mirror of
https://github.com/zama-ai/concrete.git
synced 2026-01-23 11:48:04 -05:00
The new pass hoists `RT.await_future` operations whose results are
yielded by scf.forall operations out of the loops in order to avoid
over-synchronization of data-flow tasks.
E.g., the following IR:
```
scf.forall (%arg) in (16)
shared_outs(%o1 = %sometensor, %o2 = %someothertensor)
-> (tensor<...>, tensor<...>)
{
...
%rph = "RT.build_return_ptr_placeholder"() :
() -> !RT.rtptr<!RT.future<tensor<...>>>
"RT.create_async_task"(..., %rph, ...) { ... } : ...
%future = "RT.deref_return_ptr_placeholder"(%rph) :
(!RT.rtptr<!RT.future<...>>) -> !RT.future<tensor<...>>
%res = "RT.await_future"(%future) : (!RT.future<tensor<...>>) -> tensor<...>
...
scf.forall.in_parallel {
...
tensor.parallel_insert_slice %res into %o1[..., %arg2, ...] [...] [...] :
tensor<...> into tensor<...>
...
}
}
```
is transformed into:
```
%tensoroffutures = tensor.empty() : tensor<16x!RT.future<tensor<...>>>
scf.forall (%arg) in (16)
shared_outs(%otfut = %tensoroffutures, %o2 = %someothertensor)
-> (tensor<...>, tensor<...>)
{
...
%rph = "RT.build_return_ptr_placeholder"() :
() -> !RT.rtptr<!RT.future<tensor<...>>>
"RT.create_async_task"(..., %rph, ...) { ... } : ...
%future = "RT.deref_return_ptr_placeholder"(%rph) :
(!RT.rtptr<!RT.future<...>>) -> !RT.future<tensor<...>>
%wrappedfuture = tensor.from_elements %future :
tensor<1x!RT.future<tensor<...>>>
...
scf.forall.in_parallel {
...
tensor.parallel_insert_slice %wrappedfuture into %otfut[%arg] [1] [1] :
tensor<1xRT.future<tensor<...>>> into tensor<16x!RT.future<tensor<...>>>
...
}
}
scf.forall (%arg) in (16) shared_outs(%o = %sometensor) -> (tensor<...>) {
%future = tensor.extract %tensoroffutures[%arg] :
tensor<4x!RT.future<tensor<...>>>
%res = "RT.await_future"(%future) : (!RT.future<tensor<...>>) -> tensor<...>
scf.forall.in_parallel {
tensor.parallel_insert_slice %res into %o[..., %arg, ...] [...] [...] :
tensor<...> into tensor<...>
}
}
```
604 lines
22 KiB
C++
604 lines
22 KiB
C++
// Part of the Concrete Compiler Project, under the BSD3 License with Zama
|
|
// Exceptions. See
|
|
// https://github.com/zama-ai/concrete/blob/main/LICENSE.txt
|
|
// for license information.
|
|
|
|
#include "llvm/Support/TargetSelect.h"
|
|
|
|
#include "concretelang/Support/CompilationFeedback.h"
|
|
#include "concretelang/Support/V0Parameters.h"
|
|
#include "mlir/Conversion/BufferizationToMemRef/BufferizationToMemRef.h"
|
|
#include "mlir/Conversion/Passes.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Func/Transforms/Passes.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
#include "llvm/Support/Error.h"
|
|
|
|
#include "mlir/Dialect/Affine/Passes.h"
|
|
#include "mlir/Dialect/Arith/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Linalg/Passes.h"
|
|
#include "mlir/Dialect/SCF/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Tensor/Transforms/Passes.h"
|
|
#include "mlir/ExecutionEngine/OptUtils.h"
|
|
#include "mlir/Pass/PassManager.h"
|
|
#include "mlir/Pass/PassOptions.h"
|
|
#include "mlir/Support/LogicalResult.h"
|
|
#include "mlir/Target/LLVMIR/Dialect/LLVMIR/LLVMToLLVMIRTranslation.h"
|
|
#include "mlir/Target/LLVMIR/Dialect/OpenMP/OpenMPToLLVMIRTranslation.h"
|
|
#include "mlir/Target/LLVMIR/Export.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
|
|
#include "concretelang/Conversion/Passes.h"
|
|
#include "concretelang/Conversion/TFHEKeyNormalization/Pass.h"
|
|
#include "concretelang/Dialect/Concrete/Analysis/MemoryUsage.h"
|
|
#include "concretelang/Dialect/Concrete/Transforms/Passes.h"
|
|
#include "concretelang/Dialect/FHE/Analysis/ConcreteOptimizer.h"
|
|
#include "concretelang/Dialect/FHE/Analysis/MANP.h"
|
|
#include "concretelang/Dialect/FHE/Transforms/BigInt/BigInt.h"
|
|
#include "concretelang/Dialect/FHE/Transforms/Boolean/Boolean.h"
