""" Tests of execution of truncate bit pattern operation. """ import numpy as np import pytest from concrete import fhe from concrete.fhe.representation.utils import format_constant @pytest.mark.parametrize( "sample,lsbs_to_remove,expected_output", [ (0b_0000_0011, 0, 0b_0000_0011), (0b_0000_0100, 0, 0b_0000_0100), (0b_0000_0000, 3, 0b_0000_0000), (0b_0000_0001, 3, 0b_0000_0000), (0b_0000_0010, 3, 0b_0000_0000), (0b_0000_0011, 3, 0b_0000_0000), (0b_0000_0100, 3, 0b_0000_0000), (0b_0000_0101, 3, 0b_0000_0000), (0b_0000_0110, 3, 0b_0000_0000), (0b_0000_0111, 3, 0b_0000_0000), (0b_0000_1000, 3, 0b_0000_1000), (0b_0000_1001, 3, 0b_0000_1000), (0b_0000_1010, 3, 0b_0000_1000), (0b_0000_1011, 3, 0b_0000_1000), (0b_0000_1100, 3, 0b_0000_1000), (0b_0000_1101, 3, 0b_0000_1000), (0b_0000_1110, 3, 0b_0000_1000), (0b_0000_1111, 3, 0b_0000_1000), ], ) def test_plain_truncate_bit_pattern(sample, lsbs_to_remove, expected_output): """ Test truncate bit pattern in evaluation context. """ assert fhe.truncate_bit_pattern(sample, lsbs_to_remove=lsbs_to_remove) == expected_output @pytest.mark.parametrize( "sample,lsbs_to_remove,expected_error,expected_message", [ ( np.array([3.2, 4.1]), 3, TypeError, f"Expected input elements to be integers but they are {type(np.array([3.2, 4.1]).dtype).__name__}", # noqa: E501 ), ( "foo", 3, TypeError, "Expected input to be an int or a numpy array but it's str", ), ], ) def test_bad_plain_truncate_bit_pattern( sample, lsbs_to_remove, expected_error, expected_message, ): """ Test truncate bit pattern in evaluation context with bad parameters. """ with pytest.raises(expected_error) as excinfo: fhe.truncate_bit_pattern(sample, lsbs_to_remove=lsbs_to_remove) assert str(excinfo.value) == expected_message @pytest.mark.parametrize( "input_bits,lsbs_to_remove", [ (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3), (5, 4), ], ) @pytest.mark.parametrize( "mapper", [ pytest.param( lambda x: x, id="x", ), pytest.param( lambda x: x + 10, id="x + 10", ), pytest.param( lambda x: x**2, id="x ** 2", ), pytest.param( lambda x: fhe.univariate(lambda x: x if x >= 0 else 0)(x), id="relu", ), ], ) def test_truncate_bit_pattern(input_bits, lsbs_to_remove, mapper, helpers): """ Test truncate bit pattern. """ @fhe.compiler({"x": "encrypted"}) def function(x): x_truncated = fhe.truncate_bit_pattern(x, lsbs_to_remove=lsbs_to_remove) return mapper(x_truncated) upper_bound = 2**input_bits inputset = [0, upper_bound - 1] circuit = function.compile(inputset, helpers.configuration()) helpers.check_execution(circuit, function, np.random.randint(0, upper_bound), retries=3) for value in inputset: helpers.check_execution(circuit, function, value, retries=3) @pytest.mark.parametrize( "input_bits,lsbs_to_remove", [ (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), ], ) def test_truncate_bit_pattern_unsigned_range(input_bits, lsbs_to_remove, helpers): """ Test truncate bit pattern in unsigned range. """ @fhe.compiler({"x": "encrypted"}) def function(x): return fhe.truncate_bit_pattern(x, lsbs_to_remove=lsbs_to_remove) inputset = range(0, 2**input_bits) circuit = function.compile(inputset, helpers.configuration()) for value in inputset: helpers.check_execution(circuit, function, value, retries=3) @pytest.mark.parametrize( "input_bits,lsbs_to_remove", [ (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), ], ) def test_truncate_bit_pattern_signed_range(input_bits, lsbs_to_remove, helpers): """ Test truncate bit pattern in signed range. """ @fhe.compiler({"x": "encrypted"}) def function(x): return fhe.truncate_bit_pattern(x, lsbs_to_remove=lsbs_to_remove) inputset = range(-(2 ** (input_bits - 1)), 2 ** (input_bits - 1)) circuit = function.compile(inputset, helpers.configuration()) for value in inputset: helpers.check_execution(circuit, function, value, retries=3) @pytest.mark.parametrize( "input_bits,lsbs_to_remove", [ (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), ], ) def test_truncate_bit_pattern_unsigned_range_assigned(input_bits, lsbs_to_remove, helpers): """ Test