Files
concrete/compilers/concrete-compiler/compiler/lib/Transforms/CollapseParallelLoops.cpp
Benoit Chevallier-Mames e37a840e7e docs(compiler): adding API doc
2024-03-13 17:10:00 +01:00

100 lines
3.7 KiB
C++

// Part of the Concrete Compiler Project, under the BSD3 License with Zama
// Exceptions. See
// https://github.com/zama-ai/concrete/blob/main/LICENSE.txt
// for license information.
#include "concretelang/Transforms/Passes.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Operation.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/RegionUtils.h"
#include <mlir/Transforms/GreedyPatternRewriteDriver.h>
namespace {
struct CollapseParallelLoopsPass
: public CollapseParallelLoopsBase<CollapseParallelLoopsPass> {
/// Walk either an scf.for or an affine.for to find a band to coalesce.
template <typename LoopOpTy> static void walkLoop(LoopOpTy op) {}
void runOnOperation() override {
mlir::ModuleOp module = getOperation();
module.walk([&](mlir::scf::ForOp forOp) {
// Ignore nested loops.
if (forOp->getParentOfType<mlir::scf::ForOp>())
return;
// Determine which sequences of nested loops can be coalesced
// TODO: add loop interchange and hoisting to find more
// opportunities by getting multiple parallel loops in sequence
mlir::SmallVector<mlir::scf::ForOp, 4> loops;
getPerfectlyNestedLoops(loops, forOp);
mlir::SmallVector<unsigned, 4> coalesceableLoopRanges(loops.size());
for (unsigned i = 0, e = loops.size(); i < e; ++i) {
// Any loop is coalesceable to itself
coalesceableLoopRanges[i] = i;
// The outermost loop doesn't have any outer loop to collapse into
if (i == 0)
continue;
// A loop will only be coalesced with another if both are
// parallel. Otherwise it is irrelevant in this pass.
// If this loop itself is not parallel, then nothing we can do.
auto attr = loops[i]->getAttrOfType<mlir::BoolAttr>("parallel");
if (attr == nullptr || attr.getValue() == false)
continue;
// Find how many loops are able to be coalesced
for (unsigned j = 0; j < i; ++j) {
if (mlir::areValuesDefinedAbove(loops[i].getOperands(),
loops[j].getRegion())) {
coalesceableLoopRanges[i] = j;
break;
}
}
// Now ensure that all loops in this sequence
// [coalesceableLoopRanges[i], i] are parallel. Otherwise
// update the range's lower bound.
for (int k = i - 1; k >= (int)coalesceableLoopRanges[i]; --k) {
auto attrK = loops[k]->getAttrOfType<mlir::BoolAttr>("parallel");
if (attrK == nullptr || attrK.getValue() == false) {
coalesceableLoopRanges[i] = k + 1;
break;
}
}
}
for (unsigned end = loops.size(); end > 0; --end) {
unsigned start = 0;
for (; start < end - 1; ++start) {
auto maxPos = *std::max_element(
std::next(coalesceableLoopRanges.begin(), start),
std::next(coalesceableLoopRanges.begin(), end));
if (maxPos > start)
continue;
auto band = llvm::MutableArrayRef(loops.data() + start, end - start);
(void)mlir::coalesceLoops(band);
break;
}
// If a band was found and transformed, keep looking at the loops above
// the outermost transformed loop.
if (start != end - 1)
end = start + 1;
}
});
}
};
} // namespace
std::unique_ptr<mlir::OperationPass<mlir::ModuleOp>>
mlir::concretelang::createCollapseParallelLoops() {
return std::make_unique<CollapseParallelLoopsPass>();
}