Files
concrete/compilers/concrete-compiler/compiler/lib/Support/CompilerEngine.cpp
Andi Drebes fa5c09a52b feat(compiler): Run batching pass after conversion to TFHE
With TFHE operations becoming batchable, the batching pass must now be
run after the conversion to TFHE,and TFHE parametrization, but before
any further lowering.
2023-03-24 11:06:51 +01:00

949 lines
34 KiB
C++

// Part of the Concrete Compiler Project, under the BSD3 License with Zama
// Exceptions. See
// https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt
// for license information.
#include <fstream>
#include <iostream>
#include <mlir/Dialect/Arith/Transforms/BufferizableOpInterfaceImpl.h>
#include <mlir/Dialect/Bufferization/IR/Bufferization.h>
#include <mlir/Dialect/Linalg/Transforms/BufferizableOpInterfaceImpl.h>
#include <mlir/Dialect/SCF/Transforms/BufferizableOpInterfaceImpl.h>
#include <mlir/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.h>
#include <stdio.h>
#include <string>
#include <llvm/Support/Error.h>
#include <llvm/Support/Path.h>
#include <llvm/Support/SMLoc.h>
#include <mlir/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.h>
#include <mlir/Dialect/Func/IR/FuncOps.h>
#include <mlir/Dialect/LLVMIR/LLVMDialect.h>
#include <mlir/Dialect/Linalg/IR/Linalg.h>
#include <mlir/Dialect/MemRef/IR/MemRef.h>
#include <mlir/Dialect/OpenMP/OpenMPDialect.h>
#include <mlir/Dialect/SCF/IR/SCF.h>
#include <mlir/ExecutionEngine/OptUtils.h>
#include <mlir/Parser/Parser.h>
#include "concretelang/Conversion/Utils/GlobalFHEContext.h"
#include <concretelang/ClientLib/ClientParameters.h>
#include <concretelang/Dialect/Concrete/IR/ConcreteDialect.h>
#include <concretelang/Dialect/Concrete/Transforms/BufferizableOpInterfaceImpl.h>
#include <concretelang/Dialect/FHE/IR/FHEDialect.h>
#include <concretelang/Dialect/FHELinalg/IR/FHELinalgDialect.h>
#include <concretelang/Dialect/RT/IR/RTDialect.h>
#include <concretelang/Dialect/RT/Transforms/BufferizableOpInterfaceImpl.h>
#include <concretelang/Dialect/SDFG/IR/SDFGDialect.h>
#include <concretelang/Dialect/SDFG/Transforms/BufferizableOpInterfaceImpl.h>
#include <concretelang/Dialect/SDFG/Transforms/SDFGConvertibleOpInterfaceImpl.h>
#include <concretelang/Dialect/TFHE/IR/TFHEDialect.h>
#include <concretelang/Dialect/Tracing/IR/TracingDialect.h>
#include <concretelang/Dialect/Tracing/Transforms/BufferizableOpInterfaceImpl.h>
#include <concretelang/Runtime/DFRuntime.hpp>
#include <concretelang/Support/CompilerEngine.h>
#include <concretelang/Support/Error.h>
#include <concretelang/Support/Jit.h>
#include <concretelang/Support/LLVMEmitFile.h>
#include <concretelang/Support/Pipeline.h>
namespace mlir {
namespace concretelang {
// TODO: should be removed when bufferization is not related to CAPI lowering
// Control whether we should call a cpu of gpu function when lowering
// to CAPI
static bool EMIT_GPU_OPS;
bool getEmitGPUOption() { return EMIT_GPU_OPS; }
/// Creates a new compilation context that can be shared across
/// compilation engines and results
std::shared_ptr<CompilationContext> CompilationContext::createShared() {
return std::make_shared<CompilationContext>();
}
CompilationContext::CompilationContext()
: mlirContext(nullptr), llvmContext(nullptr) {}
CompilationContext::~CompilationContext() {
delete this->mlirContext;
delete this->llvmContext;
}
/// Returns the MLIR context for a compilation context. Creates and
/// initializes a new MLIR context if necessary.
