Files
concrete/compilers/concrete-compiler/compiler/tests/python/test_client_server.py

137 lines
4.8 KiB
Python

import numpy as np
import pytest
import shutil
import tempfile
from concrete.compiler import (
ClientSupport,
EvaluationKeys,
LibrarySupport,
PublicArguments,
PublicResult,
)
@pytest.mark.parametrize(
"mlir, args, expected_result",
[
pytest.param(
"""
func.func @main(%arg0: !FHE.eint<5>, %arg1: i6) -> !FHE.eint<5> {
%1 = "FHE.add_eint_int"(%arg0, %arg1): (!FHE.eint<5>, i6) -> (!FHE.eint<5>)
return %1: !FHE.eint<5>
}
""",
(5, 7),
12,
id="enc_plain_int_args",
marks=pytest.mark.xfail,
),
pytest.param(
"""
func.func @main(%arg0: !FHE.eint<5>, %arg1: !FHE.eint<5>) -> !FHE.eint<5> {
%1 = "FHE.add_eint"(%arg0, %arg1): (!FHE.eint<5>, !FHE.eint<5>) -> (!FHE.eint<5>)
return %1: !FHE.eint<5>
}
""",
(5, 7),
12,
id="enc_enc_int_args",
),
pytest.param(
"""
func.func @main(%arg0: tensor<4x!FHE.eint<5>>, %arg1: tensor<4xi6>) -> !FHE.eint<5> {
%ret = "FHELinalg.dot_eint_int"(%arg0, %arg1) : (tensor<4x!FHE.eint<5>>, tensor<4xi6>) -> !FHE.eint<5>
return %ret : !FHE.eint<5>
}
""",
(
np.array([1, 2, 3, 4], dtype=np.uint64),
np.array([4, 3, 2, 1], dtype=np.uint8),
),
20,
id="enc_plain_ndarray_args",
marks=pytest.mark.xfail,
),
pytest.param(
"""
func.func @main(%a0: tensor<4x!FHE.eint<5>>, %a1: tensor<4x!FHE.eint<5>>) -> tensor<4x!FHE.eint<5>> {
%res = "FHELinalg.add_eint"(%a0, %a1) : (tensor<4x!FHE.eint<5>>, tensor<4x!FHE.eint<5>>) -> tensor<4x!FHE.eint<5>>
return %res : tensor<4x!FHE.eint<5>>
}
""",
(
np.array([1, 2, 3, 4], dtype=np.uint64),
np.array([7, 0, 1, 5], dtype=np.uint64),
),
np.array([8, 2, 4, 9]),
id="enc_enc_ndarray_args",
),
pytest.param(
"""
func.func @main(%arg0: !FHE.eint<3>, %arg1: !FHE.eint<4>, %arg2: !FHE.eint<5>, %arg3: !FHE.eint<6>) -> (!FHE.eint<3>, !FHE.eint<4>, !FHE.eint<5>, !FHE.eint<6>) {
%lut0 = arith.constant dense<[0, 1, 2, 3, 4, 5, 6, 7]> : tensor<8xi64>
%bs0 = "FHE.apply_lookup_table"(%arg0, %lut0): (!FHE.eint<3>, tensor<8xi64>) -> (!FHE.eint<3>)
%lut1 = arith.constant dense<[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]> : tensor<16xi64>
%bs1 = "FHE.apply_lookup_table"(%arg1, %lut1): (!FHE.eint<4>, tensor<16xi64>) -> (!FHE.eint<4>)
%lut3 = arith.constant dense<[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]> : tensor<32xi64>
%bs3 = "FHE.apply_lookup_table"(%arg2, %lut3): (!FHE.eint<5>, tensor<32xi64>) -> (!FHE.eint<5>)
%lut4 = arith.constant dense<[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]> : tensor<64xi64>
%bs4 = "FHE.apply_lookup_table"(%arg3, %lut4): (!FHE.eint<6>, tensor<64xi64>) -> (!FHE.eint<6>)
return %bs0, %bs1, %bs3, %bs4 : !FHE.eint<3>, !FHE.eint<4>, !FHE.eint<5>, !FHE.eint<6>
}
""",
(7, 15, 31, 63),
(7, 15, 31, 63),
id="apply_lookup_table_multi_ouput",
),
],
)
def test_client_server_end_to_end(mlir, args, expected_result, keyset_cache):
with tempfile.TemporaryDirectory() as tmpdirname:
support = LibrarySupport.new(str(tmpdirname))
compilation_result = support.compile(mlir)
server_lambda = support.load_server_lambda(compilation_result, False)
client_parameters = support.load_client_parameters(compilation_result)
keyset = ClientSupport.key_set(client_parameters, keyset_cache)
evaluation_keys = keyset.get_evaluation_keys()
evaluation_keys_serialized = evaluation_keys.serialize()
evaluation_keys_deserialized = EvaluationKeys.deserialize(
evaluation_keys_serialized
)
args = ClientSupport.encrypt_arguments(client_parameters, keyset, args)
args_serialized = args.serialize()
args_deserialized = PublicArguments.deserialize(
client_parameters, args_serialized
)
result = support.server_call(
server_lambda,
args_deserialized,
evaluation_keys_deserialized,
)
result_serialized = result.serialize()
result_deserialized = PublicResult.deserialize(
client_parameters, result_serialized
)
output = ClientSupport.decrypt_result(
client_parameters, keyset, result_deserialized
)
assert np.array_equal(output, expected_result)