mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-19 00:44:22 -05:00
This commit: + Adds support for a protocol which enables inter-op between concrete, tfhe-rs and potentially other contributors to the fhe ecosystem. + Gets rid of hand-made serialization in the compiler, and client/server libs. + Refactors client/server libs to allow more pre/post processing of circuit inputs/outputs. The protocol is supported by a definition in the shape of a capnp file, which defines different types of objects among which: + ProgramInfo object, which is a precise description of a set of fhe circuit coming from the same compilation (understand function type information), and the associated key set. + *Key objects, which represent secret/public keys used to encrypt/execute fhe circuits. + Value object, which represent values that can be transferred between client and server to support calls to fhe circuits. The hand-rolled serialization that was previously used is completely dropped in favor of capnp in the whole codebase. The client/server libs, are refactored to introduce a modular design for pre-post processing. Reading the ProgramInfo file associated with a compilation, the client and server libs assemble a pipeline of transformers (functions) for pre and post processing of values coming in and out of a circuit. This design properly decouples various aspects of the processing, and allows these capabilities to be safely extended. In practice this commit includes the following: + Defines the specification in a concreteprotocol package + Integrate the compilation of this package as a compiler dependency via cmake + Modify the compiler to use the Encodings objects defined in the protocol + Modify the compiler to emit ProgramInfo files as compilation artifact, and gets rid of the bloated ClientParameters. + Introduces a new Common library containing the functionalities shared between the compiler and the client/server libs. + Introduces a functional pre-post processing pipeline to this common library + Modify the client/server libs to support loading ProgramInfo objects, and calling circuits using Value messages. + Drops support of JIT. + Drops support of C-api. + Drops support of Rust bindings. Co-authored-by: Nikita Frolov <nf@mkmks.org>
181 lines
7.5 KiB
C++
181 lines
7.5 KiB
C++
// Part of the Concrete Compiler Project, under the BSD3 License with Zama
|
|
// Exceptions. See
|
|
// https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt
|
|
// for license information.
|
|
|
|
#include "concretelang/Dialect/Tracing/IR/TracingOps.h"
|
|
#include <mlir/Dialect/Arith/IR/Arith.h>
|
|
#include <mlir/IR/PatternMatch.h>
|
|
#include <mlir/Transforms/GreedyPatternRewriteDriver.h>
|
|
|
|
#include <concretelang/Dialect/FHE/IR/FHEOps.h>
|
|
#include <concretelang/Dialect/FHE/IR/FHETypes.h>
|
|
#include <concretelang/Dialect/FHE/Transforms/Boolean/Boolean.h>
|
|
#include <concretelang/Support/Constants.h>
|
|
|
|
namespace mlir {
|
|
namespace concretelang {
|
|
|
|
namespace {
|
|
|
|
/// Rewrite an `FHE.gen_gate` operation as an LUT operation by composing a
|
|
/// single index from the two boolean inputs.