mlir::MLIRContext *CompilationContext::getMLIRContext() {
if (this->mlirContext == nullptr) {
mlir::DialectRegistry registry;
registry.insert<
mlir::concretelang::Tracing::TracingDialect,
mlir::concretelang::RT::RTDialect, mlir::concretelang::FHE::FHEDialect,
mlir::concretelang::TFHE::TFHEDialect,
mlir::concretelang::FHELinalg::FHELinalgDialect,
mlir::concretelang::Concrete::ConcreteDialect,
mlir::concretelang::SDFG::SDFGDialect, mlir::func::FuncDialect,
mlir::memref::MemRefDialect, mlir::linalg::LinalgDialect,
mlir::LLVM::LLVMDialect, mlir::scf::SCFDialect,
mlir::omp::OpenMPDialect, mlir::bufferization::BufferizationDialect>();
Tracing::registerBufferizableOpInterfaceExternalModels(registry);
Concrete::registerBufferizableOpInterfaceExternalModels(registry);
SDFG::registerSDFGConvertibleOpInterfaceExternalModels(registry);
SDFG::registerBufferizableOpInterfaceExternalModels(registry);
arith::registerBufferizableOpInterfaceExternalModels(registry);
bufferization::func_ext::registerBufferizableOpInterfaceExternalModels(
registry);
scf::registerBufferizableOpInterfaceExternalModels(registry);
tensor::registerBufferizableOpInterfaceExternalModels(registry);
linalg::registerBufferizableOpInterfaceExternalModels(registry);
RT::registerBufferizableOpInterfaceExternalModels(registry);
this->mlirContext = new mlir::MLIRContext();
this->mlirContext->appendDialectRegistry(registry);
this->mlirContext->loadAllAvailableDialects();
this->mlirContext->disableMultithreading();
}
return this->mlirContext;
}
/// Returns the LLVM context for a compilation context. Creates and
/// initializes a new LLVM context if necessary.
llvm::LLVMContext *CompilationContext::getLLVMContext() {
if (this->llvmContext == nullptr)
this->llvmContext = new llvm::LLVMContext();
return this->llvmContext;
}
/// Sets the FHE constraints for the compilation. Overrides any
/// automatically detected configuration and prevents the autodetection
/// pass from running.
void CompilerEngine::setFHEConstraints(
const mlir::concretelang::V0FHEConstraint &c) {
this->overrideMaxEintPrecision = c.p;
this->overrideMaxMANP = c.norm2;
}
void CompilerEngine::setGenerateClientParameters(bool v) {
this->generateClientParameters = v;
}
void CompilerEngine::setMaxEintPrecision(size_t v) {
this->overrideMaxEintPrecision = v;
}
void CompilerEngine::setMaxMANP(size_t v) { this->overrideMaxMANP = v; }
void CompilerEngine::setEnablePass(
std::function<bool(mlir::Pass *)> enablePass) {
this->enablePass = enablePass;
}
/// Returns the optimizer::Description
llvm::Expected<std::optional<optimizer::Description>>
CompilerEngine::getConcreteOptimizerDescription(CompilationResult &res) {
mlir::MLIRContext &mlirContext = *this->compilationContext->getMLIRContext();
mlir::ModuleOp module = res.mlirModuleRef->get();
// If the values has been overwritten returns
if (this->overrideMaxEintPrecision.has_value() &&
this->overrideMaxMANP.has_value()) {
auto constraint = mlir::concretelang::V0FHEConstraint{
this->overrideMaxMANP.value(), this->overrideMaxEintPrecision.value()};
return optimizer::Description{constraint, std::nullopt};
}
auto config = this->compilerOptions.optimizerConfig;
auto descriptions = mlir::concretelang::pipeline::getFHEContextFromFHE(
mlirContext, module, config, enablePass);
if (auto err = descriptions.takeError()) {
return std::move(err);
}
if (descriptions->empty()) { // The pass has not been run
return std::nullopt;
}
if (this->compilerOptions.clientParametersFuncName.has_value()) {
auto name = this->compilerOptions.clientParametersFuncName.value();
auto description = descriptions->find(name);
if (description == descriptions->end()) {
std::string names;
for (auto &entry : *descriptions) {
names += "'" + entry.first + "' ";
}
return StreamStringError()
<< "Could not find existing crypto parameters for function '"
<< name << "' (known functions: " << names << ")";
}
return std::move(description->second);
}
if (descriptions->size() != 1) {
llvm::errs() << "Several crypto parameters exists: the function need to be "
"specified, taking the first one";
}
return std::move(descriptions->begin()->second);
}
/// set the fheContext field if the v0Constraint can be computed
/// set the fheContext field if the v0Constraint can be computed
llvm::Error CompilerEngine::determineFHEParameters(CompilationResult &res) {
if (compilerOptions.v0Parameter.has_value()) {
// parameters come from the compiler options
auto v0Params = compilerOptions.v0Parameter.value();
if (compilerOptions.largeIntegerParameter.has_value()) {
v0Params.largeInteger = compilerOptions.largeIntegerParameter;
}
V0FHEConstraint constraint;
if (compilerOptions.v0FHEConstraints.has_value()) {
constraint = compilerOptions.v0FHEConstraints.value();
}
res.fheContext.emplace(
mlir::concretelang::V0FHEContext{constraint, v0Params});
return llvm::Error::success();
}
// compute parameters
else {
auto descr = getConcreteOptimizerDescription(res);
if (auto err = descr.takeError()) {
return err;
}
if (!descr.get().has_value()) {
return llvm::Error::success();
}
CompilationFeedback feedback;
// Make sure to use the gpu constraint of the optimizer if we use gpu
// backend.