|
|
#include "concretelang/Dialect/FHE/Transforms/DynamicTLU/DynamicTLU.h"
|
|
#include "concretelang/Dialect/FHE/Transforms/EncryptedMulToDoubleTLU/EncryptedMulToDoubleTLU.h"
|
|
#include "concretelang/Dialect/FHE/Transforms/Max/Max.h"
|
|
#include "concretelang/Dialect/FHE/Transforms/Optimizer/Optimizer.h"
|
|
#include "concretelang/Dialect/FHELinalg/Transforms/Tiling.h"
|
|
#include "concretelang/Dialect/RT/Analysis/Autopar.h"
|
|
#include "concretelang/Dialect/RT/Transforms/Passes.h"
|
|
#include "concretelang/Dialect/TFHE/Analysis/ExtractStatistics.h"
|
|
#include "concretelang/Dialect/TFHE/Transforms/Transforms.h"
|
|
#include "concretelang/Support/CompilerEngine.h"
|
|
#include "concretelang/Support/Error.h"
|
|
#include "concretelang/Support/Pipeline.h"
|
|
#include "concretelang/Support/logging.h"
|
|
#include "concretelang/Support/math.h"
|
|
#include "concretelang/Transforms/Passes.h"
|
|
|
|
namespace mlir {
|
|
namespace concretelang {
|
|
namespace pipeline {
|
|
|
|
static void pipelinePrinting(llvm::StringRef name, mlir::PassManager &pm,
|
|
mlir::MLIRContext &ctx) {
|
|
if (mlir::concretelang::isVerbose()) {
|
|
mlir::concretelang::log_verbose()
|
|
<< "##################################################\n"
|
|
<< "### " << name << " pipeline\n";
|
|
auto isModule = [](mlir::Pass *, mlir::Operation *op) {
|
|
return mlir::isa<mlir::ModuleOp>(op);
|
|
};
|
|
ctx.disableMultithreading(true);
|
|
pm.enableIRPrinting(isModule, isModule);
|
|
pm.enableStatistics();
|
|
pm.enableTiming();
|
|
pm.enableVerifier();
|
|
}
|
|
}
|
|
|
|
static void
|
|
addPotentiallyNestedPass(mlir::PassManager &pm, std::unique_ptr<Pass> pass,
|
|
std::function<bool(mlir::Pass *)> enablePass) {
|
|
if (!enablePass(pass.get())) {
|
|
return;
|
|
}
|
|
if (!pass->getOpName() || *pass->getOpName() == "builtin.module") {
|
|
pm.addPass(std::move(pass));
|
|
} else {
|
|
mlir::OpPassManager &p = pm.nest(*pass->getOpName());
|
|
p.addPass(std::move(pass));
|
|
}
|
|
}
|
|
|
|
llvm::Expected<std::map<std::string, std::optional<optimizer::Description>>>
|
|
getFHEContextFromFHE(mlir::MLIRContext &context, mlir::ModuleOp &module,
|
|
optimizer::Config config,
|
|
std::function<bool(mlir::Pass *)> enablePass) {
|
|
std::optional<size_t> oMax2norm;
|
|
std::optional<size_t> oMaxWidth;
|
|
optimizer::FunctionsDag dags;
|
|
|
|
mlir::PassManager pm(&context);
|
|
|
|
pipelinePrinting("ComputeFHEConstraintOnFHE", pm, context);
|
|
addPotentiallyNestedPass(pm, mlir::createCanonicalizerPass(), enablePass);
|
|
addPotentiallyNestedPass(pm, mlir::concretelang::createMANPPass(),
|
|
enablePass);
|
|
addPotentiallyNestedPass(
|
|
pm,
|
|
mlir::concretelang::createMaxMANPPass(
|
|
[&](const uint64_t manp, unsigned width) {
|
|
if (!oMax2norm.has_value() || oMax2norm.value() < manp)
|
|
oMax2norm.emplace(manp);
|
|
|
|
if (!oMaxWidth.has_value() || oMaxWidth.value() < width)
|
|
oMaxWidth.emplace(width);
|
|
}),
|
|
enablePass);
|
|
if (pm.run(module.getOperation()).failed()) {
|
|
return llvm::make_error<llvm::StringError>(
|
|
"Failed to determine the maximum Arithmetic Noise Padding and maximum"
|
|
" required precision",
|
|
llvm::inconvertibleErrorCode());
|
|
}
|
|
std::optional<mlir::concretelang::V0FHEConstraint> constraint = std::nullopt;
|
|
|
|
if (oMax2norm.has_value() && oMaxWidth.has_value()) {
|
|
constraint = std::optional<mlir::concretelang::V0FHEConstraint>(
|
|
{/*.norm2 = */ ceilLog2(oMax2norm.value()),
|
|
/*.p = */ oMaxWidth.value()});
|
|
}
|
|
addPotentiallyNestedPass(pm, optimizer::createDagPass(config, dags),
|
|
enablePass);
|
|
if (pm.run(module.getOperation()).failed()) {
|
|
return StreamStringError() << "Failed to create concrete-optimizer dag\n";
|
|
}
|
|
std::map<std::string, std::optional<optimizer::Description>> descriptions;
