Files
concrete/tests/numpy/test_tracing.py
Benoit Chevallier-Mames 0a758ed672 test: change a bit the way we test
to prepare modifications for more ufunc
refs #126
2021-09-30 10:47:27 +02:00

484 lines
15 KiB
Python

"""Test file for numpy tracing"""
import networkx as nx
import numpy
import pytest
from concrete.common.data_types.floats import Float
from concrete.common.data_types.integers import Integer
from concrete.common.representation import intermediate as ir
from concrete.common.values import ClearScalar, ClearTensor, EncryptedScalar, EncryptedTensor
from concrete.numpy import tracing
OPERATIONS_TO_TEST = [ir.Add, ir.Sub, ir.Mul]
@pytest.mark.parametrize(
"operation",
OPERATIONS_TO_TEST,
)
@pytest.mark.parametrize(
"x",
[
pytest.param(EncryptedScalar(Integer(64, is_signed=False)), id="x: Encrypted uint"),
pytest.param(
EncryptedScalar(Integer(64, is_signed=True)),
id="x: Encrypted int",
),
pytest.param(
ClearScalar(Integer(64, is_signed=False)),
id="x: Clear uint",
),
pytest.param(
ClearScalar(Integer(64, is_signed=True)),
id="x: Clear int",
),
],
)
@pytest.mark.parametrize(
"y",
[
pytest.param(EncryptedScalar(Integer(64, is_signed=False)), id="y: Encrypted uint"),
pytest.param(
EncryptedScalar(Integer(64, is_signed=True)),
id="y: Encrypted int",
),
pytest.param(
ClearScalar(Integer(64, is_signed=False)),
id="y: Clear uint",
),
pytest.param(
ClearScalar(Integer(64, is_signed=True)),
id="y: Clear int",
),
],
)
def test_numpy_tracing_binary_op(operation, x, y, test_helpers):
"Test numpy tracing a binary operation (in the supported ops)"
# Remark that the functions here have a common structure (which is
# 2x op y), such that creating further the ref_graph is easy, by
# hand
def simple_add_function(x, y):
z = x + x
return z + y
def simple_sub_function(x, y):
z = x + x
return z - y
def simple_mul_function(x, y):
z = x + x
return z * y
assert operation in OPERATIONS_TO_TEST, f"unknown operation {operation}"
if operation == ir.Add:
function_to_compile = simple_add_function
elif operation == ir.Sub:
function_to_compile = simple_sub_function
elif operation == ir.Mul:
function_to_compile = simple_mul_function
op_graph = tracing.trace_numpy_function(function_to_compile, {"x": x, "y": y})
ref_graph = nx.MultiDiGraph()
input_x = ir.Input(x, input_name="x", program_input_idx=0)
input_y = ir.Input(y, input_name="y", program_input_idx=1)
add_node_z = ir.Add(
(
input_x.outputs[0],
input_x.outputs[0],
)
)
returned_final_node = operation(
(
add_node_z.outputs[0],
input_y.outputs[0],
)
)
ref_graph.add_node(input_x)
ref_graph.add_node(input_y)
ref_graph.add_node(add_node_z)
ref_graph.add_node(returned_final_node)
ref_graph.add_edge(input_x, add_node_z, input_idx=0)
ref_graph.add_edge(input_x, add_node_z, input_idx=1)
ref_graph.add_edge(add_node_z, returned_final_node, input_idx=0)
ref_graph.add_edge(input_y, returned_final_node, input_idx=1)
assert test_helpers.digraphs_are_equivalent(ref_graph, op_graph.graph)
@pytest.mark.parametrize(
"tensor_constructor",
[