compilerOptions.optimizerConfig.use_gpu_constraints =
compilerOptions.emitGPUOps;
auto v0Params = getParameter(descr.get().value(), feedback,
compilerOptions.optimizerConfig);
if (auto err = v0Params.takeError()) {
return err;
}
res.fheContext.emplace(mlir::concretelang::V0FHEContext{
descr.get().value().constraint, v0Params.get()});
res.feedback.emplace(feedback);
}
return llvm::Error::success();
}
using OptionalLib = std::optional<std::shared_ptr<CompilerEngine::Library>>;
// Compile the sources managed by the source manager `sm` to the
// target dialect `target`. If successful, the result can be retrieved
// using `getModule()` and `getLLVMModule()`, respectively depending
// on the target dialect.
llvm::Expected<CompilerEngine::CompilationResult>
CompilerEngine::compile(llvm::SourceMgr &sm, Target target, OptionalLib lib) {
std::unique_ptr<mlir::SourceMgrDiagnosticVerifierHandler> smHandler;
std::string diagnosticsMsg;
llvm::raw_string_ostream diagnosticsOS(diagnosticsMsg);
auto errorDiag = [&](std::string prefixMsg)
-> llvm::Expected<CompilerEngine::CompilationResult> {
return StreamStringError(prefixMsg + "\n" + diagnosticsOS.str());
};
CompilationResult res(this->compilationContext);
CompilationOptions &options = this->compilerOptions;
// enable/disable usage of gpu functions during bufferization
EMIT_GPU_OPS = options.emitGPUOps;
mlir::MLIRContext &mlirContext = *this->compilationContext->getMLIRContext();
if (options.verifyDiagnostics) {
// Only build diagnostics verifier handler if diagnostics should
// be verified in order to avoid diagnostic messages to be
// consumed when they should appear on stderr.
smHandler = std::make_unique<mlir::SourceMgrDiagnosticVerifierHandler>(
sm, &mlirContext, diagnosticsOS);
}
mlirContext.printOpOnDiagnostic(false);
mlir::OwningOpRef<mlir::ModuleOp> mlirModuleRef =
mlir::parseSourceFile<mlir::ModuleOp>(sm, &mlirContext);
auto dataflowParallelize =
options.autoParallelize || options.dataflowParallelize;
auto loopParallelize = options.autoParallelize || options.loopParallelize;
if (options.verifyDiagnostics) {
if (smHandler->verify().failed())
return StreamStringError("Verification of diagnostics failed");
else
return std::move(res);
}
if (loopParallelize)
mlir::concretelang::dfr::_dfr_set_use_omp(true);
if (dataflowParallelize)
mlir::concretelang::dfr::_dfr_set_required(true);
if (!mlirModuleRef) {
return errorDiag("Could not parse source");
}
res.mlirModuleRef = std::move(mlirModuleRef);
mlir::ModuleOp module = res.mlirModuleRef->get();
if (target == Target::ROUND_TRIP)
return std::move(res);
if (mlir::concretelang::pipeline::transformFHEBoolean(mlirContext, module,
enablePass)
.failed()) {
return errorDiag("Transforming FHE boolean ops failed");
}
if (options.chunkIntegers) {
if (mlir::concretelang::pipeline::transformFHEBigInt(
mlirContext, module, enablePass, options.chunkSize,
options.chunkWidth)
.failed()) {
return errorDiag("Transforming FHE big integer ops failed");
}
}
// FHE High level pass to determine FHE parameters
if (auto err = this->determineFHEParameters(res))
return std::move(err);
// FHELinalg tiling
if (options.fhelinalgTileSizes) {
if (mlir::concretelang::pipeline::markFHELinalgForTiling(
mlirContext, module, *options.fhelinalgTileSizes, enablePass)
.failed())
return errorDiag("Marking of FHELinalg operations for tiling failed");
}
if (mlir::concretelang::pipeline::tileMarkedFHELinalg(mlirContext, module,
enablePass)
.failed()) {
return errorDiag("Tiling of FHELinalg operations failed");
}
// Dataflow parallelization
if (dataflowParallelize &&
mlir::concretelang::pipeline::autopar(mlirContext, module, enablePass)
.failed()) {
return StreamStringError("Dataflow parallelization failed");
}
if (target == Target::FHE)
return std::move(res);
// FHELinalg -> FHE
