mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-08 19:44:57 -05:00
341 lines
14 KiB
C++
341 lines
14 KiB
C++
#include "../include/device.h"
|
|
#include "../include/linear_algebra.h"
|
|
#include "concrete-cpu.h"
|
|
#include "utils.h"
|
|
#include "gtest/gtest.h"
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
const unsigned REPETITIONS = 5;
|
|
const unsigned SAMPLES = 100;
|
|
|
|
typedef struct {
|
|
int lwe_dimension;
|
|
double noise_variance;
|
|
int message_modulus;
|
|
int carry_modulus;
|
|
int number_of_inputs;
|
|
} LinearAlgebraTestParams;
|
|
|
|
class LinearAlgebraTestPrimitives_u64
|
|
: public ::testing::TestWithParam<LinearAlgebraTestParams> {
|
|
protected:
|
|
int lwe_dimension;
|
|
double noise_variance;
|
|
int message_modulus;
|
|
int carry_modulus;
|
|
int number_of_inputs;
|
|
int payload_modulus;
|
|
uint64_t delta;
|
|
Csprng *csprng;
|
|
cudaStream_t *stream;
|
|
int gpu_index = 0;
|
|
uint64_t *lwe_sk_array;
|
|
uint64_t *d_lwe_in_1_ct;
|
|
uint64_t *d_lwe_in_2_ct;
|
|
uint64_t *d_lwe_out_ct;
|
|
uint64_t *lwe_in_1_ct;
|
|
uint64_t *lwe_in_2_ct;
|
|
uint64_t *lwe_out_ct;
|
|
uint64_t *plaintexts_1;
|
|
uint64_t *plaintexts_2;
|
|
int num_samples;
|
|
|
|
public:
|
|
// Test arithmetic functions
|
|
void SetUp() {
|
|
stream = cuda_create_stream(0);
|
|
void *v_stream = (void *)stream;
|
|
|
|
// TestParams
|
|
lwe_dimension = (int)GetParam().lwe_dimension;
|
|
noise_variance = (double)GetParam().noise_variance;
|
|
message_modulus = (int)GetParam().message_modulus;
|
|
carry_modulus = (int)GetParam().carry_modulus;
|
|
number_of_inputs = (int)GetParam().number_of_inputs;
|
|
|
|
payload_modulus = message_modulus * carry_modulus;
|
|
// Value of the shift we multiply our messages by
|
|
delta = ((uint64_t)(1) << 63) / (uint64_t)(payload_modulus);
|
|
|
|
// Create a Csprng
|
|
csprng =
|
|
(Csprng *)aligned_alloc(CONCRETE_CSPRNG_ALIGN, CONCRETE_CSPRNG_SIZE);
|
|
uint8_t seed[16] = {(uint8_t)0};
|
|
concrete_cpu_construct_concrete_csprng(
|
|
csprng, Uint128{.little_endian_bytes = {*seed}});
|
|
|
|
// Generate the keys
|
|
generate_lwe_secret_keys(&lwe_sk_array, lwe_dimension, csprng, REPETITIONS);
|
|
plaintexts_1 = generate_plaintexts(payload_modulus, delta, number_of_inputs,
|
|
REPETITIONS, SAMPLES);
|
|
plaintexts_2 = generate_plaintexts(payload_modulus, delta, number_of_inputs,
|
|
REPETITIONS, SAMPLES);
|
|
|
|
d_lwe_in_1_ct = (uint64_t *)cuda_malloc_async(
|
|
number_of_inputs * (lwe_dimension + 1) * sizeof(uint64_t), stream,
|
|
gpu_index);
|
|
d_lwe_in_2_ct = (uint64_t *)cuda_malloc_async(
|
|
number_of_inputs * (lwe_dimension + 1) * sizeof(uint64_t), stream,
|
|
gpu_index);
|
|
d_lwe_out_ct = (uint64_t *)cuda_malloc_async(
|
|
number_of_inputs * (lwe_dimension + 1) * sizeof(uint64_t), stream,
|
|
gpu_index);
|
|
|
|
lwe_in_1_ct = (uint64_t *)malloc(number_of_inputs * (lwe_dimension + 1) *
|
|
sizeof(uint64_t));
|
|
lwe_in_2_ct = (uint64_t *)malloc(number_of_inputs * (lwe_dimension + 1) *
|
|
sizeof(uint64_t));
|
|
lwe_out_ct = (uint64_t *)malloc(number_of_inputs * (lwe_dimension + 1) *
|
|
sizeof(uint64_t));
|
|
|
|
cuda_synchronize_stream(v_stream);
|
|
}
|
|
|
|
void TearDown() {
|
|
void *v_stream = (void *)stream;
|