EncryptedTensor,
ClearTensor,
],
)
def test_numpy_tracing_tensor_constant(tensor_constructor):
"Test numpy tracing tensor constant"
def simple_add_tensor(x):
return x + numpy.array([[1, 2], [3, 4]], dtype=numpy.int32)
op_graph = tracing.trace_numpy_function(
simple_add_tensor, {"x": tensor_constructor(Integer(32, True), shape=(2, 2))}
)
constant_inputs = [node for node in op_graph.graph.nodes() if isinstance(node, ir.Constant)]
assert len(constant_inputs) == 1
constant_input_data = constant_inputs[0].constant_data
assert (constant_input_data == numpy.array([[1, 2], [3, 4]], dtype=numpy.int32)).all()
assert op_graph.get_ordered_outputs()[0].outputs[0].shape == constant_input_data.shape
@pytest.mark.parametrize(
"function_to_trace,op_graph_expected_output_type,input_and_expected_output_tuples",
[
(
lambda x: x.astype(numpy.int32),
Integer(32, is_signed=True),
[
(14, numpy.int32(14)),
(1.5, numpy.int32(1)),
(2.0, numpy.int32(2)),
(-1.5, numpy.int32(-1)),
(2 ** 31 - 1, numpy.int32(2 ** 31 - 1)),
(-(2 ** 31), numpy.int32(-(2 ** 31))),
],
),
(
lambda x: x.astype(numpy.uint32),
Integer(32, is_signed=False),
[
(14, numpy.uint32(14)),
(1.5, numpy.uint32(1)),
(2.0, numpy.uint32(2)),
(2 ** 32 - 1, numpy.uint32(2 ** 32 - 1)),
],
),
(
lambda x: x.astype(numpy.int64),
Integer(64, is_signed=True),
[
(14, numpy.int64(14)),
(1.5, numpy.int64(1)),
(2.0, numpy.int64(2)),
(-1.5, numpy.int64(-1)),
(2 ** 63 - 1, numpy.int64(2 ** 63 - 1)),
(-(2 ** 63), numpy.int64(-(2 ** 63))),
],
),
(
lambda x: x.astype(numpy.uint64),
Integer(64, is_signed=False),
[
(14, numpy.uint64(14)),
(1.5, numpy.uint64(1)),
(2.0, numpy.uint64(2)),
(2 ** 64 - 1, numpy.uint64(2 ** 64 - 1)),
],
),
(
lambda x: x.astype(numpy.float64),
Float(64),
[
(14, numpy.float64(14.0)),
(1.5, numpy.float64(1.5)),
(2.0, numpy.float64(2.0)),
(-1.5, numpy.float64(-1.5)),
],
),
(
lambda x: x.astype(numpy.float32),
Float(32),
[
(14, numpy.float32(14.0)),
(1.5, numpy.float32(1.5)),
(2.0, numpy.float32(2.0)),
(-1.5, numpy.float32(-1.5)),
],
),
],
)
def test_tracing_astype(
function_to_trace, op_graph_expected_output_type, input_and_expected_output_tuples
):
"""Test function for NPTracer.astype"""
for input_, expected_output in input_and_expected_output_tuples:
input_value = (
EncryptedScalar(Integer(64, is_signed=True))
if isinstance(input_, int)
else EncryptedScalar(Float(64))
)
op_graph = tracing.trace_numpy_function(function_to_trace, {"x": input_value})
output_node = op_graph.output_nodes[0]
assert op_graph_expected_output_type == output_node.outputs[0].dtype
node_results = op_graph.evaluate({0: numpy.array(input_)})
evaluated_output = node_results[output_node]
assert isinstance(evaluated_output, type(expected_output))
assert expected_output == evaluated_output
@pytest.mark.parametrize(
"inputs,expected_output_node",
[
pytest.param(
{"x": EncryptedScalar(Integer(7, is_signed=False))},
ir.ArbitraryFunction,
),
pytest.param(
{"x": EncryptedScalar(Integer(32, is_signed=True))},
ir.ArbitraryFunction,
),
pytest.param(
