// Part of the Concrete Compiler Project, under the BSD3 License with Zama // Exceptions. See // https://github.com/zama-ai/concrete-compiler-internal/blob/master/LICENSE.txt // for license information. #include "llvm/ADT/SmallString.h" #include "concretelang-c/Support/CompilerEngine.h" #include "concretelang/ClientLib/KeySetCache.h" #include "concretelang/Runtime/runtime_api.h" #include "concretelang/Support/CompilerEngine.h" #include "concretelang/Support/JITSupport.h" #include "concretelang/Support/Jit.h" #define GET_OR_THROW_LLVM_EXPECTED(VARNAME, EXPECTED) \ auto VARNAME = EXPECTED; \ if (auto err = VARNAME.takeError()) { \ throw std::runtime_error(llvm::toString(std::move(err))); \ } // JIT Support bindings /////////////////////////////////////////////////////// MLIR_CAPI_EXPORTED JITSupport_C jit_support(std::string runtimeLibPath) { auto opt = runtimeLibPath.empty() ? llvm::None : llvm::Optional(runtimeLibPath); return JITSupport_C{mlir::concretelang::JITSupport(opt)}; } std::unique_ptr jit_compile(JITSupport_C support, const char *module, mlir::concretelang::CompilationOptions options) { #ifndef CONCRETELANG_PARALLEL_EXECUTION_ENABLED if (options.autoParallelize || options.loopParallelize || options.dataflowParallelize) { throw std::runtime_error( "This package was built without parallelization support"); } #endif GET_OR_THROW_LLVM_EXPECTED(compilationResult, support.support.compile(module, options)); return std::move(*compilationResult); } MLIR_CAPI_EXPORTED mlir::concretelang::ClientParameters jit_load_client_parameters(JITSupport_C support, mlir::concretelang::JitCompilationResult &result) { GET_OR_THROW_LLVM_EXPECTED(clientParameters, support.support.loadClientParameters(result)); return *clientParameters; } MLIR_CAPI_EXPORTED std::shared_ptr jit_load_server_lambda(JITSupport_C support, mlir::concretelang::JitCompilationResult &result) { GET_OR_THROW_LLVM_EXPECTED(serverLambda, support.support.loadServerLambda(result)); return *serverLambda; } MLIR_CAPI_EXPORTED std::unique_ptr jit_server_call(JITSupport_C support, mlir::concretelang::JITLambda &lambda, concretelang::clientlib::PublicArguments &args) { GET_OR_THROW_LLVM_EXPECTED(publicResult, lambda.call(args)); return std::move(*publicResult); } // Library Support bindings /////////////////////////////////////////////////// MLIR_CAPI_EXPORTED LibrarySupport_C library_support(const char *outputPath) { return LibrarySupport_C{mlir::concretelang::LibrarySupport(outputPath)}; } std::unique_ptr library_compile(LibrarySupport_C support, const char *module, mlir::concretelang::CompilationOptions options) { #ifndef CONCRETELANG_PARALLEL_EXECUTION_ENABLED if (options.autoParallelize || options.loopParallelize || options.dataflowParallelize) { throw std::runtime_error( "This package was built without parallelization support"); } #endif GET_OR_THROW_LLVM_EXPECTED(compilationResult, support.support.compile(module, options)); return std::move(*compilationResult); } MLIR_CAPI_EXPORTED mlir::concretelang::ClientParameters library_load_client_parameters( LibrarySupport_C support, mlir::concretelang::LibraryCompilationResult &result) { GET_OR_THROW_LLVM_EXPECTED(clientParameters, support.support.loadClientParameters(result)); return *clientParameters; } MLIR_CAPI_EXPORTED concretelang::serverlib::ServerLambda library_load_server_lambda( LibrarySupport_C support, mlir::concretelang::LibraryCompilationResult &result) { GET_OR_THROW_LLVM_EXPECTED(serverLambda, support.support.loadServerLambda(result)); return *serverLambda; } MLIR_CAPI_EXPORTED std::unique_ptr library_server_call(LibrarySupport_C support, concretelang::serverlib::ServerLambda lambda, concretelang::clientlib::PublicArguments &args) { GET_OR_THROW_LLVM_EXPECTED(publicResult, support.support.serverCall(lambda, args)); return std::move(*publicResult); } // Client Support bindings /////////////////////////////////////////////////// MLIR_CAPI_EXPORTED