if (mlir::concretelang::pipeline::lowerFHELinalgToFHE(
mlirContext, module, res.fheContext, enablePass, loopParallelize)
.failed()) {
return errorDiag("Lowering from FHELinalg to FHE failed");
}
if (mlir::concretelang::pipeline::transformHighLevelFHEOps(mlirContext,
module, enablePass)
.failed()) {
return StreamStringError("Rewriting of high level fhe ops failed");
}
if (target == Target::FHE_NO_LINALG)
return std::move(res);
// Generate client parameters if requested
if (this->generateClientParameters) {
if (!options.clientParametersFuncName.has_value()) {
return StreamStringError(
"Generation of client parameters requested, but no function name "
"specified");
}
if (!res.fheContext.has_value()) {
return StreamStringError(
"Cannot generate client parameters, the fhe context is empty for " +
options.clientParametersFuncName.value());
}
}
// Generate client parameters if requested
auto funcName = options.clientParametersFuncName.value_or("main");
if (this->generateClientParameters || target == Target::LIBRARY) {
if (!res.fheContext.has_value()) {
// Some tests involve call a to non encrypted functions
ClientParameters emptyParams;
emptyParams.functionName = funcName;
res.clientParameters = emptyParams;
} else {
llvm::Optional<::concretelang::clientlib::ChunkInfo> chunkInfo =
std::nullopt;
if (options.chunkIntegers) {
chunkInfo = ::concretelang::clientlib::ChunkInfo{options.chunkSize,
options.chunkWidth};
}
auto clientParametersOrErr =
mlir::concretelang::createClientParametersForV0(
*res.fheContext, funcName, module,
options.optimizerConfig.security, chunkInfo);
if (!clientParametersOrErr)
return clientParametersOrErr.takeError();
res.clientParameters = clientParametersOrErr.get();
res.feedback->fillFromClientParameters(*res.clientParameters);
}
}
// FHE -> TFHE
if (mlir::concretelang::pipeline::lowerFHEToTFHE(mlirContext, module,
res.fheContext, enablePass)
.failed()) {
return errorDiag("Lowering from FHE to TFHE failed");
}
// Optimizing TFHE
if (this->compilerOptions.optimizeTFHE &&
mlir::concretelang::pipeline::optimizeTFHE(mlirContext, module,
this->enablePass)
.failed()) {
return errorDiag("Optimizing TFHE failed");
}
if (target == Target::TFHE)
return std::move(res);
if (mlir::concretelang::pipeline::parametrizeTFHE(mlirContext, module,
res.fheContext, enablePass)
.failed()) {
return errorDiag("Parametrization of TFHE operations failed");
}
if (target == Target::PARAMETRIZED_TFHE)
return std::move(res);
if (options.batchTFHEOps) {
if (mlir::concretelang::pipeline::batchTFHE(mlirContext, module, enablePass)
.failed()) {
return errorDiag("Batching of TFHE operations");
}
}
if (target == Target::BATCHED_TFHE)
return std::move(res);
// TFHE -> Concrete
if (mlir::concretelang::pipeline::lowerTFHEToConcrete(mlirContext, module,
this->enablePass)
.failed()) {
return errorDiag("Lowering from TFHE to Concrete failed");
}
if (target == Target::CONCRETE)
return std::move(res);
// Extract SDFG data flow graph from Concrete representation
if (options.emitSDFGOps) {
if (mlir::concretelang::pipeline::extractSDFGOps(
mlirContext, module, enablePass,
options.unrollLoopsWithSDFGConvertibleOps)
.failed()) {
return errorDiag("Extraction of SDFG operations from Concrete "
"representation failed");
}
}
if (target == Target::SDFG) {
return std::move(res);
}
// Concrete -> Canonical dialects
if (mlir::concretelang::pipeline::lowerConcreteToStd(mlirContext, module,
enablePass)
.failed()) {
return errorDiag("Lowering from Bufferized Concrete to canonical MLIR "
"dialects failed");
}
// SDFG -> Canonical dialects
if (mlir::concretelang::pipeline::lowerSDFGToStd(mlirContext, module,
enablePass)
.failed()) {
return errorDiag("Lowering from SDFG to canonical MLIR dialects failed");
}
if (target == Target::STD)
return std::move(res);
// MLIR canonical dialects -> LLVM Dialect