{"x": EncryptedScalar(Integer(64, is_signed=True))},
ir.ArbitraryFunction,
),
pytest.param(
{"x": EncryptedScalar(Integer(128, is_signed=True))},
ir.ArbitraryFunction,
marks=pytest.mark.xfail(strict=True, raises=NotImplementedError),
),
pytest.param(
{"x": EncryptedScalar(Float(64))},
ir.ArbitraryFunction,
),
],
)
def test_trace_numpy_supported_ufuncs(inputs, expected_output_node):
"""Function to trace supported numpy ufuncs"""
LIST_OF_UFUNC_WHOSE_OUTPUT_IS_FLOAT64: List[numpy.ufunc] = [
# The commented functions are functions which don't work for the moment, often
# if not always because they require more than a single argument
# numpy.absolute,
# numpy.add,
numpy.arccos,
numpy.arccosh,
numpy.arcsin,
numpy.arcsinh,
numpy.arctan,
# numpy.arctan2,
numpy.arctanh,
# numpy.bitwise_and,
# numpy.bitwise_or,
# numpy.bitwise_xor,
numpy.cbrt,
numpy.ceil,
# numpy.conjugate,
# numpy.copysign,
numpy.cos,
numpy.cosh,
numpy.deg2rad,
numpy.degrees,
# numpy.divmod,
# numpy.equal,
numpy.exp,
numpy.exp2,
numpy.expm1,
numpy.fabs,
# numpy.float_power,
numpy.floor,
# numpy.floor_divide,
# numpy.fmax,
# numpy.fmin,
# numpy.fmod,
# numpy.frexp,
# numpy.gcd,
# numpy.greater,
# numpy.greater_equal,
# numpy.heaviside,
# numpy.hypot,
# numpy.invert,
# numpy.isfinite,
# numpy.isinf,
# numpy.isnan,
# numpy.isnat,
# numpy.lcm,
# numpy.ldexp,
# numpy.left_shift,
# numpy.less,
# numpy.less_equal,
numpy.log,
numpy.log10,
numpy.log1p,
numpy.log2,
# numpy.logaddexp,
# numpy.logaddexp2,
# numpy.logical_and,
# numpy.logical_not,
# numpy.logical_or,
# numpy.logical_xor,
# numpy.matmul,
# numpy.maximum,
# numpy.minimum,
# numpy.modf,
# numpy.multiply,
# numpy.negative,
# numpy.nextafter,
# numpy.not_equal,
# numpy.positive,
# numpy.power,
numpy.rad2deg,
numpy.radians,
# numpy.reciprocal,
# numpy.remainder,
# numpy.right_shift,
numpy.rint,
# numpy.sign,
# numpy.signbit,
numpy.sin,
numpy.sinh,
numpy.spacing,
numpy.sqrt,
# numpy.square,
# numpy.subtract,
numpy.tan,
numpy.tanh,
# numpy.true_divide,
numpy.trunc,
]
for function_to_trace_def in tracing.NPTracer.LIST_OF_SUPPORTED_UFUNC:
# We really need a lambda (because numpy functions are not playing
# nice with inspect.signature), but pylint and flake8 are not happy
# with it
# pylint: disable=unnecessary-lambda,cell-var-from-loop
function_to_trace = lambda x: function_to_trace_def(x) # noqa: E731
# pylint: enable=unnecessary-lambda,cell-var-from-loop
op_graph = tracing.trace_numpy_function(function_to_trace, inputs)
assert len(op_graph.output_nodes) == 1
assert isinstance(op_graph.output_nodes[0], expected_output_node)
assert len(op_graph.output_nodes[0].outputs) == 1
if function_to_trace_def in LIST_OF_UFUNC_WHOSE_OUTPUT_IS_FLOAT64:
assert op_graph.output_nodes[0].outputs[0] == EncryptedScalar(Float(64))
else:
assert op_graph.output_nodes[0].outputs[0] == "to be done"
def test_trace_numpy_ufuncs_not_supported():
"""Testing a failure case of trace_numpy_function"""
inputs = {"x": EncryptedScalar(Integer(128, is_signed=True))}