|
|
|
cuda_synchronize_stream(v_stream);
|
|
concrete_cpu_destroy_concrete_csprng(csprng);
|
|
free(csprng);
|
|
cuda_drop_async(d_lwe_in_1_ct, stream, gpu_index);
|
|
cuda_drop_async(d_lwe_in_2_ct, stream, gpu_index);
|
|
cuda_drop_async(d_lwe_out_ct, stream, gpu_index);
|
|
free(lwe_in_1_ct);
|
|
free(lwe_in_2_ct);
|
|
free(lwe_out_ct);
|
|
free(lwe_sk_array);
|
|
free(plaintexts_1);
|
|
free(plaintexts_2);
|
|
}
|
|
};
|
|
|
|
TEST_P(LinearAlgebraTestPrimitives_u64, addition) {
|
|
// Here execute the PBS
|
|
for (uint r = 0; r < REPETITIONS; r++) {
|
|
for (uint s = 0; s < SAMPLES; s++) {
|
|
uint64_t *lwe_sk = lwe_sk_array + (ptrdiff_t)(r * lwe_dimension);
|
|
for (int i = 0; i < number_of_inputs; i++) {
|
|
uint64_t plaintext_1 = plaintexts_1[r * SAMPLES * number_of_inputs +
|
|
s * number_of_inputs + i];
|
|
uint64_t plaintext_2 = plaintexts_2[r * SAMPLES * number_of_inputs +
|
|
s * number_of_inputs + i];
|
|
concrete_cpu_encrypt_lwe_ciphertext_u64(
|
|
lwe_sk, lwe_in_1_ct + i * (lwe_dimension + 1), plaintext_1,
|
|
lwe_dimension, noise_variance, csprng, &CONCRETE_CSPRNG_VTABLE);
|
|
concrete_cpu_encrypt_lwe_ciphertext_u64(
|
|
lwe_sk, lwe_in_2_ct + i * (lwe_dimension + 1), plaintext_2,
|
|
lwe_dimension, noise_variance, csprng, &CONCRETE_CSPRNG_VTABLE);
|
|
}
|
|
cuda_memcpy_async_to_gpu(d_lwe_in_1_ct, lwe_in_1_ct,
|
|
number_of_inputs * (lwe_dimension + 1) *
|
|
sizeof(uint64_t),
|
|
stream, gpu_index);
|
|
cuda_memcpy_async_to_gpu(d_lwe_in_2_ct, lwe_in_2_ct,
|
|
number_of_inputs * (lwe_dimension + 1) *
|
|
sizeof(uint64_t),
|
|
stream, gpu_index);
|
|
// Execute addition
|
|
cuda_add_lwe_ciphertext_vector_64(
|
|
stream, gpu_index, (void *)d_lwe_out_ct, (void *)d_lwe_in_1_ct,
|
|
(void *)d_lwe_in_2_ct, lwe_dimension, number_of_inputs);
|
|
|
|
// Copy result back
|
|
cuda_memcpy_async_to_cpu(lwe_out_ct, d_lwe_out_ct,
|
|
number_of_inputs * (lwe_dimension + 1) *
|
|
sizeof(uint64_t),
|
|
stream, gpu_index);
|
|
for (int i = 0; i < number_of_inputs; i++) {
|
|
uint64_t plaintext_1 = plaintexts_1[r * SAMPLES * number_of_inputs +
|
|
s * number_of_inputs + i];
|
|
uint64_t plaintext_2 = plaintexts_2[r * SAMPLES * number_of_inputs +
|
|
s * number_of_inputs + i];
|
|
uint64_t decrypted = 0;
|
|
concrete_cpu_decrypt_lwe_ciphertext_u64(
|
|
lwe_sk, lwe_out_ct + i * (lwe_dimension + 1), lwe_dimension,
|
|
&decrypted);
|
|
// The bit before the message
|
|
uint64_t rounding_bit = delta >> 1;
|
|
// Compute the rounding bit
|
|
uint64_t rounding = (decrypted & rounding_bit) << 1;
|
|
uint64_t decoded = (decrypted + rounding) / delta;
|
|
EXPECT_EQ(decoded, (plaintext_1 + plaintext_2) / delta);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_P(LinearAlgebraTestPrimitives_u64, plaintext_addition) {
|
|
// Here execute the PBS
|
|
for (uint r = 0; r < REPETITIONS; r++) {
|
|
for (uint s = 0; s < SAMPLES; s++) {
|
|
uint64_t *lwe_sk = lwe_sk_array + (ptrdiff_t)(r * lwe_dimension);
|
|
for (int i = 0; i < number_of_inputs; i++) {
|
|
uint64_t plaintext_1 = plaintexts_1[r * SAMPLES * number_of_inputs +
|
|
s * number_of_inputs + i];
|
|
concrete_cpu_encrypt_lwe_ciphertext_u64(
|
|
lwe_sk, lwe_in_1_ct + i * (lwe_dimension + 1), plaintext_1,
|
|
