// Part of the Concrete Compiler Project, under the BSD3 License with Zama // Exceptions. See // https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt // for license information. #include #include #include #include #include #include #include "concretelang/ClientLib/ClientParameters.h" #include "concretelang/Conversion/Utils/GlobalFHEContext.h" #include "concretelang/Dialect/Concrete/IR/ConcreteTypes.h" #include "concretelang/Dialect/FHE/IR/FHETypes.h" #include "concretelang/Support/Error.h" #include "concretelang/Support/V0Curves.h" namespace mlir { namespace concretelang { namespace clientlib = ::concretelang::clientlib; using ::concretelang::clientlib::CircuitGate; using ::concretelang::clientlib::ClientParameters; using ::concretelang::clientlib::Encoding; using ::concretelang::clientlib::EncryptionGate; using ::concretelang::clientlib::LweSecretKeyID; using ::concretelang::clientlib::Precision; using ::concretelang::clientlib::Variance; const auto securityLevel = SECURITY_LEVEL_128; const auto keyFormat = KEY_FORMAT_BINARY; const auto v0Curve = getV0Curves(securityLevel, keyFormat); /// For the v0 the secretKeyID and precision are the same for all gates. llvm::Expected gateFromMLIRType(V0FHEContext fheContext, LweSecretKeyID secretKeyID, Variance variance, mlir::Type type) { if (type.isIntOrIndex()) { // TODO - The index type is dependant of the target architecture, so // actually we assume we target only 64 bits, we need to have some the size // of the word of the target system. size_t width = 64; if (!type.isIndex()) { width = type.getIntOrFloatBitWidth(); } bool sign = type.isSignedInteger(); return CircuitGate{ /*.encryption = */ llvm::None, /*.shape = */ {/*.width = */ width, /*.dimensions = */ std::vector(), /*.size = */ 0, /* .sign */ sign}, }; } if (auto lweTy = type.dyn_cast_or_null< mlir::concretelang::FHE::EncryptedIntegerType>()) { bool sign = lweTy.isSignedInteger(); std::vector crt; if (fheContext.parameter.largeInteger.has_value()) { crt = fheContext.parameter.largeInteger.value().crtDecomposition; } return CircuitGate{ /* .encryption = */ llvm::Optional({ /* .secretKeyID = */ secretKeyID, /* .variance = */ variance, /* .encoding = */ { /* .precision = */ lweTy.getWidth(), /* .crt = */ crt, }, }), /*.shape = */ { /*.width = */ (size_t)lweTy.getWidth(), /*.dimensions = */ std::vector(), /*.size = */ 0, /*.sign = */ sign, }, }; } auto tensor = type.dyn_cast_or_null(); if (tensor != nullptr) { auto gate = gateFromMLIRType(fheContext, secretKeyID, variance, tensor.getElementType()); if (auto err = gate.takeError()) { return std::move(err); } gate->shape.dimensions = tensor.getShape().vec(); gate->shape.size = 1; for (auto dimSize : gate->shape.dimensions) { gate->shape.size *= dimSize; } return gate; } return llvm::make_error( "cannot convert MLIR type to shape", llvm::inconvertibleErrorCode()); } llvm::Expected createClientParametersForV0(V0FHEContext fheContext, llvm::StringRef functionName, mlir::ModuleOp module) { V0Parameter &v0Param = fheContext.parameter; Variance inputVariance = v0Curve->getVariance(1, v0Param.getNBigLweDimension(), 64); Variance bootstrapKeyVariance = v0Curve->getVariance( v0Param.glweDimension, v0Param.getPolynomialSize(), 64); Variance keyswitchKeyVariance = v0Curve->getVariance(1, v0Param.nSmall, 64); // Static client parameters from global parameters for v0 ClientParameters c; c.secretKeys = { {clientlib::BIG_KEY, {/*.size = */ v0Param.getNBigLweDimension()}}, }; bool has_small_key = v0Param.nSmall != 0; bool has_bootstrap = v0Param.brLevel != 0; if (has_small_key) { c.secretKeys.insert({clientlib::SMALL_KEY, {/*.size = */ v0Param.nSmall}}); } if (has_bootstrap) { auto inputKey = (has_small_key) ? clientlib::SMALL_KEY : clientlib::BIG_KEY; c.bootstrapKeys = { { clientlib::BOOTSTRAP_KEY, { /*.inputSecretKeyID = */ inputKey, /*.outputSecretKeyID = */ clientlib::BIG_KEY, /*.level = */ v0Param.brLevel, /*.baseLog = */ v0Param.brLogBase, /*.glweDimension = */ v0Param.glweDimension, /*.variance = */ bootstrapKeyVariance, }, }, }; } if (v0Param.largeInteger.hasValue()) { clientlib::PackingKeySwitchParam param; param.inputSecretKeyID = clientlib::BIG_KEY; param.outputSecretKeyID = clientlib::BIG_KEY; param.level = v0Param.largeInteger->wopPBS.packingKeySwitch.level; param.baseLog = v0Param.largeInteger->wopPBS.packingKeySwitch.baseLog; param.bootstrapKeyID = clientlib::BOOTSTRAP_KEY; param.variance = v0Curve->getVariance(v0Param.glweDimension, v0Param.getPolynomialSize(), 64); c.packingKeys = { { "fpksk_v0", param, }, }; } if (has_small_key) { c.keyswitchKeys = { { clientlib::KEYSWITCH_KEY, { /*.inputSecretKeyID = */ clientlib::BIG_KEY, /*.outputSecretKeyID = */ clientlib::SMALL_KEY, /*.level = */ v0Param.ksLevel, /*.baseLog = */ v0Param.ksLogBase, /*.variance = */ keyswitchKeyVariance, }, }, }; } c.functionName = (std::string)functionName; // Find the input function auto rangeOps = module.getOps(); auto funcOp = llvm::find_if(rangeOps, [&](mlir::func::FuncOp op) { return op.getName() == functionName; }); if (funcOp == rangeOps.end()) { return StreamStringError( "cannot find the function for generate client parameters: ") << functionName; } // Create input and output circuit gate parameters auto funcType = (*funcOp).getFunctionType(); auto inputs = funcType.getInputs(); bool hasContext = inputs.empty() ? false : inputs.back().isa(); auto gateFromType = [&](mlir::Type ty) { return gateFromMLIRType(fheContext, clientlib::BIG_KEY, inputVariance, ty); }; for (auto inType = funcType.getInputs().begin(); inType < funcType.getInputs().end() - hasContext; inType++) { auto gate = gateFromType(*inType); if (auto err = gate.takeError()) { return std::move(err); } c.inputs.push_back(gate.get()); } for (auto outType : funcType.getResults()) { auto gate = gateFromType(outType); if (auto err = gate.takeError()) { return std::move(err); } c.outputs.push_back(gate.get()); } return c; } } // namespace concretelang } // namespace mlir