mirror of
https://github.com/zama-ai/concrete.git
synced 2026-01-21 02:37:58 -05:00
239 lines
7.3 KiB
Python
239 lines
7.3 KiB
Python
from sage.all import oo, save, load
|
|
from math import log2
|
|
import multiprocessing
|
|
import argparse
|
|
import os
|
|
import sys
|
|
from estimator import RC, LWE, ND
|
|
|
|
|
|
old_models_sobj = ""
|
|
|
|
def old_models(security_level, sd, logq=32):
|
|
"""
|
|
Use the old model as a starting point for the data gathering step
|
|
:param security_level: the security level under consideration
|
|
:param sd : the standard deviation of the LWE error distribution Xe
|
|
:param logq : the (base 2 log) value of the LWE modulus q
|
|
"""
|
|
|
|
def evaluate_model(a, b, stddev=sd):
|
|
return (stddev - b) / a
|
|
|
|
def get_index(sec, curves):
|
|
for i in range(len(curves)):
|
|
if curves[i][2] == sec:
|
|
return i
|
|
|
|
if old_models_sobj is None or not(os.path.exists(old_models_sobj)):
|
|
return 450
|
|
|
|
curves = load(old_models_sobj)
|
|
j = get_index(security_level, curves)
|
|
|
|
a = curves[j][0]
|
|
b = curves[j][1] + logq
|
|
|
|
n_est = evaluate_model(a, b, sd)
|
|
|
|
return round(n_est)
|
|
|
|
|
|
def estimate(params, red_cost_model=RC.BDGL16, skip=("arora-gb", "bkw")):
|
|
"""
|
|
Retrieve an estimate using the Lattice Estimator, for a given set of input parameters
|
|
:param params: the input LWE parameters
|
|
:param red_cost_model: the lattice reduction cost model
|
|
:param skip: attacks to skip
|
|
"""
|
|
|
|
est = LWE.estimate(params, red_cost_model=red_cost_model, deny_list=skip)
|
|
|
|
return est
|
|
|
|
|
|
def get_security_level(est, dp=2):
|
|
"""
|
|
Get the security level lambda from a Lattice Estimator output
|
|
:param est: the Lattice Estimator output
|
|
:param dp: the number of decimal places to consider
|
|
"""
|
|
attack_costs = []
|
|
# note: key does not need to be specified est vs est.keys()
|
|
for key in est:
|
|
attack_costs.append(est[key]["rop"])
|
|
# get the security level correct to 'dp' decimal places
|
|
security_level = round(log2(min(attack_costs)), dp)
|
|
|
|
return security_level
|
|
|
|
|
|
def inequality(x, y):
|
|
"""A utility function which compresses the conditions x < y and x > y into a single condition via a multiplier
|
|
:param x: the LHS of the inequality
|
|
:param y: the RHS of the inequality
|
|
"""
|
|
if x <= y:
|
|
return 1
|
|
|
|
if x > y:
|
|
return -1
|
|
|
|
|
|
def automated_param_select_n(params, target_security=128):
|
|
"""A function used to generate the smallest value of n which allows for
|
|
target_security bits of security, for the input values of (params.Xe.stddev,params.q)
|
|
:param params: the standard deviation of the error
|
|
:param target_security: the target number of bits of security, 128 is default
|
|
|
|
EXAMPLE:
|
|
sage: X = automated_param_select_n(Kyber512, target_security = 128)
|
|
sage: X
|
|
456
|
|
"""
|
|
|
|
# get an estimate based on the prev. model
|
|
print("n = {}".format(params.n))
|
|
n_start = old_models(target_security, log2(params.Xe.stddev), log2(params.q))
|
|
# n_start = max(n_start, 450)
|
|
# TODO: think about throwing an error if the required n < 450
|
|
|
|
params = params.updated(n=n_start)
|
|
costs2 = estimate(params)
|
|
security_level = get_security_level(costs2, 2)
|
|
z = inequality(security_level, target_security)
|
|
|
|
# we keep n > 2 * target_security as a rough baseline for mitm security
|
|
# (on binary key guessing)
|
|
while z * security_level < z * target_security:
|
|
# TODO: fill in this case! For n > 1024 we only need to consider every
|
|
# 256 (optimization)
|
|
params = params.updated(n=params.n + z * 8)
|
|
costs = estimate(params)