if (mlir::concretelang::pipeline::lowerStdToLLVMDialect(
mlirContext, module, enablePass, loopParallelize, options.emitGPUOps)
.failed()) {
return errorDiag("Failed to lower to LLVM dialect");
}
if (target == Target::LLVM)
return std::move(res);
// Lowering to actual LLVM IR (i.e., not the LLVM dialect)
llvm::LLVMContext &llvmContext = *this->compilationContext->getLLVMContext();
res.llvmModule = mlir::concretelang::pipeline::lowerLLVMDialectToLLVMIR(
mlirContext, llvmContext, module);
if (!res.llvmModule)
return StreamStringError("Failed to convert from LLVM dialect to LLVM IR");
if (target == Target::LLVM_IR)
return std::move(res);
if (mlir::concretelang::pipeline::optimizeLLVMModule(llvmContext,
*res.llvmModule)
.failed()) {
return errorDiag("Failed to optimize LLVM IR");
}
if (target == Target::OPTIMIZED_LLVM_IR)
return std::move(res);
if (target == Target::LIBRARY) {
if (!lib) {
return StreamStringError(
"Internal Error: Please provide a library parameter");
}
auto objPath = lib.value()->addCompilation(res);
if (!objPath) {
return StreamStringError(llvm::toString(objPath.takeError()));
}
return std::move(res);
}
return std::move(res);
}
/// Compile the source `s` to the target dialect `target`. If successful, the
/// result can be retrieved using `getModule()` and `getLLVMModule()`,
/// respectively depending on the target dialect.
llvm::Expected<CompilerEngine::CompilationResult>
CompilerEngine::compile(llvm::StringRef s, Target target, OptionalLib lib) {
std::unique_ptr<llvm::MemoryBuffer> mb = llvm::MemoryBuffer::getMemBuffer(s);
return this->compile(std::move(mb), target, lib);
}
/// Compile the contained in `buffer` to the target dialect
/// `target`. If successful, the result can be retrieved using
/// `getModule()` and `getLLVMModule()`, respectively depending on the
/// target dialect.
llvm::Expected<CompilerEngine::CompilationResult>
CompilerEngine::compile(std::unique_ptr<llvm::MemoryBuffer> buffer,
Target target, OptionalLib lib) {
llvm::SourceMgr sm;
sm.AddNewSourceBuffer(std::move(buffer), llvm::SMLoc());
return this->compile(sm, target, lib);
}
llvm::Expected<CompilerEngine::Library> CompilerEngine::compile(
std::vector<std::string> inputs, std::string outputDirPath,
std::string runtimeLibraryPath, bool generateSharedLib,
bool generateStaticLib, bool generateClientParameters,
bool generateCompilationFeedback, bool generateCppHeader) {
using Library = mlir::concretelang::CompilerEngine::Library;
auto outputLib = std::make_shared<Library>(outputDirPath, runtimeLibraryPath);
auto target = CompilerEngine::Target::LIBRARY;
for (auto input : inputs) {
auto compilation = compile(input, target, outputLib);
if (!compilation) {
return StreamStringError("Can't compile: ")
<< llvm::toString(compilation.takeError());
}
}
if (auto err = outputLib->emitArtifacts(
generateSharedLib, generateStaticLib, generateClientParameters,
generateCompilationFeedback, generateCppHeader)) {
return StreamStringError("Can't emit artifacts: ")
<< llvm::toString(std::move(err));
}
return *outputLib.get();
}
llvm::Expected<CompilerEngine::Library>
CompilerEngine::compile(llvm::SourceMgr &sm, std::string outputDirPath,
std::string runtimeLibraryPath, bool generateSharedLib,
bool generateStaticLib, bool generateClientParameters,
bool generateCompilationFeedback,
bool generateCppHeader) {
using Library = mlir::concretelang::CompilerEngine::Library;
auto outputLib = std::make_shared<Library>(outputDirPath, runtimeLibraryPath);
auto target = CompilerEngine::Target::LIBRARY;
auto compilation = compile(sm, target, outputLib);
if (!compilation) {
return StreamStringError("Can't compile: ")
<< llvm::toString(compilation.takeError());
}
if (auto err = outputLib->emitArtifacts(
generateSharedLib, generateStaticLib, generateClientParameters,
