# bench: Unit Target: x + 42 (Tensor) import numpy as np from common import BENCHMARK_CONFIGURATION import concrete.numpy as hnp def main(): def function_to_compile(x): return x + 42 x = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(3,)) inputset = [np.random.randint(0, 2 ** 3, size=(3,)) for _ in range(32)] # bench: Measure: Compilation Time (ms) engine = hnp.compile_numpy_function( function_to_compile, {"x": x}, inputset, compilation_configuration=BENCHMARK_CONFIGURATION, ) # bench: Measure: End inputs = [] labels = [] for _ in range(4): sample_x = np.random.randint(0, 2 ** 3, size=(3,), dtype=np.uint8) inputs.append([sample_x]) labels.append(function_to_compile(*inputs[-1])) correct = 0 for input_i, label_i in zip(inputs, labels): # bench: Measure: Evaluation Time (ms) result_i = engine.run(*input_i) # bench: Measure: End if np.array_equal(result_i, label_i): correct += 1 # bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100 # bench: Alert: Accuracy (%) != 100 if __name__ == "__main__": main()