// Part of the Concrete Compiler Project, under the BSD3 License with Zama // Exceptions. See // https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt // for license information. #include #include #include "concretelang/ClientLib/PublicArguments.h" #include "concretelang/ClientLib/Serializers.h" namespace concretelang { namespace clientlib { using concretelang::error::StringError; // TODO: optimize the move PublicArguments::PublicArguments(const ClientParameters &clientParameters, std::vector &&preparedArgs_, std::vector &&ciphertextBuffers_) : clientParameters(clientParameters) { preparedArgs = std::move(preparedArgs_); ciphertextBuffers = std::move(ciphertextBuffers_); } PublicArguments::~PublicArguments() {} outcome::checked PublicArguments::serialize(std::ostream &ostream) { if (incorrectMode(ostream)) { return StringError( "PublicArguments::serialize: ostream should be in binary mode"); } size_t iPreparedArgs = 0; int iGate = -1; for (auto gate : clientParameters.inputs) { iGate++; size_t rank = gate.shape.dimensions.size(); if (!gate.encryption.hasValue()) { return StringError("PublicArguments::serialize: Clear arguments " "are not yet supported. Argument ") << iGate; } /*auto allocated = */ preparedArgs[iPreparedArgs++]; auto aligned = (encrypted_scalars_t)preparedArgs[iPreparedArgs++]; assert(aligned != nullptr); auto offset = (size_t)preparedArgs[iPreparedArgs++]; std::vector sizes; // includes lweSize as last dim sizes.resize(rank + 1); for (auto dim = 0u; dim < sizes.size(); dim++) { // sizes are part of the client parameters signature // it's static now but some day it could be dynamic so we serialize // them. sizes[dim] = (size_t)preparedArgs[iPreparedArgs++]; } std::vector strides(rank + 1); /* strides should be zero here and are not serialized */ for (auto dim = 0u; dim < strides.size(); dim++) { strides[dim] = (size_t)preparedArgs[iPreparedArgs++]; } // TODO: STRIDES auto values = aligned + offset; serializeTensorDataRaw(sizes, llvm::ArrayRef{ values, TensorData::getNumElements(sizes)}, ostream); } return outcome::success(); } outcome::checked PublicArguments::unserializeArgs(std::istream &istream) { int iGate = -1; for (auto gate : clientParameters.inputs) { iGate++; if (!gate.encryption.hasValue()) { return StringError("Clear values are not handled"); } auto lweSize = clientParameters.lweSecretKeyParam(gate).value().lweSize(); std::vector sizes = gate.shape.dimensions; sizes.push_back(lweSize); auto tdOrErr = unserializeTensorData(sizes, istream); if (tdOrErr.has_error()) return tdOrErr.error(); ciphertextBuffers.push_back(std::move(tdOrErr.value())); auto &values_and_sizes = ciphertextBuffers.back(); if (istream.fail()) { return StringError( "PublicArguments::unserializeArgs: Failed to read argument ") << iGate; } preparedArgs.push_back(/*allocated*/ nullptr); preparedArgs.push_back(values_and_sizes.getValuesAsOpaquePointer()); preparedArgs.push_back(/*offset*/ 0); // sizes for (auto size : values_and_sizes.getDimensions()) { preparedArgs.push_back((void *)size); } // strides has been removed by serialization auto stride = values_and_sizes.length(); for (auto size : sizes) { stride /= size; preparedArgs.push_back((void *)stride); } } return outcome::success(); } outcome::checked, StringError> PublicArguments::unserialize(ClientParameters &clientParameters, std::istream &istream) { std::vector empty; std::vector emptyBuffers; auto sArguments = std::make_unique( clientParameters, std::move(empty), std::move(emptyBuffers)); OUTCOME_TRYV(sArguments->unserializeArgs(istream)); return std::move(sArguments); } outcome::checked PublicResult::unserialize(std::istream &istream) { for (auto gate : clientParameters.outputs) { if (!gate.encryption.hasValue()) { return StringError("Clear values are not handled"); } auto lweSize = clientParameters.lweSecretKeyParam(gate).value().lweSize(); std::vector sizes = gate.shape.dimensions; sizes.push_back(lweSize); auto tdOrErr = unserializeTensorData(sizes, istream); if (tdOrErr.has_error()) return tdOrErr.error(); buffers.push_back(std::move(tdOrErr.value())); } return outcome::success(); } outcome::checked PublicResult::serialize(std::ostream &ostream) { if (incorrectMode(ostream)) { return StringError( "PublicResult::serialize: ostream should be in binary mode"); } for (const TensorData &tensorData : buffers) { serializeTensorData(tensorData, ostream); if (ostream.fail()) { return StringError("Cannot write tensor data"); } } return outcome::success(); } void next_coord_index(size_t index[], size_t sizes[], size_t rank) { // increase multi dim index for (int r = rank - 1; r >= 0; r--) { if (index[r] < sizes[r] - 1) { index[r]++; return; } index[r] = 0; } } size_t global_index(size_t index[], size_t sizes[], size_t strides[], size_t rank) { // compute global index from multi dim index size_t g_index = 0; size_t default_stride = 1; for (int r = rank - 1; r >= 0; r--) { g_index += index[r] * ((strides[r] == 0) ? default_stride : strides[r]); default_stride *= sizes[r]; } return g_index; } TensorData tensorDataFromScalar(uint64_t value) { return TensorData{llvm::ArrayRef{value}, {1}}; } static inline bool isReferenceToMLIRGlobalMemory(void *ptr) { return reinterpret_cast(ptr) == 0xdeadbeef; } template TensorData tensorDataFromMemRefTyped(size_t memref_rank, void *allocatedVoid, void *alignedVoid, size_t offset, size_t *sizes, size_t *strides) { T *allocated = reinterpret_cast(allocatedVoid); T *aligned = reinterpret_cast(alignedVoid); // FIXME: handle sign correctly TensorData result(llvm::ArrayRef{sizes, memref_rank}, sizeof(T) * 8, false); assert(aligned != nullptr); // ephemeral multi dim index to compute global strides size_t *index = new size_t[memref_rank]; for (size_t r = 0; r < memref_rank; r++) { index[r] = 0; } auto len = result.length(); // TODO: add a fast path for dense result (no real strides) for (size_t i = 0; i < len; i++) { int g_index = offset + global_index(index, sizes, strides, memref_rank); result.getElementReference(i) = aligned[g_index]; next_coord_index(index, sizes, memref_rank); } delete[] index; // TEMPORARY: That quick and dirty but as this function is used only to // convert a result of the mlir program and as data are copied here, we // release the alocated pointer if it set. if (allocated != nullptr && !isReferenceToMLIRGlobalMemory(allocated)) { free(allocated); } return result; } TensorData tensorDataFromMemRef(size_t memref_rank, size_t element_width, bool is_signed, void *allocated, void *aligned, size_t offset, size_t *sizes, size_t *strides) { size_t storage_width = TensorData::storageWidth(element_width); switch (storage_width) { case 64: return (is_signed) ? std::move(tensorDataFromMemRefTyped( memref_rank, allocated, aligned, offset, sizes, strides)) : std::move(tensorDataFromMemRefTyped( memref_rank, allocated, aligned, offset, sizes, strides)); case 32: return (is_signed) ? std::move(tensorDataFromMemRefTyped( memref_rank, allocated, aligned, offset, sizes, strides)) : std::move(tensorDataFromMemRefTyped( memref_rank, allocated, aligned, offset, sizes, strides)); case 16: return (is_signed) ? std::move(tensorDataFromMemRefTyped( memref_rank, allocated, aligned, offset, sizes, strides)) : std::move(tensorDataFromMemRefTyped( memref_rank, allocated, aligned, offset, sizes, strides)); case 8: return (is_signed) ? std::move(tensorDataFromMemRefTyped( memref_rank, allocated, aligned, offset, sizes, strides)) : std::move(tensorDataFromMemRefTyped( memref_rank, allocated, aligned, offset, sizes, strides)); default: assert(false); } } } // namespace clientlib } // namespace concretelang