truncate bit pattern in unsigned range with a big bit-width assigned. """ @fhe.compiler({"x": "encrypted"}) def function(x): truncated = fhe.truncate_bit_pattern(x, lsbs_to_remove=lsbs_to_remove) return (truncated**2) + (63 - x) inputset = range(0, 2**input_bits) circuit = function.compile(inputset, helpers.configuration()) for value in inputset: helpers.check_execution(circuit, function, value, retries=3) @pytest.mark.parametrize( "input_bits,lsbs_to_remove", [ (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), ], ) def test_truncate_bit_pattern_signed_range_assigned(input_bits, lsbs_to_remove, helpers): """ Test truncate bit pattern in signed range with a big bit-width assigned. """ @fhe.compiler({"x": "encrypted"}) def function(x): truncated = fhe.truncate_bit_pattern(x, lsbs_to_remove=lsbs_to_remove) return (truncated**2) + (63 - x) inputset = range(-(2 ** (input_bits - 1)), 2 ** (input_bits - 1)) circuit = function.compile(inputset, helpers.configuration()) for value in inputset: helpers.check_execution(circuit, function, value, retries=3) def test_truncate_bit_pattern_identity(helpers, pytestconfig): """ Test truncate bit pattern used multiple times outside TLUs. """ @fhe.compiler({"x": "encrypted"}) def function(x): truncated = fhe.truncate_bit_pattern(x, lsbs_to_remove=2) return truncated + truncated inputset = range(-20, 20) circuit = function.compile(inputset, helpers.configuration()) expected_mlir = ( """ module { func.func @function(%arg0: !FHE.esint<7>) -> !FHE.esint<7> { %0 = "FHE.lsb"(%arg0) : (!FHE.esint<7>) -> !FHE.esint<7> %1 = "FHE.sub_eint"(%arg0, %0) : (!FHE.esint<7>, !FHE.esint<7>) -> !FHE.esint<7> %2 = "FHE.reinterpret_precision"(%1) : (!FHE.esint<7>) -> !FHE.esint<6> %3 = "FHE.lsb"(%2) : (!FHE.esint<6>) -> !FHE.esint<6> %4 = "FHE.sub_eint"(%2, %3) : (!FHE.esint<6>, !FHE.esint<6>) -> !FHE.esint<6> %5 = "FHE.reinterpret_precision"(%4) : (!FHE.esint<6>) -> !FHE.esint<7> %6 = "FHE.add_eint"(%5, %5) : (!FHE.esint<7>, !FHE.esint<7>) -> !FHE.esint<7> return %6 : !FHE.esint<7> } } """ # noqa: E501 if pytestconfig.getoption("precision") == "multi" else """ module { func.func @function(%arg0: !FHE.esint<7>) -> !FHE.esint<7> { %0 = "FHE.lsb"(%arg0) : (!FHE.esint<7>) -> !FHE.esint<7> %1 = "FHE.sub_eint"(%arg0, %0) : (!FHE.esint<7>, !FHE.esint<7>) -> !FHE.esint<7> %2 = "FHE.reinterpret_precision"(%1) : (!FHE.esint<7>) -> !FHE.esint<6> %3 = "FHE.lsb"(%2) : (!FHE.esint<6>) -> !FHE.esint<6> %4 = "FHE.sub_eint"(%2, %3) : (!FHE.esint<6>, !FHE.esint<6>) -> !FHE.esint<6> %5 = "FHE.reinterpret_precision"(%4) : (!FHE.esint<6>) -> !FHE.esint<7> %6 = "FHE.add_eint"(%5, %5) : (!FHE.esint<7>, !FHE.esint<7>) -> !FHE.esint<7> return %6 : !FHE.esint<7> } } """ # noqa: E501 ) helpers.check_str(expected_mlir, circuit.mlir) def test_auto_truncating(helpers): """ Test truncate bit pattern with auto truncating. """ # with auto adjust truncators configuration # --------------------------------------- # y has the max value of 1999, so it's 11 bits # our target msb is 5 bits, which means we need to remove 6 of the least significant bits truncator1 = fhe.AutoTruncator(target_msbs=5) @fhe.compiler({"x": "encrypted"}) def function1(x): y = x + 1000 z = fhe.truncate_bit_pattern(y, lsbs_to_remove=truncator1) return np.sqrt(z).astype(np.int64) inputset1 = range(1000) function1.trace(inputset1, helpers.configuration(), auto_adjust_truncators=True) assert truncator1.lsbs_to_remove == 6 # manual # ------ # y has the max value of 1999, so it's 11 bits # our target msb is 3 bits, which means we need to remove 8 of the least significant bits truncator2 = fhe.AutoTruncator(target_msbs=3) @fhe.compiler({"x": "encrypted"}) def function2(x): y = x + 1000 z = fhe.truncate_bit_pattern(y, lsbs_to_remove=truncator2) return np.sqrt(z).astype(np.int64) inputset2 = range(1000) fhe.AutoTruncator.adjust(function2, inputset2) assert truncator2.lsbs_to_remove == 8 # complicated case # ---------------- # have 2 ** 8 entries during evaluation, it won't matter after compilation entries3 = list(range(2**8)) # we