mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-15 15:15:06 -05:00
129 lines
4.1 KiB
Python
129 lines
4.1 KiB
Python
import estimator.estimator as est
|
|
from concrete_params import concrete_LWE_params, concrete_RLWE_params
|
|
from hybrid_decoding import parameter_search
|
|
|
|
def get_all_security_levels(params):
|
|
""" A function which gets the security levels of a collection of TFHE parameters,
|
|
using the four cost models: classical, quantum, classical_conservative, and
|
|
quantum_conservative
|
|
:param params: a dictionary of LWE parameter sets (see concrete_params)
|
|
|
|
EXAMPLE:
|
|
sage: X = get_all_security_levels(concrete_LWE_params)
|
|
sage: X
|
|
[['LWE128_256',
|
|
126.692189756144,
|
|
117.566189756144,
|
|
98.6960000000000,
|
|
89.5700000000000], ...]
|
|
"""
|
|
|
|
RESULTS = []
|
|
|
|
for param in params:
|
|
|
|
results = [param]
|
|
x = params["{}".format(param)]
|
|
n = x["n"] * x["k"]
|
|
q = 2 ** 32
|
|
sd = 2 ** (x["sd"]) * q
|
|
alpha = sqrt(2 * pi) * sd / RR(q)
|
|
secret_distribution = (0, 1)
|
|
# assume access to an infinite number of samples
|
|
m = oo
|
|
|
|
for model in cost_models:
|
|
try:
|
|
model = model[0]
|
|
except:
|
|
model = model
|
|
estimate = parameter_search(mitm = True, reduction_cost_model = est.BKZ.sieve, n = n, q = q, alpha = alpha, m = m, secret_distribution = secret_distribution)
|
|
results.append(get_security_level(estimate))
|
|
|
|
RESULTS.append(results)
|
|
|
|
return RESULTS
|
|
|
|
|
|
def get_hybrid_security_levels(params):
|
|
""" A function which gets the security levels of a collection of TFHE parameters,
|
|
using the four cost models: classical, quantum, classical_conservative, and
|
|
quantum_conservative
|
|
:param params: a dictionary of LWE parameter sets (see concrete_params)
|
|
|
|
EXAMPLE:
|
|
sage: X = get_all_security_levels(concrete_LWE_params)
|
|
sage: X
|
|
[['LWE128_256',
|
|
126.692189756144,
|
|
117.566189756144,
|
|
98.6960000000000,
|
|
89.5700000000000], ...]
|
|
"""
|
|
|
|
RESULTS = []
|
|
|
|
for param in params:
|
|
|
|
results = [param]
|
|
x = params["{}".format(param)]
|
|
n = x["n"] * x["k"]
|
|
q = 2 ** 32
|
|
sd = 2 ** (x["sd"]) * q
|
|
alpha = sqrt(2 * pi) * sd / RR(q)
|
|
secret_distribution = (0, 1)
|
|
# assume access to an infinite number of papers
|
|
m = oo
|
|
|
|
model = est.BKZ.sieve
|
|
estimate = parameter_search(mitm = True, reduction_cost_model = est.BKZ.sieve, n = n, q = q, alpha = alpha, m = m, secret_distribution = secret_distribution)
|
|
results.append(get_security_level(estimate))
|
|
|
|
RESULTS.append(results)
|
|
|
|
return RESULTS
|
|
|
|
|
|
def latexit(results):
|
|
"""
|
|
A function which takes the output of get_all_security_levels() and
|
|
turns it into a latex table
|
|
:param results: the security levels
|
|
|
|
sage: X = get_all_security_levels(concrete_LWE_params)
|
|
sage: latextit(X)
|
|
\begin{tabular}{llllll}
|
|
LWE128_256 & $126.69$ & $117.57$ & $98.7$ & $89.57$ & $217.55$ \\
|
|
LWE128_512 & $135.77$ & $125.92$ & $106.58$ & $96.73$ & $218.53$ \\
|
|
LWE128_638 & $135.27$ & $125.49$ & $105.7$ & $95.93$ & $216.81$ \\
|
|
[...]
|
|
"""
|
|
|
|
return latex(table(results))
|
|
|
|
|
|
def markdownit(results, headings = ["Parameter Set", "Classical", "Quantum", "Classical (c)", "Quantum (c)", "Enum"]):
|
|
"""
|
|
A function which takes the output of get_all_security_levels() and
|
|
turns it into a markdown table
|
|
:param results: the security levels
|
|
|
|
sage: X = get_all_security_levels(concrete_LWE_params)
|
|
sage: markdownit(X)
|
|
# estimates
|
|
|Parameter Set|Classical|Quantum|Classical (c)|Quantum (c)| Enum |
|
|
|-------------|---------|-------|-------------|-----------|------|
|
|
|LWE128_256 |126.69 |117.57 |98.7 |89.57 |217.55|
|
|
|LWE128_512 |135.77 |125.92 |106.58 |96.73 |218.53|
|
|
|LWE128_638 |135.27 |125.49 |105.7 |95.93 |216.81|
|
|
[...]
|
|
"""
|
|
|
|
writer = MarkdownTableWriter(value_matrix = results, headers = headings, table_name = "estimates")
|
|
writer.write_table()
|
|
|
|
return writer
|
|
|
|
# dual bug example
|
|
# n = 256; q = 2**32; sd = 2**(-4); reduction_cost_model = BKZ.sieve
|
|
# _ = estimate_lwe(n, alpha, q, reduction_cost_model) |