mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-09 03:55:04 -05:00
144 lines
4.5 KiB
Python
144 lines
4.5 KiB
Python
import pytest
|
|
import numpy as np
|
|
from concrete.compiler import (
|
|
JITSupport,
|
|
LibrarySupport,
|
|
ClientSupport,
|
|
CompilationOptions,
|
|
PublicArguments,
|
|
)
|
|
|
|
|
|
def assert_result(result, expected_result):
|
|
"""Assert that result and expected result are equal.
|
|
|
|
result and expected_result can be integers on numpy arrays.
|
|
"""
|
|
assert type(expected_result) == type(result)
|
|
if isinstance(expected_result, int):
|
|
assert result == expected_result
|
|
else:
|
|
assert np.all(result == expected_result)
|
|
|
|
|
|
# TODO(#541): add result serialization
|
|
def run_with_serialization(
|
|
engine,
|
|
args,
|
|
compilation_result,
|
|
keyset_cache,
|
|
):
|
|
"""Execute engine on the given arguments. Performs serialization betwee client/server.
|
|
|
|
Perform required loading, encryption, execution, and decryption."""
|
|
# Client
|
|
client_parameters = engine.load_client_parameters(compilation_result)
|
|
key_set = ClientSupport.key_set(client_parameters, keyset_cache)
|
|
public_arguments = ClientSupport.encrypt_arguments(client_parameters, key_set, args)
|
|
public_arguments_buffer = public_arguments.serialize()
|
|
# Server
|
|
public_arguments = PublicArguments.unserialize(
|
|
client_parameters, public_arguments_buffer
|
|
)
|
|
del public_arguments_buffer
|
|
server_lambda = engine.load_server_lambda(compilation_result)
|
|
public_result = engine.server_call(server_lambda, public_arguments)
|
|
# Client
|
|
result = ClientSupport.decrypt_result(key_set, public_result)
|
|
return result
|
|
|
|
|
|
def compile_run_assert_with_serialization(
|
|
engine,
|
|
mlir_input,
|
|
args,
|
|
expected_result,
|
|
keyset_cache,
|
|
):
|
|
"""Compile run and assert result. Performs serialization betwee client/server.
|
|
|
|
Can take both JITSupport or LibrarySupport as engine.
|
|
"""
|
|
options = CompilationOptions.new("main")
|
|
compilation_result = engine.compile(mlir_input, options)
|
|
result = run_with_serialization(engine, args, compilation_result, keyset_cache)
|
|
assert_result(result, expected_result)
|
|
|
|
|
|
end_to_end_fixture = [
|
|
pytest.param(
|
|
"""
|
|
func @main(%arg0: !FHE.eint<5>, %arg1: i6) -> !FHE.eint<5> {
|
|
%1 = "FHE.add_eint_int"(%arg0, %arg1): (!FHE.eint<5>, i6) -> (!FHE.eint<5>)
|
|
return %1: !FHE.eint<5>
|
|
}
|
|
""",
|
|
(5, 7),
|
|
12,
|
|
id="enc_plain_int_args",
|
|
marks=pytest.mark.xfail,
|
|
),
|
|
pytest.param(
|
|
"""
|
|
func @main(%arg0: !FHE.eint<5>, %arg1: !FHE.eint<5>) -> !FHE.eint<5> {
|
|
%1 = "FHE.add_eint"(%arg0, %arg1): (!FHE.eint<5>, !FHE.eint<5>) -> (!FHE.eint<5>)
|
|
return %1: !FHE.eint<5>
|
|
}
|
|
""",
|
|
(5, 7),
|
|
12,
|
|
id="enc_enc_int_args",
|
|
),
|
|
pytest.param(
|
|
"""
|
|
func @main(%arg0: tensor<4x!FHE.eint<5>>, %arg1: tensor<4xi6>) -> !FHE.eint<5>
|
|
{
|
|
%ret = "FHELinalg.dot_eint_int"(%arg0, %arg1) :
|
|
(tensor<4x!FHE.eint<5>>, tensor<4xi6>) -> !FHE.eint<5>
|
|
return %ret : !FHE.eint<5>
|
|
}
|
|
""",
|
|
(
|
|
np.array([1, 2, 3, 4], dtype=np.uint8),
|
|
np.array([4, 3, 2, 1], dtype=np.uint8),
|
|
),
|
|
20,
|
|
id="enc_plain_ndarray_args",
|
|
marks=pytest.mark.xfail,
|
|
),
|
|
pytest.param(
|
|
"""
|
|
func @main(%a0: tensor<4x!FHE.eint<5>>, %a1: tensor<4x!FHE.eint<5>>) -> tensor<4x!FHE.eint<5>> {
|
|
%res = "FHELinalg.add_eint"(%a0, %a1) : (tensor<4x!FHE.eint<5>>, tensor<4x!FHE.eint<5>>) -> tensor<4x!FHE.eint<5>>
|
|
return %res : tensor<4x!FHE.eint<5>>
|
|
}
|
|
""",
|
|
(
|
|
np.array([1, 2, 3, 4], dtype=np.uint8),
|
|
np.array([7, 0, 1, 5], dtype=np.uint8),
|
|
),
|
|
np.array([8, 2, 4, 9]),
|
|
id="enc_enc_ndarray_args",
|
|
),
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("mlir_input, args, expected_result", end_to_end_fixture)
|
|
def test_jit_compile_and_run_with_serialization(
|
|
mlir_input, args, expected_result, keyset_cache
|
|
):
|
|
engine = JITSupport.new()
|
|
compile_run_assert_with_serialization(
|
|
engine, mlir_input, args, expected_result, keyset_cache
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("mlir_input, args, expected_result", end_to_end_fixture)
|
|
def test_lib_compile_and_run_with_serialization(
|
|
mlir_input, args, expected_result, keyset_cache
|
|
):
|
|
engine = LibrarySupport.new("./py_test_lib_compile_and_run")
|
|
compile_run_assert_with_serialization(
|
|
engine, mlir_input, args, expected_result, keyset_cache
|
|
)
|