generateCompilationFeedback, generateCppHeader)) {
return StreamStringError("Can't emit artifacts: ")
<< llvm::toString(std::move(err));
}
return *outputLib.get();
}
/// Returns the path of the shared library
std::string
CompilerEngine::Library::getSharedLibraryPath(std::string outputDirPath) {
llvm::SmallString<0> sharedLibraryPath(outputDirPath);
llvm::sys::path::append(sharedLibraryPath, "sharedlib" + DOT_SHARED_LIB_EXT);
return sharedLibraryPath.str().str();
}
/// Returns the path of the static library
std::string
CompilerEngine::Library::getStaticLibraryPath(std::string outputDirPath) {
llvm::SmallString<0> staticLibraryPath(outputDirPath);
llvm::sys::path::append(staticLibraryPath, "staticlib" + DOT_STATIC_LIB_EXT);
return staticLibraryPath.str().str();
}
/// Returns the path of the client parameter
std::string
CompilerEngine::Library::getClientParametersPath(std::string outputDirPath) {
llvm::SmallString<0> clientParametersPath(outputDirPath);
llvm::sys::path::append(
clientParametersPath,
ClientParameters::getClientParametersPath("client_parameters"));
return clientParametersPath.str().str();
}
/// Returns the path of the compiler feedback
std::string
CompilerEngine::Library::getCompilationFeedbackPath(std::string outputDirPath) {
llvm::SmallString<0> compilationFeedbackPath(outputDirPath);
llvm::sys::path::append(compilationFeedbackPath, "compilation_feedback.json");
return compilationFeedbackPath.str().str();
}
const std::string CompilerEngine::Library::OBJECT_EXT = ".o";
const std::string CompilerEngine::Library::LINKER = "ld";
#ifdef __APPLE__
// We need to tell the linker that some symbols will be missing during
// linking, this symbols should be available during runtime however. This is
// the case when JIT compiling, the JIT should either link to the runtime
// library that has the missing symbols, or it would have been loaded even
// prior to that. Starting from Mac 11 (Big Sur), it appears we need to add -L
// /Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/lib -lSystem for
// the sharedlib to link properly.
const std::string CompilerEngine::Library::LINKER_SHARED_OPT =
" -dylib -undefined dynamic_lookup -L "
"/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/lib -lSystem "
"-o ";
const std::string CompilerEngine::Library::DOT_SHARED_LIB_EXT = ".dylib";
#else // Linux
const std::string CompilerEngine::Library::LINKER_SHARED_OPT = " --shared -o ";
const std::string CompilerEngine::Library::DOT_SHARED_LIB_EXT = ".so";
#endif
const std::string CompilerEngine::Library::AR = "ar";
const std::string CompilerEngine::Library::AR_STATIC_OPT = " rcs ";
const std::string CompilerEngine::Library::DOT_STATIC_LIB_EXT = ".a";
void CompilerEngine::Library::addExtraObjectFilePath(std::string path) {
objectsPath.push_back(path);
}
llvm::Expected<std::string>
CompilerEngine::Library::emitClientParametersJSON() {
auto clientParamsPath = getClientParametersPath(outputDirPath);
llvm::json::Value value(clientParametersList);
std::error_code error;
llvm::raw_fd_ostream out(clientParamsPath, error);
if (error) {
return StreamStringError("cannot emit client parameters, error: ")
<< error.message();
}
out << llvm::formatv("{0:2}", value);
out.close();
return clientParamsPath;
}
llvm::Expected<std::string>
CompilerEngine::Library::emitCompilationFeedbackJSON() {
auto path = getCompilationFeedbackPath(outputDirPath);
if (compilationFeedbackList.size() != 1) {
return StreamStringError("multiple compilation feedback not supported");
}
llvm::json::Value value(compilationFeedbackList[0]);
std::error_code error;
llvm::raw_fd_ostream out(path, error);
if (error) {
return StreamStringError("cannot emit client parameters, error: ")
<< error.message();
}
out << llvm::formatv("{0:2}", value);
out.close();
return path;
}
static std::string ccpResultType(size_t rank) {