|
|
for (auto &entry_dag : dags) {
|
|
if (!constraint) {
|
|
descriptions.insert(
|
|
decltype(descriptions)::value_type(entry_dag.first, std::nullopt));
|
|
continue;
|
|
}
|
|
optimizer::Description description = {*constraint,
|
|
std::move(entry_dag.second)};
|
|
std::optional<optimizer::Description> opt_description{
|
|
std::move(description)};
|
|
descriptions.insert(decltype(descriptions)::value_type(
|
|
entry_dag.first, std::move(opt_description)));
|
|
}
|
|
return std::move(descriptions);
|
|
}
|
|
|
|
mlir::LogicalResult materializeOptimizerPartitionFrontiers(
|
|
mlir::MLIRContext &context, mlir::ModuleOp &module,
|
|
std::optional<V0FHEContext> &fheContext,
|
|
std::function<bool(mlir::Pass *)> enablePass) {
|
|
|
|
if (!fheContext.has_value())
|
|
return mlir::success();
|
|
|
|
optimizer::CircuitSolution *circuitSolution =
|
|
std::get_if<optimizer::CircuitSolution>(&fheContext->solution);
|
|
|
|
if (!circuitSolution)
|
|
return mlir::success();
|
|
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("MaterializeOptimizerPartitionFrontiers", pm, context);
|
|
|
|
addPotentiallyNestedPass(
|
|
pm,
|
|
mlir::concretelang::createOptimizerPartitionFrontierMaterializationPass(
|
|
*circuitSolution),
|
|
enablePass);
|
|
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult autopar(mlir::MLIRContext &context, mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("AutoPar", pm, context);
|
|
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createBuildDataflowTaskGraphPass(), enablePass);
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createLowerDataflowTasksPass(), enablePass);
|
|
addPotentiallyNestedPass(pm, mlir::concretelang::createHoistAwaitFuturePass(),
|
|
enablePass);
|
|
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult
|
|
tileMarkedLinalg(mlir::MLIRContext &context, mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("TileMarkedLinalg", pm, context);
|
|
addPotentiallyNestedPass(pm, mlir::concretelang::createLinalgTilingPass(),
|
|
enablePass);
|
|
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createLinalgFillToLinalgGenericPass(),
|
|
enablePass);
|
|
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult
|
|
markFHELinalgForTiling(mlir::MLIRContext &context, mlir::ModuleOp &module,
|
|
llvm::ArrayRef<int64_t> tileSizes,
|
|
std::function<bool(mlir::Pass *)> enablePass) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("MarkFHELinalgForTiling", pm, context);
|
|
addPotentiallyNestedPass(pm, createFHELinalgTilingMarkerPass(tileSizes),
|
|
enablePass);
|
|
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult
|
|
transformHighLevelFHEOps(mlir::MLIRContext &context, mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("transformHighLevelFHEOps", pm, context);
|
|
|
|
addPotentiallyNestedPass(pm, createEncryptedMulToDoubleTLUPass(), enablePass);
|
|
addPotentiallyNestedPass(pm, createFHEMaxTransformPass(), enablePass);
|
|
addPotentiallyNestedPass(pm, createDynamicTLUPass(), enablePass);
|
|
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult
|
|
lowerFHELinalgToLinalg(mlir::MLIRContext &context, mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("FHELinalgToLinalg", pm, context);
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createConvertFHETensorOpsToLinalg(), enablePass);
|
|
addPotentiallyNestedPass(pm, mlir::createLinalgGeneralizationPass(),
|
|
enablePass);
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult
|
|
lowerLinalgToLoops(mlir::MLIRContext &context, mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass,
|
|
bool parallelizeLoops) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("LinalgToLoops", pm, context);
|
|
|
|
addPotentiallyNestedPass(
|
|
pm,
|
|
mlir::concretelang::createLinalgGenericOpWithTensorsToLoopsPass(
|
|
parallelizeLoops),