|
|
security_level = get_security_level(costs, 2)
|
|
|
|
if -1 * params.Xe.stddev > 0:
|
|
print("target security level is unattainable")
|
|
break
|
|
|
|
# final estimate (we went too far in the above loop)
|
|
if security_level < target_security:
|
|
# we make n larger
|
|
print("we make n larger")
|
|
params = params.updated(n=params.n + 8)
|
|
costs = estimate(params)
|
|
security_level = get_security_level(costs, 2)
|
|
|
|
print(
|
|
"the finalised parameters are n = {}, log2(sd) = {}, log2(q) = {}, with a security level of {}-bits".format(
|
|
params.n, log2(params.Xe.stddev), log2(params.q), security_level
|
|
)
|
|
)
|
|
|
|
if security_level < target_security:
|
|
params.updated(n=None)
|
|
|
|
return params, security_level
|
|
|
|
|
|
def generate_parameter_matrix(
|
|
params_in, sd_range, target_security_levels=[128], name="default_name"
|
|
):
|
|
"""
|
|
:param params_in: a initial set of LWE parameters
|
|
:param sd_range: a tuple (sd_min, sd_max) giving the values of sd for which to generate parameters
|
|
:param target_security_levels: a list of the target number of bits of security, 128 is default
|
|
:param name: a name to save the file
|
|
"""
|
|
|
|
(sd_min, sd_max) = sd_range
|
|
for lam in target_security_levels:
|
|
for sd in range(sd_min, sd_max + 1):
|
|
print(f"run for {lam} {sd}")
|
|
Xe_new = ND.DiscreteGaussian(2 ** sd)
|
|
(params_out, sec) = automated_param_select_n(
|
|
params_in.updated(Xe=Xe_new), target_security=lam
|
|
)
|
|
|
|
try:
|
|
results = load("{}.sobj".format(name))
|
|
except BaseException:
|
|
results = dict()
|
|
results["{}".format(lam)] = []
|
|
|
|
results["{}".format(lam)].append(
|
|
(params_out.n, log2(params_out.q), log2(params_out.Xe.stddev), sec)
|
|
)
|
|
save(results, "{}.sobj".format(name))
|
|
|
|
return results
|
|
|
|
|
|
def generate_zama_curves64(
|
|
sd_range=[2, 58], target_security_levels=[128], name="default_name"
|
|
):
|
|
"""
|
|
The top level function which we use to run the experiment
|
|
|
|
:param sd_range: a tuple (sd_min, sd_max) giving the values of sd for which to generate parameters
|
|
:param target_security_levels: a list of the target number of bits of security, 128 is default
|
|
:param name: a name to save the file
|
|
"""
|
|
if __name__ == "__main__":
|
|
|
|
D = ND.DiscreteGaussian
|
|
vals = range(sd_range[0], sd_range[1])
|
|
pool = multiprocessing.Pool(2)
|
|
init_params = LWE.Parameters(
|
|
n=1024, q=2 ** 64, Xs=D(0.50, -0.50), Xe=D(2 ** 55), m=oo, tag="params"
|
|
)
|
|
inputs = [
|
|
(init_params, (val, val), target_security_levels, name) for val in vals
|
|
]
|
|
_res = pool.starmap(generate_parameter_matrix, inputs)
|
|
|
|
return "done"
|
|
|
|
if __name__ == "__main__":
|
|
CLI = argparse.ArgumentParser()
|
|
CLI.add_argument(
|
|
"--security-level",
|
|
type=int,
|
|
required=True,
|
|
)
|
|
CLI.add_argument(
|
|
"--output",
|
|
type=str,
|
|
required=True,
|
|
)
|
|
CLI.add_argument(
|
|
"--old-models",
|
|
type=str,
|
|
)
|
|
CLI.add_argument(
|
|
"--sd-min",
|
|
type=int,
|
|
required=True,
|
|
)
|
|
CLI.add_argument(
|
|
"--sd-max",
|
|
type=int,
|
|
required=True,
|
|
)
|
|
CLI.add_argument(
|
|
"--margin",
|
|
type=int,
|
|
default=0,
|
|
)
|
|
args = CLI.parse_args()
|
|
# The script runs the following commands
|
|
# grab values of the command-line input arguments
|
|
security = args.security_level
|
|
sd_min = args.sd_min
|
|
sd_max = args.sd_max
|
|
margin = args.margin
|
|
output = args.output
|
|
old_models_sobj = args.old_models
|
|
# run the code
|
|
generate_zama_curves64(sd_range=(sd_min, sd_max), target_security_levels=[security + margin], name="security_{}_margin_{} ".format(security, margin))
|