lwe_dimension, noise_variance, csprng, &CONCRETE_CSPRNG_VTABLE);
|
|
}
|
|
cuda_memcpy_async_to_gpu(d_lwe_in_1_ct, lwe_in_1_ct,
|
|
number_of_inputs * (lwe_dimension + 1) *
|
|
sizeof(uint64_t),
|
|
stream, gpu_index);
|
|
cuda_memcpy_async_to_gpu(
|
|
d_lwe_in_2_ct,
|
|
&plaintexts_2[r * SAMPLES * number_of_inputs + s * number_of_inputs],
|
|
number_of_inputs * sizeof(uint64_t), stream, gpu_index);
|
|
// Execute addition
|
|
cuda_add_lwe_ciphertext_vector_plaintext_vector_64(
|
|
stream, gpu_index, (void *)d_lwe_out_ct, (void *)d_lwe_in_1_ct,
|
|
(void *)d_lwe_in_2_ct, lwe_dimension, number_of_inputs);
|
|
// Copy result back
|
|
cuda_memcpy_async_to_cpu(lwe_out_ct, d_lwe_out_ct,
|
|
number_of_inputs * (lwe_dimension + 1) *
|
|
sizeof(uint64_t),
|
|
stream, gpu_index);
|
|
for (int i = 0; i < number_of_inputs; i++) {
|
|
uint64_t plaintext_1 = plaintexts_1[r * SAMPLES * number_of_inputs +
|
|
s * number_of_inputs + i];
|
|
uint64_t plaintext_2 = plaintexts_2[r * SAMPLES * number_of_inputs +
|
|
s * number_of_inputs + i];
|
|
uint64_t decrypted = 0;
|
|
concrete_cpu_decrypt_lwe_ciphertext_u64(
|
|
lwe_sk, lwe_out_ct + i * (lwe_dimension + 1), lwe_dimension,
|
|
&decrypted);
|
|
// The bit before the message
|
|
uint64_t rounding_bit = delta >> 1;
|
|
// Compute the rounding bit
|
|
uint64_t rounding = (decrypted & rounding_bit) << 1;
|
|
uint64_t decoded = (decrypted + rounding) / delta;
|
|
EXPECT_EQ(decoded, (plaintext_1 + plaintext_2) / delta);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_P(LinearAlgebraTestPrimitives_u64, cleartext_multiplication) {
|
|
void *v_stream = (void *)stream;
|
|
uint64_t delta_2 =
|
|
((uint64_t)(1) << 63) / (uint64_t)(payload_modulus * payload_modulus);
|
|
// Here execute the PBS
|
|
for (uint r = 0; r < REPETITIONS; r++) {
|
|
for (uint s = 0; s < SAMPLES; s++) {
|
|
uint64_t *lwe_sk = lwe_sk_array + (ptrdiff_t)(r * lwe_dimension);
|
|
uint64_t *cleartext_array =
|
|
(uint64_t *)malloc(number_of_inputs * sizeof(uint64_t));
|
|
for (int i = 0; i < number_of_inputs; i++) {
|
|
uint64_t plaintext_1 = plaintexts_1[r * SAMPLES * number_of_inputs +
|
|
s * number_of_inputs + i] /
|
|
delta * delta_2;
|
|
uint64_t plaintext_2 = plaintexts_2[r * SAMPLES * number_of_inputs +
|
|
s * number_of_inputs + i];
|
|
cleartext_array[i] = plaintext_2 / delta;
|
|
concrete_cpu_encrypt_lwe_ciphertext_u64(
|
|
lwe_sk, lwe_in_1_ct + i * (lwe_dimension + 1), plaintext_1,
|
|
lwe_dimension, noise_variance, csprng, &CONCRETE_CSPRNG_VTABLE);
|
|
}
|
|
cuda_synchronize_stream(v_stream);
|
|
cuda_memcpy_async_to_gpu(d_lwe_in_1_ct, lwe_in_1_ct,
|
|
number_of_inputs * (lwe_dimension + 1) *
|
|
sizeof(uint64_t),
|
|
stream, gpu_index);
|
|
cuda_memcpy_async_to_gpu(d_lwe_in_2_ct, cleartext_array,
|
|
number_of_inputs * sizeof(uint64_t), stream,
|
|
gpu_index);
|
|
// Execute cleartext multiplication
|
|
cuda_mult_lwe_ciphertext_vector_cleartext_vector_64(
|
|
stream, gpu_index, (void *)d_lwe_out_ct, (void *)d_lwe_in_1_ct,
|
|
(void *)d_lwe_in_2_ct, lwe_dimension, number_of_inputs);
|
|
// Copy result back
|
|
cuda_memcpy_async_to_cpu(lwe_out_ct, d_lwe_out_ct,
|
|
number_of_inputs * (lwe_dimension + 1) *
|
|
sizeof(uint64_t),
|
|
stream, gpu_index);
|
|
cuda_synchronize_stream(v_stream);
