# Debug In this section, you will learn how to debug the compilation process easily and get help in case you cannot resolve your issue. ## Debug artifacts **Concrete** has an artifact system to simplify the process of debugging issues. ### Automatic export. In case of compilation failures, artifacts are exported automatically to the `.artifacts` directory under the working directory. Let's intentionally create a compilation failure to show what is exported. ```python def f(x): return np.sin(x) ``` This function fails to compile because **Concrete** does not support floating-point outputs. When you try to compile it, an exception will be raised and the artifacts will be exported automatically. If you go to the `.artifacts` directory under the working directory, you'll see the following files: #### environment.txt This file contains information about your setup (i.e., your operating system and python version). ``` Linux-5.12.13-arch1-2-x86_64-with-glibc2.29 #1 SMP PREEMPT Fri, 25 Jun 2021 22:56:51 +0000 Python 3.8.10 ``` #### requirements.txt This file contains information about Python packages and their versions installed on your system. ``` astroid==2.15.0 attrs==22.2.0 auditwheel==5.3.0 ... wheel==0.40.0 wrapt==1.15.0 zipp==3.15.0 ``` #### function.txt This file contains information about the function you tried to compile. ``` def f(x): return np.sin(x) ``` #### parameters.txt This file contains information about the encryption status of the parameters of the function you tried to compile. ``` x :: encrypted ``` #### 1.initial.graph.txt This file contains the textual representation of the initial computation graph right after tracing. ``` %0 = x # EncryptedScalar %1 = sin(%0) # EncryptedScalar return %1 ``` #### 2.final.graph.txt This file contains the textual representation of the final computation graph right before MLIR conversion. ``` %0 = x # EncryptedScalar %1 = sin(%0) # EncryptedScalar return %1 ``` #### traceback.txt This file contains information about the error you received. ``` Traceback (most recent call last): File "/path/to/your/script.py", line 9, in circuit = f.compile(inputset) File "/usr/local/lib/python3.10/site-packages/concrete/fhe/compilation/decorators.py", line 159, in compile return self.compiler.compile(inputset, configuration, artifacts, **kwargs) File "/usr/local/lib/python3.10/site-packages/concrete/fhe/compilation/compiler.py", line 437, in compile mlir = GraphConverter.convert(self.graph) File "/usr/local/lib/python3.10/site-packages/concrete/fhe/mlir/graph_converter.py", line 677, in convert GraphConverter._check_graph_convertibility(graph) File "/usr/local/lib/python3.10/site-packages/concrete/fhe/mlir/graph_converter.py", line 240, in _check_graph_convertibility raise RuntimeError(message) RuntimeError: Function you are trying to compile cannot be converted to MLIR %0 = x # EncryptedScalar ∈ [3, 5] %1 = sin(%0) # EncryptedScalar ∈ [-0.958924, 0.14112] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ only integer operations are supported /path/to/your/script.py:6 return %1 ``` ### Manual exports. Manual exports are mostly used for visualization. They can be very useful for demonstrations. Here is how to perform one: ```python from concrete import fhe import numpy as np artifacts = fhe.DebugArtifacts("/tmp/custom/export/path") @fhe.compiler({"x": "encrypted"}) def f(x): return 127 - (50 * (np.sin(x) + 1)).astype(np.int64) inputset = range(2 ** 3) circuit = f.compile(inputset, artifacts=artifacts) artifacts.export() ``` If you go to the `/tmp/custom/export/path` directory, you'll see the following files: #### 1.initial.graph.txt This file contains the