|
|
enablePass);
|
|
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult
|
|
transformFHEBoolean(mlir::MLIRContext &context, mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass) {
|
|
mlir::PassManager pm(&context);
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createFHEBooleanTransformPass(), enablePass);
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult
|
|
transformFHEBigInt(mlir::MLIRContext &context, mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass,
|
|
unsigned int chunkSize, unsigned int chunkWidth) {
|
|
mlir::PassManager pm(&context);
|
|
addPotentiallyNestedPass(
|
|
pm,
|
|
mlir::concretelang::createFHEBigIntTransformPass(chunkSize, chunkWidth),
|
|
enablePass);
|
|
// We want to fully unroll for loops introduced by the BigInt transform since
|
|
// MANP doesn't support loops. This is a workaround that make the IR much
|
|
// bigger than it should be
|
|
addPotentiallyNestedPass(pm, mlir::createLoopUnrollPass(-1, false, true),
|
|
enablePass);
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult
|
|
lowerFHEToTFHE(mlir::MLIRContext &context, mlir::ModuleOp &module,
|
|
std::optional<V0FHEContext> &fheContext,
|
|
std::function<bool(mlir::Pass *)> enablePass) {
|
|
if (!fheContext)
|
|
return mlir::success();
|
|
|
|
mlir::PassManager pm(&context);
|
|
auto solution = fheContext.value().solution;
|
|
auto optCrt = getCrtDecompositionFromSolution(solution);
|
|
if (optCrt) {
|
|
pipelinePrinting("FHEToTFHECrt", pm, context);
|
|
auto mods = mlir::SmallVector<int64_t>(optCrt->begin(), optCrt->end());
|
|
addPotentiallyNestedPass(
|
|
pm,
|
|
mlir::concretelang::createConvertFHEToTFHECrtPass(
|
|
mlir::concretelang::CrtLoweringParameters(mods)),
|
|
enablePass);
|
|
} else {
|
|
pipelinePrinting("FHEToTFHEScalar", pm, context);
|
|
size_t polySize = getPolynomialSizeFromSolution(solution);
|
|
addPotentiallyNestedPass(
|
|
pm,
|
|
mlir::concretelang::createConvertFHEToTFHEScalarPass(
|
|
mlir::concretelang::ScalarLoweringParameters(polySize)),
|
|
enablePass);
|
|
}
|
|
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult
|
|
parametrizeTFHE(mlir::MLIRContext &context, mlir::ModuleOp &module,
|
|
std::optional<V0FHEContext> &fheContext,
|
|
std::function<bool(mlir::Pass *)> enablePass) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("ParametrizeTFHE", pm, context);
|
|
|
|
if (!fheContext) {
|
|
// For tests, which invoke the pipeline without determining FHE
|
|
// parameters
|
|
addPotentiallyNestedPass(
|
|
pm,
|
|
mlir::concretelang::createTFHECircuitSolutionParametrizationPass(
|
|
std::nullopt),
|
|
enablePass);
|
|
} else if (auto monoSolution =
|
|
std::get_if<V0Parameter>(&fheContext->solution);
|
|
monoSolution != nullptr) {
|
|
addPotentiallyNestedPass(
|
|
pm,
|
|
mlir::concretelang::createConvertTFHEGlobalParametrizationPass(
|
|
*monoSolution),
|
|
enablePass);
|
|
} else if (auto circuitSolution =
|
|
std::get_if<optimizer::CircuitSolution>(&fheContext->solution);
|
|
circuitSolution != nullptr) {
|
|
addPotentiallyNestedPass(
|
|
pm,
|
|
mlir::concretelang::createTFHECircuitSolutionParametrizationPass(
|
|
*circuitSolution),
|
|
enablePass);
|
|
}
|
|
|
|
addPotentiallyNestedPass(pm, mlir::createCanonicalizerPass(), enablePass);
|
|
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult batchTFHE(mlir::MLIRContext &context,
|
|
mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass,
|
|
int64_t maxBatchSize) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("BatchTFHE", pm, context);
|
|
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createBatchingPass(maxBatchSize), enablePass);
|
|
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult
|
|
normalizeTFHEKeys(mlir::MLIRContext &context, mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("TFHEKeyNormalization", pm, context);
