engine; + auto mlirStr = R"XXX( + // Returns the multiplication of a 3x3 matrix of encrypted integers and a 3x1 matrix (a column) of integers. + // + // [1,2,3] [1] [1,2,3] + // [4,5,6] * [2] = [8,10,18] + // [7,8,9] [3] [21,24,27] + // + // The dimension #1 of operand #2 is stretched as it is equals to 1. + func @main(%a0: tensor<3x3x!HLFHE.eint<4>>, %a1: tensor<3x1xi5>) -> tensor<3x3x!HLFHE.eint<4>> { + %res = "HLFHELinalg.mul_eint_int"(%a0, %a1) : (tensor<3x3x!HLFHE.eint<4>>, tensor<3x1xi5>) -> tensor<3x3x!HLFHE.eint<4>> + return %res : tensor<3x3x!HLFHE.eint<4>> + } +)XXX"; + const uint8_t a0[3][3]{ + {1, 2, 3}, + {4, 5, 6}, + {7, 8, 9}, + }; + const uint8_t a1[3][1]{ + {1}, + {2}, + {3}, + }; + + ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints())); + + auto maybeArgument = engine.buildArgument(); + ASSERT_LLVM_ERROR(maybeArgument.takeError()); + auto argument = std::move(maybeArgument.get()); + // Set the %a0 and %a1 argument + ASSERT_LLVM_ERROR(argument->setArg(0, (uint8_t *)a0, {3, 3})); + ASSERT_LLVM_ERROR(argument->setArg(1, (uint8_t *)a1, {3, 1})); + // Invoke the function + ASSERT_LLVM_ERROR(engine.invoke(*argument)); + // Get and assert the result + uint64_t result[3][3]; + ASSERT_LLVM_ERROR(argument->getResult(0, (uint64_t *)result, 3 * 3)); + for (size_t i = 0; i < 3; i++) { + for (size_t j = 0; j < 3; j++) { + EXPECT_EQ(result[i][j], a0[i][j] * a1[i][0]) + << "result differ at pos " << i << ", expect " << a0[i][j] * a1[i][0] + << " got " << result[i]; + } + } +} + +TEST(End2EndJit_HLFHELinalg, mul_eint_int_matrix_line) { + mlir::zamalang::CompilerEngine engine; + auto mlirStr = R"XXX( + // Returns the multiplication of a 3x3 matrix of encrypted integers and a 1x3 matrix (a line) of integers. + // + // [1,2,3] [2,4,6] + // [4,5,6] * [1,2,3] = [5,7,9] + // [7,8,9] [8,10,12] + // + // The dimension #2 of operand #2 is stretched as it is equals to 1. + func @main(%a0: tensor<3x3x!HLFHE.eint<4>>, %a1: tensor<1x3xi5>) -> tensor<3x3x!HLFHE.eint<4>> { + %res = "HLFHELinalg.mul_eint_int"(%a0, %a1) : (tensor<3x3x!HLFHE.eint<4>>, tensor<1x3xi5>) -> tensor<3x3x!HLFHE.eint<4>> + return %res : tensor<3x3x!HLFHE.eint<4>> + } +)XXX"; + const uint8_t a0[3][3]{ + {1, 2, 3}, + {4, 5, 6}, + {7, 8, 9}, + }; + const uint8_t a1[1][3]{ + {1, 2, 3}, + }; + + ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints())); + + auto maybeArgument = engine.buildArgument(); + ASSERT_LLVM_ERROR(maybeArgument.takeError()); + auto argument = std::move(maybeArgument.get()); + // Set the %a0 and %a1 argument + ASSERT_LLVM_ERROR(argument->setArg(0, (uint8_t *)a0, {3, 3})); + ASSERT_LLVM_ERROR(argument->setArg(1, (uint8_t *)a1, {1, 3})); + // Invoke the function + ASSERT_LLVM_ERROR(engine.invoke(*argument)); + // Get and assert the result + uint64_t result[3][3]; + ASSERT_LLVM_ERROR(argument->getResult(0, (uint64_t *)result, 3 * 3)); + for (size_t i = 0; i < 3; i++) { + for (size_t j = 0; j < 3; j++) { + EXPECT_EQ(result[i][j], a0[i][j] * a1[0][j]) + << "result differ at pos (" << i << "," << j << "), expect " + << a0[i][j] * a1[0][j] << " got " << result[i][j] << "\n"; + } + } +} + +TEST(End2EndJit_HLFHELinalg, mul_eint_int_matrix_line_missing_dim) { + mlir::zamalang::CompilerEngine engine; + auto mlirStr = R"XXX( + // Same behavior than the previous one, but as the dimension #2 of operand #2 is missing. + func @main(%a0: tensor<3x3x!HLFHE.eint<4>>, %a1: tensor<3xi5>) -> tensor<3x3x!HLFHE.eint<4>> { + %res = "HLFHELinalg.mul_eint_int"(%a0, %a1) : (tensor<3x3x!HLFHE.eint<4>>, tensor<3xi5>) -> tensor<3x3x!HLFHE.eint<4>> + return %res : tensor<3x3x!HLFHE.eint<4>> + } +)XXX"; + const uint8_t a0[3][3]{ + {1, 2, 3}, + {4, 5, 6}, + {7, 8, 9}, + }; + const uint8_t a1[1][3]{ + {1, 2, 3}, + }; + + ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints())); + + auto maybeArgument = engine.buildArgument(); + ASSERT_LLVM_ERROR(maybeArgument.takeError()); + auto argument = std::move(maybeArgument.get()); + // Set the %a0 and %a1 argument + ASSERT_LLVM_ERROR(argument->setArg(0, (uint8_t *)a0, {3, 3})); + ASSERT_LLVM_ERROR(argument->setArg(1, (uint8_t *)a1, {3})); + // Invoke the function + ASSERT_LLVM_ERROR(engine.invoke(*argument)); + // Get and assert the result + uint64_t result[3][3]; + ASSERT_LLVM_ERROR(argument->getResult(0, (uint64_t *)result, 3 * 3)); + for (size_t i = 0; i < 3; i++) { + for (size_t j = 0; j < 3; j++) { + EXPECT_EQ(result[i][j], a0[i][j] * a1[0][j]) + << "result differ at pos (" << i << "," << j << "), expect " + << a0[i][j] * a1[0][j] << " got " << result[i][j] << "\n"; + } + } } \ No newline at end of file