|
|
class GenGatePattern
|
|
: public mlir::OpRewritePattern<mlir::concretelang::FHE::GenGateOp> {
|
|
public:
|
|
GenGatePattern(mlir::MLIRContext *context)
|
|
: mlir::OpRewritePattern<mlir::concretelang::FHE::GenGateOp>(
|
|
context, ::mlir::concretelang::DEFAULT_PATTERN_BENEFIT) {}
|
|
|
|
mlir::LogicalResult
|
|
matchAndRewrite(mlir::concretelang::FHE::GenGateOp op,
|
|
mlir::PatternRewriter &rewriter) const override {
|
|
auto eint2 = mlir::concretelang::FHE::EncryptedUnsignedIntegerType::get(
|
|
rewriter.getContext(), 2);
|
|
auto left = rewriter
|
|
.create<mlir::concretelang::FHE::FromBoolOp>(
|
|
op.getLoc(), eint2, op.getLeft())
|
|
.getResult();
|
|
auto right = rewriter
|
|
.create<mlir::concretelang::FHE::FromBoolOp>(
|
|
op.getLoc(), eint2, op.getRight())
|
|
.getResult();
|
|
auto cst_two =
|
|
rewriter.create<mlir::arith::ConstantIntOp>(op.getLoc(), 2, 3)
|
|
.getResult();
|
|
auto leftMulTwo = rewriter
|
|
.create<mlir::concretelang::FHE::MulEintIntOp>(
|
|
op.getLoc(), left, cst_two)
|
|
.getResult();
|
|
auto newIndex = rewriter
|
|
.create<mlir::concretelang::FHE::AddEintOp>(
|
|
op.getLoc(), leftMulTwo, right)
|
|
.getResult();
|
|
auto lut_result =
|
|
rewriter.create<mlir::concretelang::FHE::ApplyLookupTableEintOp>(
|
|
op.getLoc(), eint2, newIndex, op.getTruthTable());
|
|
rewriter.replaceOpWithNewOp<mlir::concretelang::FHE::ToBoolOp>(
|
|
op,
|
|
mlir::concretelang::FHE::EncryptedBooleanType::get(
|
|
rewriter.getContext()),
|
|
lut_result);
|
|
return mlir::success();
|
|
}
|
|
};
|
|
|
|
/// Rewrite an FHE GateOp (e.g. And/Or) into a GenGate with the given truth
|
|
/// table.
|
|
template <typename GateOp>
|
|
class GeneralizeGatePattern : public mlir::OpRewritePattern<GateOp> {
|
|
public:
|
|
GeneralizeGatePattern(mlir::MLIRContext *context,
|
|
llvm::SmallVector<uint64_t, 4> truth_table_vector)
|
|
: mlir::OpRewritePattern<GateOp>(
|
|
context, ::mlir::concretelang::DEFAULT_PATTERN_BENEFIT),
|
|
truth_table_vector(truth_table_vector) {}
|
|
|
|
mlir::LogicalResult
|
|
matchAndRewrite(GateOp op, mlir::PatternRewriter &rewriter) const override {
|
|
auto truth_table_attr = mlir::DenseElementsAttr::get(
|
|
mlir::RankedTensorType::get({4}, rewriter.getIntegerType(64)),
|
|
{llvm::APInt(1, this->truth_table_vector[0], false),
|
|
llvm::APInt(1, this->truth_table_vector[1], false),
|
|
llvm::APInt(1, this->truth_table_vector[2], false),
|
|
llvm::APInt(1, this->truth_table_vector[3], false)});
|
|
auto truth_table =
|
|
rewriter.create<mlir::arith::ConstantOp>(op.getLoc(), truth_table_attr);
|
|
rewriter.replaceOpWithNewOp<mlir::concretelang::FHE::GenGateOp>(
|
|
op, op.getResult().getType(), op.getLeft(), op.getRight(), truth_table);
|
|
return mlir::success();
|
|
}
|
|
|
|
private:
|
|
llvm::SmallVector<uint64_t, 4> truth_table_vector;
|
|
};
|
|
|
|
/// Rewrite an `FHE.mux` op, into a series of boolean and arithmetic operations
|
|
/// mux(cond, c1, c2) => c1 and not cond + c2 and cond
|
|
class MuxOpPattern
|
|
: public mlir::OpRewritePattern<mlir::concretelang::FHE::MuxOp> {
|
|
public:
|
|