textual representation of the initial computation graph right after tracing. ``` %0 = x # EncryptedScalar %1 = sin(%0) # EncryptedScalar %2 = 1 # ClearScalar %3 = add(%1, %2) # EncryptedScalar %4 = 50 # ClearScalar %5 = multiply(%4, %3) # EncryptedScalar %6 = astype(%5, dtype=int_) # EncryptedScalar %7 = 127 # ClearScalar %8 = subtract(%7, %6) # EncryptedScalar return %8 ``` #### 2.after-fusing.graph.txt This file contains the textual representation of the intermediate computation graph after fusing. ``` %0 = x # EncryptedScalar %1 = subgraph(%0) # EncryptedScalar %2 = 127 # ClearScalar %3 = subtract(%2, %1) # EncryptedScalar return %3 Subgraphs: %1 = subgraph(%0): %0 = input # EncryptedScalar %1 = sin(%0) # EncryptedScalar %2 = 1 # ClearScalar %3 = add(%1, %2) # EncryptedScalar %4 = 50 # ClearScalar %5 = multiply(%4, %3) # EncryptedScalar %6 = astype(%5, dtype=int_) # EncryptedScalar return %6 ``` #### 3.final.graph.txt This file contains the textual representation of the final computation graph right before MLIR conversion. ``` %0 = x # EncryptedScalar ∈ [0, 7] %1 = subgraph(%0) # EncryptedScalar ∈ [2, 95] %2 = 127 # ClearScalar ∈ [127, 127] %3 = subtract(%2, %1) # EncryptedScalar ∈ [32, 125] return %3 Subgraphs: %1 = subgraph(%0): %0 = input # EncryptedScalar %1 = sin(%0) # EncryptedScalar %2 = 1 # ClearScalar %3 = add(%1, %2) # EncryptedScalar %4 = 50 # ClearScalar %5 = multiply(%4, %3) # EncryptedScalar %6 = astype(%5, dtype=int_) # EncryptedScalar return %6 ``` #### mlir.txt This file contains information about the MLIR of the function you compiled using the inputset you provided. ``` module { func.func @main(%arg0: !FHE.eint<7>) -> !FHE.eint<7> { %c127_i8 = arith.constant 127 : i8 %cst = arith.constant dense<"..."> : tensor<128xi64> %0 = "FHE.apply_lookup_table"(%arg0, %cst) : (!FHE.eint<7>, tensor<128xi64>) -> !FHE.eint<7> %1 = "FHE.sub_int_eint"(%c127_i8, %0) : (i8, !FHE.eint<7>) -> !FHE.eint<7> return %1 : !FHE.eint<7> } } ``` #### client\_parameters.json This file contains information about the client parameters chosen by **Concrete**. ``` { "bootstrapKeys": [ { "baseLog": 22, "glweDimension": 1, "inputLweDimension": 908, "inputSecretKeyID": 1, "level": 1, "outputSecretKeyID": 0, "polynomialSize": 8192, "variance": 4.70197740328915e-38 } ], "functionName": "main", "inputs": [ { "encryption": { "encoding": { "isSigned": false, "precision": 7 }, "secretKeyID": 0, "variance": 4.70197740328915e-38 }, "shape": { "dimensions": [], "sign": false, "size": 0, "width": 7 } } ], "keyswitchKeys": [ { "baseLog": 3, "inputSecretKeyID": 0, "level": 6, "outputSecretKeyID": 1, "variance": 1.7944329123150665e-13 } ], "outputs": [ { "encryption": { "encoding": { "isSigned": false, "precision": 7 }, "secretKeyID": 0, "variance": 4.70197740328915e-38 }, "shape": { "dimensions": [], "sign": false, "size": 0, "width": 7 } } ], "packingKeyswitchKeys": [], "secretKeys": [ { "dimension": 8192 }, { "dimension": 908 } ] } ``` ## Asking the community You can seek help with your issue by asking a question directly in the [community forum](https://community.zama.ai/). ## Submitting an issue If you cannot find a solution in the community forum, or you found a bug in the library, you could create an issue in our GitHub repository. In case of a bug, try to: * minimize randomness; * minimize your function as much as possible while keeping the bug - this will help to fix the bug faster; * include your inputset in the issue; * include reproduction steps in the issue; * include debug artifacts in the issue. In case of a feature request, try to: * give a minimal example of the desired behavior; * explain your use case.