if (rank == 0) {
return "scalar_out";
} else {
return "tensor" + std::to_string(rank) + "_out";
}
}
static std::string ccpArgType(size_t rank) {
if (rank == 0) {
return "scalar_in";
} else {
return "tensor" + std::to_string(rank) + "_in";
}
}
static std::string cppArgsType(std::vector<CircuitGate> inputs) {
std::string args;
for (auto input : inputs) {
if (!args.empty()) {
args += ", ";
}
args += ccpArgType(input.shape.dimensions.size());
}
return args;
}
llvm::Expected<std::string> CompilerEngine::Library::emitCppHeader() {
std::string libraryName = "fhecircuit";
auto headerName = libraryName + "-client.h";
llvm::SmallString<0> headerPath(outputDirPath);
llvm::sys::path::append(headerPath, headerName);
std::error_code error;
llvm::raw_fd_ostream out(headerPath, error);
if (error) {
StreamStringError("Cannot emit header: ")
<< headerPath << ", " << error.message() << "\n";
}
out << "#include \"boost/outcome.h\"\n";
out << "#include \"concretelang/ClientLib/ClientLambda.h\"\n";
out << "#include \"concretelang/ClientLib/KeySetCache.h\"\n";
out << "#include \"concretelang/ClientLib/Types.h\"\n";
out << "#include \"concretelang/Common/Error.h\"\n";
out << "\n";
out << "namespace " << libraryName << " {\n";
out << "namespace client {\n";
for (auto params : clientParametersList) {
std::string args;
std::string result;
if (params.outputs.size() > 0) {
args = cppArgsType(params.inputs);
} else {
args = "void";
}
if (params.outputs.size() > 0) {
size_t rank = params.outputs[0].shape.dimensions.size();
result = ccpResultType(rank);
} else {
result = "void";
}
out << "\n";
out << "namespace " << params.functionName << " {\n";
out << " using namespace concretelang::clientlib;\n";
out << " using concretelang::error::StringError;\n";
out << " using " << params.functionName << "_t = TypedClientLambda<"
<< result << ", " << args << ">;\n";
out << " static const std::string name = \"" << params.functionName
<< "\";\n";
out << "\n";
out << " static outcome::checked<" << params.functionName
<< "_t, StringError>\n";
out << " load(std::string outputLib)\n";
out << " { return " << params.functionName
<< "_t::load(name, outputLib); }\n";
out << "} // namespace " << params.functionName << "\n";
}
out << "\n";
out << "} // namespace client\n";
out << "} // namespace " << libraryName << "\n";
out.close();
return headerPath.str().str();
}
llvm::Expected<std::string>
CompilerEngine::Library::addCompilation(CompilationResult &compilation) {
llvm::Module *module = compilation.llvmModule.get();
auto sourceName = module->getSourceFileName();
if (sourceName == "" || sourceName == "LLVMDialectModule") {
sourceName = this->outputDirPath + ".module-" +
std::to_string(objectsPath.size()) + ".mlir";
}
auto objectPath = sourceName + OBJECT_EXT;
if (auto error = mlir::concretelang::emitObject(*module, objectPath)) {
return std::move(error);
}
addExtraObjectFilePath(objectPath);
if (compilation.clientParameters.has_value()) {
clientParametersList.push_back(compilation.clientParameters.value());
}
if (compilation.feedback.has_value()) {
compilationFeedbackList.push_back(compilation.feedback.value());
}
return objectPath;
}
bool stringEndsWith(std::string path, std::string requiredExt) {
return path.substr(path.size() - requiredExt.size()) == requiredExt;
}
std::string removeDotExt(std::string path, std::string dotExt) {
return (stringEndsWith(path, dotExt))
? path.substr(0, path.size() - dotExt.size())
: path;
}
std::string ensureLibDotExt(std::string path, std::string dotExt) {
path = removeDotExt(path, CompilerEngine::Library::DOT_STATIC_LIB_EXT);
path = removeDotExt(path, CompilerEngine::Library::DOT_SHARED_LIB_EXT);
return path + dotExt;
}
llvm::Expected<std::string> CompilerEngine::Library::emit(
std::string path, std::string dotExt, std::string linker,