MuxOpPattern(mlir::MLIRContext *context)
|
|
: mlir::OpRewritePattern<mlir::concretelang::FHE::MuxOp>(
|
|
context, ::mlir::concretelang::DEFAULT_PATTERN_BENEFIT) {}
|
|
|
|
mlir::LogicalResult
|
|
matchAndRewrite(mlir::concretelang::FHE::MuxOp op,
|
|
mlir::PatternRewriter &rewriter) const override {
|
|
auto eint2 = mlir::concretelang::FHE::EncryptedUnsignedIntegerType::get(
|
|
rewriter.getContext(), 2);
|
|
auto boolType = mlir::concretelang::FHE::EncryptedBooleanType::get(
|
|
rewriter.getContext());
|
|
|
|
// truth table for c1 and not cond
|
|
auto truth_table_attr = mlir::DenseElementsAttr::get(
|
|
mlir::RankedTensorType::get({4}, rewriter.getIntegerType(64)),
|
|
{llvm::APInt(1, 0, false), llvm::APInt(1, 0, false),
|
|
llvm::APInt(1, 1, false), llvm::APInt(1, 0, false)});
|
|
auto truth_table =
|
|
rewriter.create<mlir::arith::ConstantOp>(op.getLoc(), truth_table_attr);
|
|
auto c1AndNotCond =
|
|
rewriter
|
|
.create<mlir::concretelang::FHE::GenGateOp>(
|
|
op.getLoc(), boolType, op.getC1(), op.getCond(), truth_table)
|
|
.getResult();
|
|
auto c2AndCond = rewriter
|
|
.create<mlir::concretelang::FHE::BoolAndOp>(
|
|
op.getLoc(), boolType, op.getC2(), op.getCond())
|
|
.getResult();
|
|
|
|
auto c1AndNotCondBool = rewriter
|
|
.create<mlir::concretelang::FHE::FromBoolOp>(
|
|
op.getLoc(), eint2, c1AndNotCond)
|
|
.getResult();
|
|
auto c2AndCondBool = rewriter
|
|
.create<mlir::concretelang::FHE::FromBoolOp>(
|
|
op.getLoc(), eint2, c2AndCond)
|
|
.getResult();
|
|
auto result = rewriter
|
|
.create<mlir::concretelang::FHE::AddEintOp>(
|
|
op.getLoc(), c1AndNotCondBool, c2AndCondBool)
|
|
.getResult();
|
|
rewriter.replaceOpWithNewOp<mlir::concretelang::FHE::ToBoolOp>(op, boolType,
|
|
result);
|
|
return mlir::success();
|
|
}
|
|
};
|
|
|
|
/// Perfoms the transformation of boolean operations
|
|
class FHEBooleanTransformPass
|
|
: public FHEBooleanTransformBase<FHEBooleanTransformPass> {
|
|
public:
|
|
void runOnOperation() override {
|
|
mlir::Operation *op = getOperation();
|
|
|
|
mlir::RewritePatternSet patterns(&getContext());
|
|
patterns.add<GenGatePattern>(&getContext());
|
|
patterns.add<MuxOpPattern>(&getContext());
|
|
patterns.add<GeneralizeGatePattern<mlir::concretelang::FHE::BoolAndOp>>(
|
|
&getContext(), llvm::SmallVector<uint64_t, 4>({0, 0, 0, 1}));
|
|
patterns.add<GeneralizeGatePattern<mlir::concretelang::FHE::BoolNandOp>>(
|
|
&getContext(), llvm::SmallVector<uint64_t, 4>({1, 1, 1, 0}));
|
|
patterns.add<GeneralizeGatePattern<mlir::concretelang::FHE::BoolOrOp>>(
|
|
&getContext(), llvm::SmallVector<uint64_t, 4>({0, 1, 1, 1}));
|
|
patterns.add<GeneralizeGatePattern<mlir::concretelang::FHE::BoolXorOp>>(
|
|
&getContext(), llvm::SmallVector<uint64_t, 4>({0, 1, 1, 0}));
|
|
|
|
if (mlir::applyPatternsAndFoldGreedily(op, std::move(patterns)).failed()) {
|
|
this->signalPassFailure();
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
std::unique_ptr<mlir::OperationPass<>> createFHEBooleanTransformPass() {
|
|
return std::make_unique<FHEBooleanTransformPass>();
|
|
}
|
|
|
|
} // namespace concretelang
|
|
} // namespace mlir
|