mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-09 03:55:04 -05:00
209 lines
7.7 KiB
C++
209 lines
7.7 KiB
C++
// Part of the Concrete Compiler Project, under the BSD3 License with Zama
|
|
// Exceptions. See
|
|
// https://github.com/zama-ai/concrete-compiler-internal/blob/master/LICENSE.txt
|
|
// for license information.
|
|
|
|
#include "llvm/ADT/SmallString.h"
|
|
|
|
#include "concretelang-c/Support/CompilerEngine.h"
|
|
#include "concretelang/ClientLib/KeySetCache.h"
|
|
#include "concretelang/Support/CompilerEngine.h"
|
|
#include "concretelang/Support/Jit.h"
|
|
#include "concretelang/Support/JitCompilerEngine.h"
|
|
|
|
using mlir::concretelang::JitCompilerEngine;
|
|
|
|
mlir::concretelang::JitCompilerEngine::Lambda
|
|
buildLambda(const char *module, const char *funcName,
|
|
const char *runtimeLibPath, const char *keySetCachePath) {
|
|
// Set the runtime library path if not nullptr
|
|
llvm::Optional<llvm::StringRef> runtimeLibPathOptional = {};
|
|
if (runtimeLibPath != nullptr)
|
|
runtimeLibPathOptional = runtimeLibPath;
|
|
mlir::concretelang::JitCompilerEngine engine;
|
|
|
|
using KeySetCache = mlir::concretelang::KeySetCache;
|
|
using optKeySetCache = llvm::Optional<mlir::concretelang::KeySetCache>;
|
|
auto cacheOpt = optKeySetCache();
|
|
if (keySetCachePath != nullptr) {
|
|
cacheOpt = KeySetCache(std::string(keySetCachePath));
|
|
}
|
|
|
|
llvm::Expected<mlir::concretelang::JitCompilerEngine::Lambda> lambdaOrErr =
|
|
engine.buildLambda(module, funcName, cacheOpt, runtimeLibPathOptional);
|
|
if (!lambdaOrErr) {
|
|
std::string backingString;
|
|
llvm::raw_string_ostream os(backingString);
|
|
os << "Compilation failed: "
|
|
<< llvm::toString(std::move(lambdaOrErr.takeError()));
|
|
throw std::runtime_error(os.str());
|
|
}
|
|
return std::move(*lambdaOrErr);
|
|
}
|
|
|
|
lambdaArgument invokeLambda(lambda l, executionArguments args) {
|
|
mlir::concretelang::JitCompilerEngine::Lambda *lambda_ptr =
|
|
(mlir::concretelang::JitCompilerEngine::Lambda *)l.ptr;
|
|
|
|
if (args.size != lambda_ptr->getNumArguments()) {
|
|
throw std::invalid_argument("wrong number of arguments");
|
|
}
|
|
// Set the integer/tensor arguments
|
|
std::vector<mlir::concretelang::LambdaArgument *> lambdaArgumentsRef;
|
|
for (auto i = 0; i < args.size; i++) {
|
|
lambdaArgumentsRef.push_back(args.data[i].ptr.get());
|
|
}
|
|
// Run lambda
|
|
llvm::Expected<std::unique_ptr<mlir::concretelang::LambdaArgument>>
|
|
resOrError =
|
|
(*lambda_ptr)
|
|
.
|
|
operator()<std::unique_ptr<mlir::concretelang::LambdaArgument>>(
|
|
llvm::ArrayRef<mlir::concretelang::LambdaArgument *>(
|
|
lambdaArgumentsRef));
|
|
|
|
if (!resOrError) {
|
|
std::string backingString;
|
|
llvm::raw_string_ostream os(backingString);
|
|
os << "Lambda invocation failed: "
|
|
<< llvm::toString(std::move(resOrError.takeError()));
|
|
throw std::runtime_error(os.str());
|
|
}
|
|
lambdaArgument result{std::move(*resOrError)};
|
|
return std::move(result);
|
|
}
|
|
|
|
std::string roundTrip(const char *module) {
|
|
std::shared_ptr<mlir::concretelang::CompilationContext> ccx =
|
|
mlir::concretelang::CompilationContext::createShared();
|
|
mlir::concretelang::JitCompilerEngine ce{ccx};
|
|
|
|
std::string backingString;
|
|
llvm::raw_string_ostream os(backingString);
|
|
|
|
llvm::Expected<mlir::concretelang::CompilerEngine::CompilationResult>
|
|
retOrErr = ce.compile(
|
|
module, mlir::concretelang::CompilerEngine::Target::ROUND_TRIP);
|
|
if (!retOrErr) {
|
|
os << "MLIR parsing failed: "
|
|
<< llvm::toString(std::move(retOrErr.takeError()));
|
|
throw std::runtime_error(os.str());
|
|
}
|
|
|
|
retOrErr->mlirModuleRef->get().print(os);
|
|
return os.str();
|
|
}
|
|
|
|
bool lambdaArgumentIsTensor(lambdaArgument &lambda_arg) {
|
|
return lambda_arg.ptr->isa<mlir::concretelang::TensorLambdaArgument<
|
|
mlir::concretelang::IntLambdaArgument<uint64_t>>>();
|
|
}
|
|
|
|
std::vector<uint64_t> lambdaArgumentGetTensorData(lambdaArgument &lambda_arg) {