std::unique_ptr key_set(concretelang::clientlib::ClientParameters clientParameters, llvm::Optional cache) { GET_OR_THROW_LLVM_EXPECTED( ks, (mlir::concretelang::LambdaSupport::keySet(clientParameters, cache))); return std::move(*ks); } MLIR_CAPI_EXPORTED std::unique_ptr encrypt_arguments(concretelang::clientlib::ClientParameters clientParameters, concretelang::clientlib::KeySet &keySet, llvm::ArrayRef args) { GET_OR_THROW_LLVM_EXPECTED( publicArguments, (mlir::concretelang::LambdaSupport::exportArguments( clientParameters, keySet, args))); return std::move(*publicArguments); } MLIR_CAPI_EXPORTED lambdaArgument decrypt_result(concretelang::clientlib::KeySet &keySet, concretelang::clientlib::PublicResult &publicResult) { GET_OR_THROW_LLVM_EXPECTED( result, mlir::concretelang::typedResult< std::unique_ptr>( keySet, publicResult)); lambdaArgument result_{std::move(*result)}; return std::move(result_); } void terminateParallelization() { #ifdef CONCRETELANG_PARALLEL_EXECUTION_ENABLED _dfr_terminate(); #endif } std::string roundTrip(const char *module) { std::shared_ptr ccx = mlir::concretelang::CompilationContext::createShared(); mlir::concretelang::CompilerEngine ce{ccx}; std::string backingString; llvm::raw_string_ostream os(backingString); llvm::Expected retOrErr = ce.compile( module, mlir::concretelang::CompilerEngine::Target::ROUND_TRIP); if (!retOrErr) { os << "MLIR parsing failed: " << llvm::toString(std::move(retOrErr.takeError())); throw std::runtime_error(os.str()); } retOrErr->mlirModuleRef->get().print(os); return os.str(); } bool lambdaArgumentIsTensor(lambdaArgument &lambda_arg) { return lambda_arg.ptr->isa>>(); } std::vector lambdaArgumentGetTensorData(lambdaArgument &lambda_arg) { mlir::concretelang::TensorLambdaArgument< mlir::concretelang::IntLambdaArgument> *arg = lambda_arg.ptr->dyn_cast>>(); if (arg == nullptr) { throw std::invalid_argument( "LambdaArgument isn't a tensor, should " "be a TensorLambdaArgument>"); } llvm::Expected sizeOrErr = arg->getNumElements(); if (!sizeOrErr) { std::string backingString; llvm::raw_string_ostream os(backingString); os << "Couldn't get size of tensor: " << llvm::toString(std::move(sizeOrErr.takeError())); throw std::runtime_error(os.str()); } std::vector data(arg->getValue(), arg->getValue() + *sizeOrErr); return data; } std::vector lambdaArgumentGetTensorDimensions(lambdaArgument &lambda_arg) { mlir::concretelang::TensorLambdaArgument< mlir::concretelang::IntLambdaArgument> *arg = lambda_arg.ptr->dyn_cast>>(); if (arg == nullptr) { throw std::invalid_argument( "LambdaArgument isn't a tensor, should " "be a TensorLambdaArgument>"); } return arg->getDimensions(); } bool lambdaArgumentIsScalar(lambdaArgument &lambda_arg) { return lambda_arg.ptr->isa>(); } uint64_t lambdaArgumentGetScalar(lambdaArgument &lambda_arg) { mlir::concretelang::IntLambdaArgument *arg = lambda_arg.ptr ->dyn_cast>(); if (arg == nullptr) { throw std::invalid_argument("LambdaArgument isn't a scalar, should " "be an IntLambdaArgument"); } return arg->getValue(); } lambdaArgument lambdaArgumentFromTensorU8(std::vector data, std::vector dimensions) { lambdaArgument tensor_arg{ std::make_shared>>(data, dimensions)}; return tensor_arg; } lambdaArgument lambdaArgumentFromTensorU16(std::vector data, std::vector dimensions) { lambdaArgument tensor_arg{ std::make_shared>>(data, dimensions)}; return tensor_arg; } lambdaArgument lambdaArgumentFromTensorU32(std::vector data, std::vector dimensions) { lambdaArgument tensor_arg{ std::make_shared>>(data, dimensions)}; return tensor_arg; } lambdaArgument lambdaArgumentFromTensorU64(std::vector data, std::vector dimensions) { lambdaArgument tensor_arg{ std::make_shared>>(data, dimensions)}; return tensor_arg; } lambdaArgument lambdaArgumentFromScalar(uint64_t scalar) { lambdaArgument scalar_arg{ std::make_shared>( scalar)}; return scalar_arg; }