|
|
for (int i = 0; i < number_of_inputs; i++) {
|
|
uint64_t plaintext = plaintexts_1[r * SAMPLES * number_of_inputs +
|
|
s * number_of_inputs + i] /
|
|
delta * delta_2;
|
|
uint64_t cleartext = plaintexts_2[r * SAMPLES * number_of_inputs +
|
|
s * number_of_inputs + i] /
|
|
delta;
|
|
uint64_t decrypted = 0;
|
|
concrete_cpu_decrypt_lwe_ciphertext_u64(
|
|
lwe_sk, lwe_out_ct + i * (lwe_dimension + 1), lwe_dimension,
|
|
&decrypted);
|
|
// The bit before the message
|
|
uint64_t rounding_bit = delta_2 >> 1;
|
|
// Compute the rounding bit
|
|
uint64_t rounding = (decrypted & rounding_bit) << 1;
|
|
uint64_t decoded = (decrypted + rounding) / delta_2;
|
|
EXPECT_EQ(decoded, plaintext / delta_2 * cleartext);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_P(LinearAlgebraTestPrimitives_u64, negate) {
|
|
// Here execute the PBS
|
|
for (uint r = 0; r < REPETITIONS; r++) {
|
|
for (uint s = 0; s < SAMPLES; s++) {
|
|
uint64_t *lwe_sk = lwe_sk_array + (ptrdiff_t)(r * lwe_dimension);
|
|
for (int i = 0; i < number_of_inputs; i++) {
|
|
uint64_t plaintext = plaintexts_1[r * SAMPLES * number_of_inputs +
|
|
s * number_of_inputs + i];
|
|
concrete_cpu_encrypt_lwe_ciphertext_u64(
|
|
lwe_sk, lwe_in_1_ct + i * (lwe_dimension + 1), plaintext,
|
|
lwe_dimension, noise_variance, csprng, &CONCRETE_CSPRNG_VTABLE);
|
|
}
|
|
cuda_memcpy_async_to_gpu(d_lwe_in_1_ct, lwe_in_1_ct,
|
|
number_of_inputs * (lwe_dimension + 1) *
|
|
sizeof(uint64_t),
|
|
stream, gpu_index);
|
|
// Execute addition
|
|
cuda_negate_lwe_ciphertext_vector_64(
|
|
stream, gpu_index, (void *)d_lwe_out_ct, (void *)d_lwe_in_1_ct,
|
|
lwe_dimension, number_of_inputs);
|
|
|
|
// Copy result back
|
|
cuda_memcpy_async_to_cpu(lwe_out_ct, d_lwe_out_ct,
|
|
number_of_inputs * (lwe_dimension + 1) *
|
|
sizeof(uint64_t),
|
|
stream, gpu_index);
|
|
for (int i = 0; i < number_of_inputs; i++) {
|
|
uint64_t plaintext = plaintexts_1[r * SAMPLES * number_of_inputs +
|
|
s * number_of_inputs + i];
|
|
uint64_t decrypted = 0;
|
|
concrete_cpu_decrypt_lwe_ciphertext_u64(
|
|
lwe_sk, lwe_out_ct + i * (lwe_dimension + 1), lwe_dimension,
|
|
&decrypted);
|
|
// The bit before the message
|
|
uint64_t rounding_bit = delta >> 1;
|
|
// Compute the rounding bit
|
|
uint64_t rounding = (decrypted & rounding_bit) << 1;
|
|
uint64_t decoded = (decrypted + rounding) / delta;
|
|
EXPECT_EQ(decoded, -plaintext / delta);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Defines for which parameters set the linear algebra operations will be
|
|
// tested. It executes each test for all pairs on phis X qs (Cartesian product)
|
|
::testing::internal::ParamGenerator<LinearAlgebraTestParams>
|
|
linear_algebra_params_u64 = ::testing::Values(
|
|
// n, lwe_std_dev, message_modulus, carry_modulus, number_of_inputs
|
|
(LinearAlgebraTestParams){600, 7.52316384526264e-37, 2, 2, 10});
|
|
|
|
std::string
|
|
printParamName(::testing::TestParamInfo<LinearAlgebraTestParams> p) {
|
|
LinearAlgebraTestParams params = p.param;
|
|
|
|
return "n_" + std::to_string(params.lwe_dimension);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(LinearAlgebraInstantiation,
|
|
LinearAlgebraTestPrimitives_u64,
|
|
linear_algebra_params_u64, printParamName);
|