|
|
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createTFHEKeyNormalizationPass(), enablePass);
|
|
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult
|
|
extractTFHEStatistics(mlir::MLIRContext &context, mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass,
|
|
ProgramCompilationFeedback &feedback) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("TFHEStatistics", pm, context);
|
|
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createStatisticExtractionPass(feedback),
|
|
enablePass);
|
|
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult
|
|
lowerTFHEToConcrete(mlir::MLIRContext &context, mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("TFHEToConcrete", pm, context);
|
|
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createConvertTFHEToConcretePass(), enablePass);
|
|
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult
|
|
computeMemoryUsage(mlir::MLIRContext &context, mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass,
|
|
ProgramCompilationFeedback &feedback) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("Computing Memory Usage", pm, context);
|
|
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createMemoryUsagePass(feedback), enablePass);
|
|
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult optimizeTFHE(mlir::MLIRContext &context,
|
|
mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("TFHEOptimization", pm, context);
|
|
addPotentiallyNestedPass(pm, mlir::concretelang::createTFHEOptimizationPass(),
|
|
enablePass);
|
|
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult simulateTFHE(mlir::MLIRContext &context,
|
|
mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("TFHESimulation", pm, context);
|
|
addPotentiallyNestedPass(pm, mlir::concretelang::createSimulateTFHEPass(),
|
|
enablePass);
|
|
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult extractSDFGOps(mlir::MLIRContext &context,
|
|
mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass,
|
|
bool unroll) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("extract SDFG ops from Concrete", pm, context);
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createExtractSDFGOpsPass(unroll), enablePass);
|
|
LogicalResult res = pm.run(module.getOperation());
|
|
|
|
return res;
|
|
}
|
|
|
|
mlir::LogicalResult
|
|
addRuntimeContext(mlir::MLIRContext &context, mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("Adding Runtime Context", pm, context);
|
|
addPotentiallyNestedPass(pm, mlir::concretelang::createAddRuntimeContext(),
|
|
enablePass);
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult
|
|
lowerSDFGToStd(mlir::MLIRContext &context, mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("SDFGToStd", pm, context);
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createConvertSDFGToStreamEmulatorPass(),
|
|
enablePass);
|
|
return pm.run(module.getOperation());
|
|
}
|
|
|
|
mlir::LogicalResult lowerToStd(mlir::MLIRContext &context,
|
|
mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass,
|
|
bool parallelizeLoops) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("Lowering to Std", pm, context);
|
|
|
|
// Replace non-bufferizable ops (e;g., `tensor.empty` ->
|
|
// `bufferization.alloc_tensor`)
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::bufferization::createEmptyTensorToAllocTensorPass(),
|
|
enablePass);
|
|
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createSCFForallToSCFForPass(), enablePass);
|
|
|
|
// Bufferize
|
|
mlir::bufferization::OneShotBufferizationOptions bufferizationOptions;
|
|
bufferizationOptions.allowReturnAllocs = true;
|
|
bufferizationOptions.printConflicts = true;
|
|
bufferizationOptions.unknownTypeConverterFn =
|
|
[](Value value, Attribute memorySpace,
|
|
const mlir::bufferization::BufferizationOptions &options) {