# We really need a lambda (because numpy functions are not playing
# nice with inspect.signature), but pylint and flake8 are not happy
# with it
# pylint: disable=unnecessary-lambda
function_to_trace = lambda x: numpy.add.reduce(x) # noqa: E731
# pylint: enable=unnecessary-lambda
with pytest.raises(NotImplementedError) as excinfo:
tracing.trace_numpy_function(function_to_trace, inputs)
assert "Only __call__ method is supported currently" in str(excinfo.value)
@pytest.mark.parametrize(
"function_to_trace,inputs,expected_output_node,expected_output_value",
[
# pylint: disable=unnecessary-lambda
pytest.param(
lambda x, y: numpy.dot(x, y),
{
"x": EncryptedTensor(Integer(7, is_signed=False), shape=(10,)),
"y": EncryptedTensor(Integer(7, is_signed=False), shape=(10,)),
},
ir.Dot,
EncryptedScalar(Integer(32, False)),
),
pytest.param(
lambda x, y: numpy.dot(x, y),
{
"x": EncryptedTensor(Float(64), shape=(42,)),
"y": EncryptedTensor(Float(64), shape=(10,)),
},
ir.Dot,
EncryptedScalar(Float(64)),
),
pytest.param(
lambda x, y: numpy.dot(x, y),
{
"x": ClearTensor(Integer(64, is_signed=True), shape=(6,)),
"y": ClearTensor(Integer(64, is_signed=True), shape=(6,)),
},
ir.Dot,
ClearScalar(Integer(64, is_signed=True)),
),
pytest.param(
lambda x: numpy.dot(x, numpy.array([1, 2, 3, 4, 5], dtype=numpy.int64)),
{
"x": EncryptedTensor(Integer(64, is_signed=True), shape=(5,)),
},
ir.Dot,
EncryptedScalar(Integer(64, True)),
),
# pylint: enable=unnecessary-lambda
],
)
def test_trace_numpy_dot(function_to_trace, inputs, expected_output_node, expected_output_value):
"""Function to test dot tracing"""
op_graph = tracing.trace_numpy_function(function_to_trace, inputs)
assert len(op_graph.output_nodes) == 1
assert isinstance(op_graph.output_nodes[0], expected_output_node)
assert len(op_graph.output_nodes[0].outputs) == 1
assert op_graph.output_nodes[0].outputs[0] == expected_output_value
def test_nptracer_get_tracing_func_for_np_functions():
"""Test NPTracer get_tracing_func_for_np_function"""
for np_function in tracing.NPTracer.LIST_OF_SUPPORTED_UFUNC:
expected_tracing_func = tracing.NPTracer.UFUNC_ROUTING[np_function]
assert (
tracing.NPTracer.get_tracing_func_for_np_function(np_function) == expected_tracing_func
)
def test_nptracer_get_tracing_func_for_np_functions_not_implemented():
"""Check NPTracer in case of not-implemented function"""
with pytest.raises(NotImplementedError) as excinfo:
tracing.NPTracer.get_tracing_func_for_np_function(numpy.conjugate)
assert "NPTracer does not yet manage the following func: conjugate" in str(excinfo.value)
@pytest.mark.parametrize(
"tracer",
[
tracing.NPTracer([], ir.Input(ClearScalar(Integer(32, True)), "x", 0), 0),
],
)
@pytest.mark.parametrize(
"operation",
[
lambda x: x + "fail",
lambda x: "fail" + x,
lambda x: x - "fail",
lambda x: "fail" - x,
lambda x: x * "fail",
lambda x: "fail" * x,
],
)
def test_nptracer_unsupported_operands(operation, tracer):
"""Test cases where NPTracer cannot be used with other operands."""
with pytest.raises(TypeError):
tracer = operation(tracer)