mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-15 07:05:09 -05:00
201 lines
7.4 KiB
Python
201 lines
7.4 KiB
Python
import gc
|
|
|
|
from estimator_new import *
|
|
from sage.all import oo, save
|
|
from math import log2
|
|
import gc
|
|
|
|
|
|
def old_models(security_level, sd, logq = 32):
|
|
"""
|
|
Use the old model as a starting point for the data gathering step
|
|
:param security_level: the security level under consideration
|
|
:param sd : the standard deviation of the LWE error distribution Xe
|
|
:param logq : the (base 2 log) value of the LWE modulus q
|
|
"""
|
|
|
|
def evaluate_model(sd, a, b):
|
|
return (sd - b)/a
|
|
|
|
models = dict()
|
|
|
|
# TODO: figure out a way to import these from a datafile, for future version
|
|
models["80"] = (-0.04049295502947623, 1.1288318226557081 + logq)
|
|
models["96"] = (-0.03416314056943681, 1.4704806061716345 + logq)
|
|
models["112"] = (-0.02970984362676178, 1.7848907787798667 + logq)
|
|
models["128"] = (-0.026361288425133814, 2.0014671315214696 + logq)
|
|
models["144"] = (-0.023744534465622812, 2.1710601038230712 + logq)
|
|
models["160"] = (-0.021667220727651954, 2.3565507936475476 + logq)
|
|
models["176"] = (-0.019947662046189942, 2.5109588704235803 + logq)
|
|
models["192"] = (-0.018552804646747204, 2.7168913723130816 + logq)
|
|
models["208"] = (-0.017291091126923574, 2.7956961446214326 + logq)
|
|
models["224"] = (-0.016257546811508806, 2.9582401000615226 + logq)
|
|
models["240"] = (-0.015329741032015766, 3.0744579055889782 + logq)
|
|
models["256"] = (-0.014530554319171845, 3.2094375376751745 + logq)
|
|
|
|
(a, b) = models["{}".format(security_level)]
|
|
n_est = evaluate_model(sd, a, b)
|
|
|
|
return round(n_est)
|
|
|
|
def estimate(params, red_cost_model = RC.BDGL16):
|
|
"""
|
|
Retrieve an estimate using the Lattice Estimator, for a given set of input parameters
|
|
:param params: the input LWE parameters
|
|
"""
|
|
|
|
est = LWE.estimate(params, deny_list=("arora-gb", "bkw"), red_cost_model=red_cost_model)
|
|
return est
|
|
|
|
def get_security_level(est, dp = 2):
|
|
"""
|
|
Get the security level lambda from a Lattice Estimator output
|
|
:param est: the Lattice Estimator output
|
|
:param dp : the number of decimal places to consider
|
|
"""
|
|
attack_costs = []
|
|
for key in est.keys():
|
|
attack_costs.append(est[key]["rop"])
|
|
# get the security level correct to 'dp' decimal places
|
|
security_level = round(log2(min(attack_costs)), dp)
|
|
return security_level
|
|
|
|
def inequality(x, y):
|
|
""" A utility function which compresses the conditions x < y and x > y into a single condition via a multiplier
|
|
:param x: the LHS of the inequality
|
|
:param y: the RHS of the inequality
|
|
"""
|
|
if x <= y:
|
|
return 1
|
|
|
|
if x > y:
|
|
return -1
|
|
|
|
def automated_param_select_n(params, target_security=128):
|
|
""" A function used to generate the smallest value of n which allows for
|
|
target_security bits of security, for the input values of (params.Xe.stddev,params.q)
|
|
:param params: the standard deviation of the error
|
|
:param target_security: the target number of bits of security, 128 is default
|
|
|
|
EXAMPLE:
|
|
sage: X = automated_param_select_n(Kyber512, target_security = 128)
|
|
sage: X
|
|
456
|
|
"""
|
|
|
|
# get an initial estimate
|
|
# costs = estimate(params)
|
|
# security_level = get_security_level(costs, 2)
|
|
# determine if we are above or below the target security level
|
|
# z = inequality(security_level, target_security)
|
|
|
|
# get an estimate based on the prev. model
|
|
print("n = {}".format(params.n))
|
|
n_start = old_models(target_security, log2(params.Xe.stddev), log2(params.q))