|
|
return mlir::bufferization::getMemRefTypeWithStaticIdentityLayout(
|
|
value.getType().cast<TensorType>(), memorySpace);
|
|
};
|
|
bufferizationOptions.bufferizeFunctionBoundaries = true;
|
|
bufferizationOptions.createDeallocs = false;
|
|
|
|
std::unique_ptr<mlir::Pass> comprBuffPass =
|
|
mlir::bufferization::createOneShotBufferizePass(bufferizationOptions);
|
|
|
|
addPotentiallyNestedPass(pm, std::move(comprBuffPass), enablePass);
|
|
|
|
// The bufferization may create `linalg.map` operations; Add another
|
|
// conversion pass from linalg to loops
|
|
addPotentiallyNestedPass(pm, mlir::createConvertLinalgToLoopsPass(),
|
|
enablePass);
|
|
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createBufferizeDataflowTaskOpsPass(), enablePass);
|
|
|
|
if (parallelizeLoops) {
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createCollapseParallelLoops(), enablePass);
|
|
addPotentiallyNestedPass(pm, mlir::concretelang::createForLoopToParallel(),
|
|
enablePass);
|
|
}
|
|
|
|
if (parallelizeLoops)
|
|
addPotentiallyNestedPass(pm, mlir::createConvertSCFToOpenMPPass(),
|
|
enablePass);
|
|
// Lower affine
|
|
addPotentiallyNestedPass(pm, mlir::createLowerAffinePass(), enablePass);
|
|
|
|
// Finalize the lowering of RT/DFR which includes:
|
|
// - adding type and typesize information for dependences
|
|
// - issue _dfr_start and _dfr_stop calls to start/stop the runtime
|
|
// - remove deallocation calls for buffers managed through refcounting
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createFinalizeTaskCreationPass(), enablePass);
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::bufferization::createBufferDeallocationPass(), enablePass);
|
|
addPotentiallyNestedPass(pm, mlir::concretelang::createStartStopPass(),
|
|
enablePass);
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createFixupBufferDeallocationPass(), enablePass);
|
|
|
|
return pm.run(module);
|
|
}
|
|
|
|
mlir::LogicalResult lowerToCAPI(mlir::MLIRContext &context,
|
|
mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass,
|
|
bool gpu) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("Lowering to CAPI", pm, context);
|
|
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createConvertConcreteToCAPIPass(gpu), enablePass);
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createConvertTracingToCAPIPass(), enablePass);
|
|
|
|
return pm.run(module);
|
|
}
|
|
|
|
mlir::LogicalResult
|
|
lowerStdToLLVMDialect(mlir::MLIRContext &context, mlir::ModuleOp &module,
|
|
std::function<bool(mlir::Pass *)> enablePass) {
|
|
mlir::PassManager pm(&context);
|
|
pipelinePrinting("StdToLLVM", pm, context);
|
|
|
|
// Convert to MLIR LLVM Dialect
|
|
addPotentiallyNestedPass(
|
|
pm, mlir::concretelang::createConvertMLIRLowerableDialectsToLLVMPass(),
|
|
enablePass);
|
|
|
|
return pm.run(module);
|
|
}
|
|
|
|
std::unique_ptr<llvm::Module>
|
|
lowerLLVMDialectToLLVMIR(mlir::MLIRContext &context,
|
|
llvm::LLVMContext &llvmContext,
|
|
mlir::ModuleOp &module) {
|
|
llvm::InitializeNativeTarget();
|
|
llvm::InitializeNativeTargetAsmPrinter();
|
|
mlir::registerLLVMDialectTranslation(*module->getContext());
|
|
mlir::registerOpenMPDialectTranslation(*module->getContext());
|
|
|
|
return mlir::translateModuleToLLVMIR(module, llvmContext);
|
|
}
|
|
|
|
mlir::LogicalResult optimizeLLVMModule(llvm::LLVMContext &llvmContext,
|
|
llvm::Module &module) {
|
|
// -O3 is done LLVMEmitFile.cpp
|
|
auto optLevel = llvm::CodeGenOpt::None;
|
|
std::function<llvm::Error(llvm::Module *)> optPipeline =
|
|
mlir::makeOptimizingTransformer(optLevel, 0, nullptr);
|
|
|
|
if (optPipeline(&module))
|
|
return mlir::failure();
|
|
else
|
|
return mlir::success();
|
|
}
|
|
|
|
} // namespace pipeline
|
|
} // namespace concretelang
|
|
} // namespace mlir
|