"""Test file for intermediate representation""" import pytest from hdk.common.data_types.integers import Integer from hdk.common.data_types.values import ClearValue, EncryptedValue from hdk.common.representation import intermediate as ir @pytest.mark.parametrize( "node,input_data,expected_result", [ pytest.param( ir.Add([EncryptedValue(Integer(64, False)), EncryptedValue(Integer(64, False))]), [10, 4589], 4599, id="Add", ), pytest.param( ir.Sub([EncryptedValue(Integer(64, False)), EncryptedValue(Integer(64, False))]), [10, 4589], -4579, id="Sub", ), pytest.param( ir.Mul([EncryptedValue(Integer(64, False)), EncryptedValue(Integer(64, False))]), [10, 4589], 45890, id="Mul", ), pytest.param(ir.Input(ClearValue(Integer(32, True)), "in", 0), [42], 42, id="Input"), pytest.param(ir.ConstantInput(42), None, 42, id="ConstantInput"), pytest.param(ir.ConstantInput(-42), None, -42, id="ConstantInput"), pytest.param( ir.ArbitraryFunction( EncryptedValue(Integer(7, False)), lambda x: x + 3, Integer(7, False) ), [10], 13, id="ArbitraryFunction, x + 3", ), pytest.param( ir.ArbitraryFunction( EncryptedValue(Integer(7, False)), lambda x, y: x + y, Integer(7, False), op_kwargs={"y": 3}, ), [10], 13, id="ArbitraryFunction, (x, y) -> x + y, where y is constant == 3", ), pytest.param( ir.ArbitraryFunction( EncryptedValue(Integer(7, False)), lambda x, y: y[x], Integer(7, False), op_kwargs={"y": (1, 2, 3, 4)}, ), [2], 3, id="ArbitraryFunction, (x, y) -> y[x], where y is constant == (1, 2, 3, 4)", ), pytest.param( ir.ArbitraryFunction( EncryptedValue(Integer(7, False)), lambda x, y: y[3], Integer(7, False), op_kwargs={"y": (1, 2, 3, 4)}, ), [2], 4, id="ArbitraryFunction, x, y -> y[3], where y is constant == (1, 2, 3, 4)", ), ], ) def test_evaluate( node: ir.IntermediateNode, input_data, expected_result: int, ): """Test evaluate methods on IntermediateNodes""" assert node.evaluate(input_data) == expected_result @pytest.mark.parametrize( "node1,node2,expected_result", [ ( ir.Add([EncryptedValue(Integer(32, False)), EncryptedValue(Integer(32, False))]), ir.Add([EncryptedValue(Integer(32, False)), EncryptedValue(Integer(32, False))]), True, ), ( ir.Add([EncryptedValue(Integer(16, False)), EncryptedValue(Integer(32, False))]), ir.Add([EncryptedValue(Integer(32, False)), EncryptedValue(Integer(16, False))]), True, ), ( ir.Add([EncryptedValue(Integer(32, False)), EncryptedValue(Integer(32, False))]), ir.Sub([EncryptedValue(Integer(32, False)), EncryptedValue(Integer(32, False))]), False, ), ( ir.Sub([EncryptedValue(Integer(32, False)), EncryptedValue(Integer(32, False))]), ir.Sub([EncryptedValue(Integer(32, False)), EncryptedValue(Integer(32, False))]), True, ), ( ir.Sub([EncryptedValue(Integer(32, False)), EncryptedValue(Integer(16, False))]), ir.Sub([EncryptedValue(Integer(32, False)), EncryptedValue(Integer(16, False))]), True, ), ( ir.Sub([EncryptedValue(Integer(32, False)), EncryptedValue(Integer(16, False))]), ir.Sub([EncryptedValue(Integer(16, False)), EncryptedValue(Integer(32, False))]), False, ), ( ir.Mul([EncryptedValue(Integer(32, False)), EncryptedValue(Integer(32, False))]), ir.Mul([EncryptedValue(Integer(32, False)), EncryptedValue(Integer(32, False))]), True, ), ( ir.Mul([EncryptedValue(Integer(32, False)), EncryptedValue(Integer(32, False))]), ir.Sub([EncryptedValue(Integer(32, False)), EncryptedValue(Integer(32, False))]), False, ), ( ir.Input(EncryptedValue(Integer(32, False)), "x", 0), ir.Sub([EncryptedValue(Integer(32, False)), EncryptedValue(Integer(32, False))]), False, ), ( ir.Input(EncryptedValue(Integer(32, False)), "x", 0), ir.Input(EncryptedValue(Integer(32, False)), "x", 0), True, ), ( ir.Input(EncryptedValue(Integer(32, False)), "x", 0), ir.Input(EncryptedValue(Integer(32, False)), "y", 0), False, ), ( ir.Input(EncryptedValue(Integer(32, False)), "x", 0), ir.Input(EncryptedValue(Integer(32, False)), "x", 1), False, ), ( ir.Input(EncryptedValue(Integer(32, False)), "x", 0), ir.Input(EncryptedValue(Integer(8, False)), "x", 0), False, ), ( ir.ConstantInput(10), ir.ConstantInput(10), True, ), ( ir.ConstantInput(10), ir.Input(EncryptedValue(Integer(8, False)), "x", 0), False, ), ( ir.ConstantInput(10), ir.ConstantInput(10.0), False, ), ( ir.ArbitraryFunction(EncryptedValue(Integer(8, False)), lambda x: x, Integer(8, False)), ir.ArbitraryFunction(EncryptedValue(Integer(8, False)), lambda x: x, Integer(8, False)), True, ), ( ir.ArbitraryFunction( EncryptedValue(Integer(8, False)), lambda x: x, Integer(8, False), op_args=(1, 2, 3), ), ir.ArbitraryFunction(EncryptedValue(Integer(8, False)), lambda x: x, Integer(8, False)), False, ), ( ir.ArbitraryFunction( EncryptedValue(Integer(8, False)), lambda x: x, Integer(8, False), op_kwargs={"tuple": (1, 2, 3)}, ), ir.ArbitraryFunction(EncryptedValue(Integer(8, False)), lambda x: x, Integer(8, False)), False, ), ], ) def test_is_equivalent_to( node1: ir.IntermediateNode, node2: ir.IntermediateNode, expected_result: bool, ): """Test is_equivalent_to methods on IntermediateNodes""" assert node1.is_equivalent_to(node2) == node2.is_equivalent_to(node1) == expected_result