std::optional<std::vector<std::string>> extraArgs) {
auto pathDotExt = ensureLibDotExt(path, dotExt);
auto error = mlir::concretelang::emitLibrary(objectsPath, pathDotExt, linker,
extraArgs);
if (error) {
return std::move(error);
}
return pathDotExt;
}
llvm::Expected<std::string> CompilerEngine::Library::emitShared() {
std::vector<std::string> extraArgs;
std::string fullRuntimeLibraryName = "";
#ifdef __APPLE__
// to issue the command for fixing the runtime dependency of the generated
// lib
bool fixRuntimeDep = false;
#endif
if (!runtimeLibraryPath.empty()) {
// Getting the parent dir should work on Linux and Mac
std::size_t rpathLastPos = runtimeLibraryPath.find_last_of("/");
std::string rpath = "";
std::string runtimeLibraryName = "";
if (rpathLastPos != std::string::npos) {
rpath = runtimeLibraryPath.substr(0, rpathLastPos);
fullRuntimeLibraryName = runtimeLibraryPath.substr(
rpathLastPos + 1, runtimeLibraryPath.length());
// runtimeLibraryName is part of fullRuntimeLibraryName =
// lib(runtimeLibraryName).dylib
runtimeLibraryName =
removeDotExt(fullRuntimeLibraryName, DOT_SHARED_LIB_EXT);
if (runtimeLibraryName.rfind("lib", 0) == 0) { // starts with lib
runtimeLibraryName =
runtimeLibraryName.substr(3, runtimeLibraryName.length());
}
}
#ifdef __APPLE__
if (!rpath.empty() && !runtimeLibraryName.empty()) {
fixRuntimeDep = true;
extraArgs.push_back("-l" + runtimeLibraryName);
extraArgs.push_back("-L" + rpath);
extraArgs.push_back("-rpath " + rpath);
}
#else // Linux
extraArgs.push_back(runtimeLibraryPath);
if (!rpath.empty()) {
extraArgs.push_back("-rpath=" + rpath);
// Use RPATH instead of RUNPATH for transitive dependencies
extraArgs.push_back("--disable-new-dtags");
}
#endif
}
auto path = emit(getSharedLibraryPath(outputDirPath), DOT_SHARED_LIB_EXT,
LINKER + LINKER_SHARED_OPT, extraArgs);
if (path) {
sharedLibraryPath = path.get();
#ifdef __APPLE__
// when dellocate is used to include dependencies in python wheels, the
// runtime library will have an id that is prefixed with /DLC, and that
// path doesn't exist. So when generated libraries won't be able to find
// it during load time. To solve this, we change the dep in the generated
// library to be relative to the rpath which should be set correctly
// during linking. This shouldn't have an impact when
// /DLC/concrete/.dylibs/* isn't a dependecy in the first place (when not
// using python).
if (fixRuntimeDep) {
std::string fixRuntimeDepCmd = "install_name_tool -change "
"/DLC/concrete/.dylibs/" +
fullRuntimeLibraryName + " @rpath/" +
fullRuntimeLibraryName + " " +
sharedLibraryPath;
auto error = mlir::concretelang::callCmd(fixRuntimeDepCmd);
if (error) {
return std::move(error);
}
}
#endif
}
return path;
}
llvm::Expected<std::string> CompilerEngine::Library::emitStatic() {
auto path = emit(getStaticLibraryPath(outputDirPath), DOT_STATIC_LIB_EXT,
AR + AR_STATIC_OPT);
if (path) {
staticLibraryPath = path.get();
}
return path;
}
llvm::Error CompilerEngine::Library::emitArtifacts(bool sharedLib,
bool staticLib,
bool clientParameters,
bool compilationFeedback,
bool cppHeader) {
// Create output directory if doesn't exist
llvm::sys::fs::create_directory(outputDirPath);
if (sharedLib) {
if (auto err = emitShared().takeError()) {
return err;
}
}
if (staticLib) {
if (auto err = emitStatic().takeError()) {
return err;
}
}
if (clientParameters) {
if (auto err = emitClientParametersJSON().takeError()) {
return err;
}
}
if (compilationFeedback) {
if (auto err = emitCompilationFeedbackJSON().takeError()) {
return err;
}
}
if (cppHeader) {
if (auto err = emitCppHeader().takeError()) {
return err;
}
}
return llvm::Error::success();
}
CompilerEngine::Library::~Library() {
if (cleanUp) {
for (auto path : objectsPath) {
remove(path.c_str());
}
}
}
} // namespace concretelang
} // namespace mlir