|
|
mlir::concretelang::TensorLambdaArgument<
|
|
mlir::concretelang::IntLambdaArgument<uint64_t>> *arg =
|
|
lambda_arg.ptr->dyn_cast<mlir::concretelang::TensorLambdaArgument<
|
|
mlir::concretelang::IntLambdaArgument<uint64_t>>>();
|
|
if (arg == nullptr) {
|
|
throw std::invalid_argument(
|
|
"LambdaArgument isn't a tensor, should "
|
|
"be a TensorLambdaArgument<IntLambdaArgument<uint64_t>>");
|
|
}
|
|
|
|
llvm::Expected<size_t> sizeOrErr = arg->getNumElements();
|
|
if (!sizeOrErr) {
|
|
std::string backingString;
|
|
llvm::raw_string_ostream os(backingString);
|
|
os << "Couldn't get size of tensor: "
|
|
<< llvm::toString(std::move(sizeOrErr.takeError()));
|
|
throw std::runtime_error(os.str());
|
|
}
|
|
std::vector<uint64_t> data(arg->getValue(), arg->getValue() + *sizeOrErr);
|
|
return data;
|
|
}
|
|
|
|
std::vector<int64_t>
|
|
lambdaArgumentGetTensorDimensions(lambdaArgument &lambda_arg) {
|
|
mlir::concretelang::TensorLambdaArgument<
|
|
mlir::concretelang::IntLambdaArgument<uint64_t>> *arg =
|
|
lambda_arg.ptr->dyn_cast<mlir::concretelang::TensorLambdaArgument<
|
|
mlir::concretelang::IntLambdaArgument<uint64_t>>>();
|
|
if (arg == nullptr) {
|
|
throw std::invalid_argument(
|
|
"LambdaArgument isn't a tensor, should "
|
|
"be a TensorLambdaArgument<IntLambdaArgument<uint64_t>>");
|
|
}
|
|
return arg->getDimensions();
|
|
}
|
|
|
|
bool lambdaArgumentIsScalar(lambdaArgument &lambda_arg) {
|
|
return lambda_arg.ptr->isa<mlir::concretelang::IntLambdaArgument<uint64_t>>();
|
|
}
|
|
|
|
uint64_t lambdaArgumentGetScalar(lambdaArgument &lambda_arg) {
|
|
mlir::concretelang::IntLambdaArgument<uint64_t> *arg =
|
|
lambda_arg.ptr
|
|
->dyn_cast<mlir::concretelang::IntLambdaArgument<uint64_t>>();
|
|
if (arg == nullptr) {
|
|
throw std::invalid_argument("LambdaArgument isn't a scalar, should "
|
|
"be an IntLambdaArgument<uint64_t>");
|
|
}
|
|
return arg->getValue();
|
|
}
|
|
|
|
lambdaArgument lambdaArgumentFromTensorU8(std::vector<uint8_t> data,
|
|
std::vector<int64_t> dimensions) {
|
|
lambdaArgument tensor_arg{
|
|
std::make_shared<mlir::concretelang::TensorLambdaArgument<
|
|
mlir::concretelang::IntLambdaArgument<uint8_t>>>(data, dimensions)};
|
|
return tensor_arg;
|
|
}
|
|
|
|
lambdaArgument lambdaArgumentFromTensorU16(std::vector<uint16_t> data,
|
|
std::vector<int64_t> dimensions) {
|
|
lambdaArgument tensor_arg{
|
|
std::make_shared<mlir::concretelang::TensorLambdaArgument<
|
|
mlir::concretelang::IntLambdaArgument<uint16_t>>>(data, dimensions)};
|
|
return tensor_arg;
|
|
}
|
|
|
|
lambdaArgument lambdaArgumentFromTensorU32(std::vector<uint32_t> data,
|
|
std::vector<int64_t> dimensions) {
|
|
lambdaArgument tensor_arg{
|
|
std::make_shared<mlir::concretelang::TensorLambdaArgument<
|
|
mlir::concretelang::IntLambdaArgument<uint32_t>>>(data, dimensions)};
|
|
return tensor_arg;
|
|
}
|
|
|
|
lambdaArgument lambdaArgumentFromTensorU64(std::vector<uint64_t> data,
|
|
std::vector<int64_t> dimensions) {
|
|
lambdaArgument tensor_arg{
|
|
std::make_shared<mlir::concretelang::TensorLambdaArgument<
|
|
mlir::concretelang::IntLambdaArgument<uint64_t>>>(data, dimensions)};
|
|
return tensor_arg;
|
|
}
|
|
|
|
lambdaArgument lambdaArgumentFromScalar(uint64_t scalar) {
|
|
lambdaArgument scalar_arg{
|
|
std::make_shared<mlir::concretelang::IntLambdaArgument<uint64_t>>(
|
|
scalar)};
|
|
return scalar_arg;
|
|
}
|
|
|
|
template <class T>
|
|
std::runtime_error library_error(std::string prefix, llvm::Expected<T> &error) {
|
|
return std::runtime_error(prefix + llvm::toString(error.takeError()));
|
|
}
|
|
|
|
std::string library(std::string libraryPath,
|
|
std::vector<std::string> mlir_modules) {
|
|
using namespace mlir::concretelang;
|
|
|
|
JitCompilerEngine ce{CompilationContext::createShared()};
|
|
auto lib = ce.compile<std::string>(mlir_modules, libraryPath);
|
|
if (!lib) {
|
|
throw std::runtime_error("Can't link: " + llvm::toString(lib.takeError()));
|
|
}
|
|
return lib->sharedLibraryPath;
|
|
}
|