# Compilation Artifacts In this tutorial, we are going to go over the artifact system, which is designed to inspect/debug the compilation process easily. ## Automatic export In case of compilation failures, artifacts are exported automatically to `.artifacts` directory under the working directory. Let's intentionally create a compilation failure and show what kinds of things are exported. ```python def f(x): return np.sin(x) ``` This function fails to compile because **Concrete Numpy** doesn't support floating point outputs. When you try to compile it (you might want to check [this](../basics/compiling_and_executing.md) to see how you can do that), an exception will be raised and the artifacts will be exported automatically. ### environment.txt This file contains information about your setup (i.e., your operating system and python version). ``` Linux-5.12.13-arch1-2-x86_64-with-glibc2.29 #1 SMP PREEMPT Fri, 25 Jun 2021 22:56:51 +0000 Python 3.8.10 ``` ### requirements.txt This file contains information about python packages and their versions installed on your system. ``` alabaster==0.7.12 appdirs==1.4.4 argon2-cffi==21.1.0 ... wheel==0.37.0 widgetsnbextension==3.5.1 wrapt==1.12.1 ``` ### function.txt This file contains information about the function you are trying to compile. ``` def f(x): return np.sin(x) ``` ### parameters.txt This file contains information about the parameters of the function you are trying to compile. ``` x :: EncryptedScalar> ``` ### 1.initial.graph.txt This file contains textual representation of the initial computation graph right after tracing. ``` %0 = x # EncryptedScalar %1 = sin(%0) # EncryptedScalar return %1 ``` ### 1.initial.graph.png This file contains the visual representation of the initial computation graph right after tracing. ![](../../_static/tutorials/artifacts/auto/1.initial.graph.png) ### 2.final.graph.txt This file contains textual representation of the final computation graph right before MLIR conversion. ``` %0 = x # EncryptedScalar %1 = sin(%0) # EncryptedScalar return %1 ``` ### 2.final.graph.png This file contains the visual representation of the final computation graph right before MLIR conversion. ![](../../_static/tutorials/artifacts/auto/2.final.graph.png) ### traceback.txt This file contains information about the error you got. ``` Traceback (most recent call last): File "/home/default/Documents/Projects/Zama/hdk/concrete/numpy/compile.py", line 141, in run_compilation_function_with_error_management return compilation_function() File "/home/default/Documents/Projects/Zama/hdk/concrete/numpy/compile.py", line 769, in compilation_function return _compile_numpy_function_internal( File "/home/default/Documents/Projects/Zama/hdk/concrete/numpy/compile.py", line 722, in _compile_numpy_function_internal fhe_circuit = _compile_op_graph_to_fhe_circuit_internal( File "/home/default/Documents/Projects/Zama/hdk/concrete/numpy/compile.py", line 626, in _compile_op_graph_to_fhe_circuit_internal prepare_op_graph_for_mlir(op_graph) File "/home/default/Documents/Projects/Zama/hdk/concrete/numpy/compile.py", line 597, in prepare_op_graph_for_mlir raise RuntimeError( RuntimeError: function you are trying to compile isn't supported for MLIR lowering %0 = x # EncryptedScalar %1 = sin(%0) # EncryptedScalar ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ only integer outputs are supported return %1 ``` ## Manual export Manual exports are mostly used for visualization. Nonetheless, they can be very useful for demonstrations. Here is how to do it: ```python import concrete.numpy as cnp import numpy as np import pathlib artifacts = cnp.CompilationArtifacts("/tmp/custom/export/path") @cnp.compiler({"x": "encrypted"}, artifacts=artifacts) def f(x): return 127 - (50 * (np.sin(x) + 1)).astype(np.int64) f.compile(range(2 ** 3)) artifacts.export() ``` ### 1.initial.graph.txt This file contains textual representation of the initial computation graph right after tracing. ``` %0 = 127 # ClearScalar %1 = 50 # ClearScalar %2 = 1 # ClearScalar %3 = x # EncryptedScalar %4 = sin(%3) # EncryptedScalar %5 = add(%4, %2) # EncryptedScalar %6 = mul(%5, %1) # EncryptedScalar %7 = astype(%6, dtype=uint32) # EncryptedScalar %8 = sub(%0, %7) # EncryptedScalar return %8 ``` ### 1.initial.graph.png This file contains the visual representation of the initial computation graph right after tracing. ![](../../_static/tutorials/artifacts/manual/1.initial.graph.png) ### 2.after-float-fuse-0.graph.txt This file contains textual representation of the intermediate computation graph after fusing. ``` %0 = 127 # ClearScalar %1 = x # EncryptedScalar %2 = subgraph(%1) # EncryptedScalar %3 = sub(%0, %2) # EncryptedScalar return %3 Subgraphs: %2 = subgraph(%1): %0 = 50 # ClearScalar %1 = 1 # ClearScalar %2 = float_subgraph_input # EncryptedScalar %3 = sin(%2) # EncryptedScalar %4 = add(%3, %1) # EncryptedScalar %5 = mul(%4, %0) # EncryptedScalar %6 = astype(%5, dtype=uint32) # EncryptedScalar return %6 ``` ### 2.after-float-fuse-0.graph.png This file contains the visual representation of the intermediate computation graph after fusing. ![](../../_static/tutorials/artifacts/manual/2.after-float-fuse-0.graph.png) ### 3.final.graph.txt This file contains textual representation of the final computation graph right before MLIR conversion. ``` %0 = 127 # ClearScalar %1 = x # EncryptedScalar %2 = subgraph(%1) # EncryptedScalar %3 = sub(%0, %2) # EncryptedScalar return %3 Subgraphs: %2 = subgraph(%1): %0 = 50 # ClearScalar %1 = 1 # ClearScalar %2 = float_subgraph_input # EncryptedScalar %3 = sin(%2) # EncryptedScalar %4 = add(%3, %1) # EncryptedScalar %5 = mul(%4, %0) # EncryptedScalar %6 = astype(%5, dtype=uint32) # EncryptedScalar return %6 ``` ### 3.final.graph.png This file contains the visual representation of the final computation graph right before MLIR conversion. ![](../../_static/tutorials/artifacts/manual/3.final.graph.png) ### bounds.txt This file contains information about the bounds of the final computation graph of the function you are trying to compile using the input set you provide. ``` %0 :: [127, 127] %1 :: [0, 7] %2 :: [2, 95] %3 :: [32, 125] ``` You can learn what bounds are [here](../../dev/explanation/terminology_and_structure.md). ### mlir.txt This file contains information about the MLIR of the function you are trying to compile using the input set you provide. ``` module { func @main(%arg0: !FHE.eint<7>) -> !FHE.eint<7> { %c127_i8 = arith.constant 127 : i8 %cst = arith.constant dense<"..."> : tensor<128xi64> %0 = "FHE.apply_lookup_table"(%arg0, %cst) : (!FHE.eint<7>, tensor<128xi64>) -> !FHE.eint<7> %1 = "FHE.sub_int_eint"(%c127_i8, %0) : (i8, !FHE.eint<7>) -> !FHE.eint<7> return %1 : !FHE.eint<7> } } ``` You can learn more about MLIR [here](../../dev/explanation/mlir.md).