|
|
# TODO -- is this how we want to deal with the small n issue? Shouldn't the model have this baked in?
|
|
# we want to start no lower than n = 450
|
|
n_start = max(n_start, 450)
|
|
|
|
#if n_start > 1024:
|
|
# we only consider powers-of-two for now, in this range
|
|
# n_log = log2(n_start)
|
|
# n_start = 2**round(n_log)
|
|
|
|
|
|
print("n_start = {}".format(n_start))
|
|
params = params.updated(n=n_start)
|
|
print(params)
|
|
costs2 = estimate(params)
|
|
security_level = get_security_level(costs2, 2)
|
|
z = inequality(security_level, target_security)
|
|
|
|
|
|
# we keep n > 2 * target_security as a rough baseline for mitm security (on binary key guessing)
|
|
while z * security_level < z * target_security:
|
|
# if params.n > 1024:
|
|
# we only need to consider powers-of-two in this case
|
|
# TODO: fill in this case! For n > 1024 we only need to consider every 256
|
|
params = params.updated(n = params.n + z * 8)
|
|
costs = estimate(params)
|
|
security_level = get_security_level(costs, 2)
|
|
|
|
if -1 * params.Xe.stddev > 0:
|
|
print("target security level is unatainable")
|
|
break
|
|
|
|
# final estimate (we went too far in the above loop)
|
|
if security_level < target_security:
|
|
# we make n larger
|
|
print("we make n larger")
|
|
params = params.updated(n = params.n + 8)
|
|
costs = estimate(params)
|
|
security_level = get_security_level(costs, 2)
|
|
|
|
print("the finalised parameters are n = {}, log2(sd) = {}, log2(q) = {}, with a security level of {}-bits".format(params.n,
|
|
log2(params.Xe.stddev),
|
|
log2(params.q),
|
|
security_level))
|
|
|
|
# final sanity check so we don't return insecure (or inf) parameters
|
|
# TODO: figure out inf in new estimator
|
|
# or security_level == oo:
|
|
if security_level < target_security:
|
|
params.updated(n=None)
|
|
|
|
del(costs)
|
|
del(costs2)
|
|
gc.collect()
|
|
|
|
return params
|
|
|
|
def generate_parameter_matrix(params_in, sd_range, target_security_levels=[128], name="v0.sobj"):
|
|
"""
|
|
:param sd_range: a tuple (sd_min, sd_max) giving the values of sd for which to generate parameters
|
|
:param params: the standard deviation of the LWE error
|
|
:param target_security: the target number of bits of security, 128 is default
|
|
|
|
EXAMPLE:
|
|
sage: X = generate_parameter_matrix()
|
|
sage: X
|
|
"""
|
|
|
|
results = dict()
|
|
|
|
# grab min and max value/s of n
|
|
(sd_min, sd_max) = sd_range
|
|
|
|
for lam in target_security_levels:
|
|
results["{}".format(lam)] = []
|
|
for sd in range(sd_min, sd_max + 1):
|
|
Xe_new = nd.NoiseDistribution.DiscreteGaussian(2**sd)
|
|
params_out = automated_param_select_n(params_in.updated(Xe=Xe_new), target_security=lam)
|
|
results["{}".format(lam)].append((params_out.n, params_out.q, params_out.Xe.stddev))
|
|
save(results, "{}.sobj".format(name))
|
|
del(params_out)
|
|
gc.collect()
|
|
return results
|
|
|
|
def generate_zama_curves64(sd_range=[2, 56], target_security_levels=[256], name="v0256.sobj"):
|
|
|
|
D = ND.DiscreteGaussian
|
|
init_params = LWE.Parameters(n=1024, q=2 ** 64, Xs=D(0.50, -0.50), Xe=D(131072.00), m=oo, tag='TFHE_DEFAULT')
|
|
raw_data = generate_parameter_matrix(init_params, sd_range=sd_range, target_security_levels=target_security_levels, name=name)
|
|
|
|
return raw_data
|
|
|
|
def plota_curve(raw_data, security_level):
|
|
|
|
data = raw_data["{}".format(security_level)]
|
|
|
|
import sys
|
|
a = int(sys.argv[1])
|
|
print(a)
|
|
|
|
D = ND.DiscreteGaussian
|
|
init_params = LWE.Parameters(n=1024, q=2 ** 64, Xs=ND.UniformMod(2), Xe=D(131072.00), m=oo, tag='TFHE_DEFAULT')
|
|
|
|
generate_zama_curves64(target_security_levels=[a], name="{}".format(a))
|
|
|
|
|
|
|