have 8-bit inputs for this table, and we only want to use first 5-bits for i in range(0, 2**8, 2**3): # so we set every 8th entry to a 4-bit value entries3[i] = np.random.randint(0, (2**4) - (2**2)) # when this tlu is applied to an 8-bit value with 5-bit msb truncating, result will be 4-bits table3 = fhe.LookupTable(entries3) # and this is the truncator for table1, which should have lsbs_to_remove of 3 truncator3 = fhe.AutoTruncator(target_msbs=5) # have 2 ** 8 entries during evaluation, it won't matter after compilation entries4 = list(range(2**8)) # we have 4-bit inputs for this table, and we only want to use first 2-bits for i in range(0, 2**4, 2**2): # so we set every 4th entry to an 8-bit value entries4[i] = np.random.randint(2**7, 2**8) # when this tlu is applied to a 4-bit value with 2-bit msb truncating, result will be 8-bits table4 = fhe.LookupTable(entries4) # and this is the truncator for table2, which should have lsbs_to_remove of 2 truncator4 = fhe.AutoTruncator(target_msbs=2) @fhe.compiler({"x": "encrypted"}) def function3(x): a = fhe.truncate_bit_pattern(x, lsbs_to_remove=truncator3) b = table3[a] c = fhe.truncate_bit_pattern(b, lsbs_to_remove=truncator4) d = table4[c] return d inputset3 = range((2**8) - (2**3)) circuit3 = function3.compile( inputset3, helpers.configuration(), auto_adjust_truncators=True, ) assert truncator3.lsbs_to_remove == 3 assert truncator4.lsbs_to_remove == 2 table3_formatted_string = format_constant(table3.table, 25) table4_formatted_string = format_constant(table4.table, 25) helpers.check_str( f""" %0 = x # EncryptedScalar %1 = truncate_bit_pattern(%0, lsbs_to_remove=3) # EncryptedScalar %2 = tlu(%1, table={table3_formatted_string}) # EncryptedScalar %3 = truncate_bit_pattern(%2, lsbs_to_remove=2) # EncryptedScalar %4 = tlu(%3, table={table4_formatted_string}) # EncryptedScalar return %4 """, str(circuit3.graph.format(show_bounds=False)), ) def test_auto_truncating_without_adjustment(): """ Test truncate bit pattern with auto truncating but without adjustment. """ truncator = fhe.AutoTruncator(target_msbs=5) def function(x): y = x + 1000 z = fhe.truncate_bit_pattern(y, lsbs_to_remove=truncator) return np.sqrt(z).astype(np.int64) with pytest.raises(RuntimeError) as excinfo: function(100) assert str(excinfo.value) == ( "AutoTruncators cannot be used before adjustment, " "please call AutoTruncator.adjust with the function that will be compiled " "and provide the exact inputset that will be used for compilation" ) def test_auto_truncating_with_empty_inputset(): """ Test truncate bit pattern with auto truncating but with empty inputset. """ truncator = fhe.AutoTruncator(target_msbs=5) def function(x): y = x + 1000 z = fhe.truncate_bit_pattern(y, lsbs_to_remove=truncator) return np.sqrt(z).astype(np.int64) with pytest.raises(ValueError) as excinfo: fhe.AutoTruncator.adjust(function, []) assert str(excinfo.value) == "AutoTruncators cannot be adjusted with an empty inputset" def test_auto_truncating_recursive_adjustment(): """ Test truncate bit pattern with auto truncating but with recursive adjustment. """ truncator = fhe.AutoTruncator(target_msbs=5) def function(x): fhe.AutoTruncator.adjust(function, range(10)) y = x + 1000 z = fhe.truncate_bit_pattern(y, lsbs_to_remove=truncator) return np.sqrt(z).astype(np.int64) with pytest.raises(RuntimeError) as excinfo: fhe.AutoTruncator.adjust(function, range(10)) assert str(excinfo.value) == "AutoTruncators cannot be adjusted recursively" def test_auto_truncating_construct_in_function(): """ Test truncate bit pattern with auto truncating but truncator is constructed within the function. """ def function(x): y = x + 1000 z = fhe.truncate_bit_pattern(y, lsbs_to_remove=fhe.AutoTruncator(target_msbs=5)) return np.sqrt(z).astype(np.int64) with pytest.raises(RuntimeError) as excinfo: fhe.AutoTruncator.adjust(function, range(10)) assert str(excinfo.value) == ( "AutoTruncators cannot be constructed during adjustment, " "please construct AutoTruncators outside the function and reference it" )